This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Separation and Identification of Curcuminoids in Turmeric Powder by HPLC Using Phenyl Column

Imran Ali*¹, Ashanul Haque¹, Kishwar Saleem¹.

¹Department of Chemistry
Jamia Millia Islamia (Central University)
Jamia Nagar, New Delhi – 110025, India

*Correspondence: drimran.ali@yahoo.com
drimran.chiral@gmail.com

Phone No.: 091-9211458226
Home: http://jmi.ac.in/iali2
ABSTRACT

The natural products including curcuminoids are globally used for treating several diseases. Curcumin, demethoxycurcumin and bis-demethoxycurcumin are the major constituents of Curcuma longa L. A rapid, selective, efficient and reproducible HPLC method for the separation and identification of curcuminoids was described on Sunniest PhE (phenyl) column (250 x 4.6 mm, 5.0 μm). These constituents were separated within 10.5 min. using acetonitrile-methanol-water (40:20:40, v/v) as mobile phase with 1.0 mL/min. flow rate and 360 nm detection. The capacity factors (k, 4.2 to 4.9), separation factors (α, 1.07 to 1.10) and resolution factors (Rs, 1.07 to 2.05) indicated a good separation of the compounds. The attempts have also been made to describe the separation mechanism of the reported method. The extraction of the curcuminoids from turmeric powder was 2.1, 0.46 and 0.1% of curcumin, demethoxycurcumin and bis-demethoxycurcumin, respectively. The reported method was considered as novel due to base lined separation of curcuminoids; with sharp peak and low LOD in comparison to the reported methods in the literature. Briefly, the described method may be used for the quality control of food stuffs and identification of curcuminoids in other natural products.

KEYWORDS: Curcuminoids, Turmeric powder, HPLC separation and identification, Phenyl column, Mechanism of separation.
1. Introduction
2. Experimental
 2.1 Chemical and Reagents
 2.2 Preparation of Standard Solutions
 2.3 Extraction of Curcuminoids from Turmeric Powder
3. HPLC Instrument
4. HPLC Conditions
5. Validation
 5.1 Linearity
 5.2 Detection and Quantitation Limits
 5.3 Specificity
 5.4 Precision
6. Accuracy
 6.1 Recovery
 6.2 Robustness
 6.3 Ruggedness
7. Results And Discussion
 7.1 Extraction of Curcuminoids from Turmeric Powder
 7.2 HPLC Method Development
8. HPLC Method Optimization
 8.1 Effect of pH
 8.2 Effect of Acetonitrile
 8.3 Effect of Methanol
 8.4 Effect of Water
 8.5 Effect of Flow Rate
9. Mechanism of Separation
10. Validation of HPLC method
 10.1 Linearity
 10.2 Detection and Quantitation Limits
 10.3 Specificity
 10.4 Precision
 10.5 Accuracy
 10.6 Recovery
 10.7 Robustness
 10.8 Ruggedness
11. Comparison with other methods
12. Application of developed and validated HPLC method
13. Conclusion
14. Acknowledgement
INTRODUCTION

The rhizomes of turmeric (*Curcuma longa L.*); a plant of the Zingiberaceae family; provides yellow and flavourful powder. The yellow powder known as turmeric is mainly composed of curcuminoid pigments along with resin and turmerone. Turmeric is being used worldwide from the ancient time as food ingredient due to its bright colour and promising health properties.\(^1\) For long time turmeric (mixture of curcuminoids) is known for its several medicinal values. It is being used for curing sprains, swellings, biliary disorders, rheumatism, sinusitis, abdominal pains, icterus etc. Besides, turmeric has several other important pharmaceutical properties such as anti-HIV, anti-microbial, anti-oxidant, anti-parasitic and anti-cancer.\(^2\)-\(^10\) Mainly these activities of curcuminoids are due to the presence of three structurally correlated curcuminoids. \textit{viz.} 1,7-\textit{bis}(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (Curcumin, C), 1-(4-hydroxy phenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (demethoxy curcumin, DMC) and 1,7-\textit{bis}(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (bis-demethoxycurcumin, BDMC).\(^10\) The anticancer activities order of these curcuminoids is BDMC > DMC > C.\(^11\) The structures of these curcuminoids are given in Figure 1, indicating two substituted phenyl rings separated by heptadieneone spacer.

![Curcumin (C)](image1)

![Demethoxycurcumin (DMC)](image2)

![Bisdemethoxycurcumin (BDMC)](image3)

\textbf{Figure 1:} Structures of curcuminoids.
The commercially available turmeric powder is a mixture of naturally occurring curcuminoids; with curcumin (C) as the major constituent with other two (DMC and BDMC) as minors (C: DMC: BDMC: 77: 18: 5%). Due to the different pharmaceutical properties of three curcuminoids, their separation and identification are important issues in medicinal chemistry. A thorough search of literature was carried out and some methods for analyses of curcuminoids are available. The reported methods include TLC, column chromatography, HPTLC, and HPLC. A comparison of the reported methods was carried out with observation that TLC and HPTLC are time consuming methods with poor limits of detection. In all cases C, amine and core shell (accucore) columns were used in HPLC, which were able to separate three curcuminoids, but with some limitations. The major limitations includes extreme low pH of mobile phases, high separation time and detection limits. In some papers peaks were very close to one another while peaks were broad in some other papers. It may be due to poor interactions of these molecules with reverse phase materials because of the absence of π-π interactions; required for such kind of molecules due the presence of phenyl moieties. Therefore, the reported methods showed poor separation, broad peaks with high limit of detection and quantification. In view of these facts, the attempts have been made to develop, optimize and validate a fast, selective and reproducible method for the separation and identification of a mixture of curcuminoids using phenyl HPLC column. The developed, optimized and validated method was applied for the analyses of these curcuminoids in commercial turmeric powder. The results of these findings are reported herein.

EXPERIMENTAL

CHEMICALS AND REAGENTS

Turmeric powder was purchased from local market, New Delhi, India. The standard samples of the curcuminoids were kindly supplied by SAMI Labs, Bangalore. Acetonitrile and methanol of HPLC grade were purchased from Fisher Scientific, Fairlawn, New Jersey, USA.
Purified water was prepared by using a Millipore Milli-Q, Bedford, USA water purification system. UV spectrometer of PG instruments (model T80) was used.

PREPARATION OF STANDARD SOLUTIONS

The standard solutions (1.0 mgmL⁻¹) of each curcuminoid and their mixture in commercial sample were prepared in acetonitrile. The stock solutions were protected from light by covering with aluminium foil and stored at 4 ºC. A grade bulb pipettes and 10.0 mL volumetric flask were used for serial dilutions of these curcuminoids with acetonitrile to obtain the required concentration ranges (0.01-0.10 mgmL⁻¹).

EXTRACTION OF CURCUMINOIDS FROM TURMERIC POWDER

Curcuminoids are soluble in various organic solvents including ethanol, dichloromethane and ethyl acetate. Some research papers describe the application of various solvents for extraction of curcuminoids from the turmeric powder.⁴¹⁻⁴³ Besides, sequential extraction with number of solvents has also been used for this purpose.⁴⁴⁻⁴⁵ It was observed that DCM is the best solvent for the extraction of curcuminoids from turmeric powder. Therefore, DCM was used as extracting solvent as per the procedure describe by Anderson et al.⁴² 50.0 g of turmeric powder was taken in 250 mL round bottom flask and 125.0 mL dichloromethane was added followed by constant stirring on magnetic stirrer. The mixture was refluxed for 1.0 hr at 50 ºC. It was filtered by Buchner’s funnel followed by the separation of mother liquor. The mother liquor was concentrated on rotary evaporator resulting into dark orange oily liquid, which was precipitated with the addition of 50.0 mL hexane. The precipitate was further filtered through Buchner’s funnel, which gave a mixture of curcuminoids. The purity of the extracted curcuminoids was confirmed by UV-vis. spectrophotometer. The resulted product was analysed by HPLC for curcuminoids.
HPLC INSTRUMENT

HPLC system used was of ECOM (Prague, Czech Republic) consisting of solvent delivery pump (model Alpha 10), manual injector, absorbance detector (Sapphire 600 UV-Vis.), chromatography I/F module data integrator (Indtech. Instrument, Mumbai, India) and Winchrome software. The column used was Sunniest PhE (phenyl) column (250 x 4.6 mm, 5.0 µm) of Chromanik Japan.

HPLC CONDITIONS

All the experiments were carried out by HPLC system as described above. The aliquots of 5.0 µL of standard solutions of each curcuminoid and their mixture in commercial sample (1.0 mg/mL in acetonitrile) were loaded onto HPLC instrument, separately and respectively. The mobile phase used was acetonitrile-methanol-water (40:20:40, v/v) in isocratic mode (1.0 mL/min.). The mobile phase was prepared, filtered and degassed daily before use. All the experiments were carried out at 27±1 °C temperature with detection at 360 nm. The chromatographic parameters such as retention (k), separation (α) and resolution (Rs) factors were calculated. The order of elution was ascertained by running individual curcuminoid. The qualitative and quantitative analyses were carried out by using retention times and peak areas, respectively. The chromatographic method was optimized and validated by carrying out an extensive experimentation followed by applied analyses of curcuminoids in extracted turmeric powder.

VALIDATION

The validation of HPLC method was carried out by calculating various HPLC parameters. The linearity, limit of detection (LOD), limit of quantitation (LOQ), precision, accuracy, selectivity, robustness and ruggedness were determined for the purpose. The limits of detection (LOD) and quantitation (LOQ) were determined by injecting more diluted samples of curcuminoids. The results of the statistical analyses of the experimental data such as relative
standard deviation, correlation coefficients and confidence limit were calculated by Microsoft Excel software program. Good linearity of the calibration graphs and the negligible scatter of experimental points were considered for calculations of correlation coefficients and relative standard deviations. The robustness of the method was demonstrated by the versatility of the experimental factors that affected the peak areas.

LINEARITY

The linearity was tested by least squares linear regression analysis of the calibration curve. The linearity of calibration curves (peak area vs. concentration) for curcuminoids standards as well as in turmeric powder was checked over the concentration ranges of 0.01.0-0.10 mgmL$^{-1}$. Equal volumes (5.0 µL) of the standards as described above were loaded onto HPLC instrument. The chromatograms were recorded, separately and respectively. The calibration curves of all curcuminoids were constructed, separately and respectively, using the observed peak areas versus nominal concentrations of the analytes.

DETECTION AND QUANTITATION LIMITS

The limit of detection (LOD) and the limit of quantitation (LOQ) were determined as three and five times to the baseline noise, respectively, following the United States Pharmacopoeia.

SPECIFICITY

The specificity of the method was investigated by observing any interference in chromatographic parameters due to the present of some impurities in standard samples. The standard samples were mixed with little amount of turmeric powder to make them impure.

PRECISION

To calculate precision data, three different concentrations (0.01, 0.05 and 0.10 mgmL$^{-1}$) of each curcuminoids were used. Five sets of the chromatographic runs were carried out for all the three concentrations.
ACCURACY

The different concentrations of curcuminoids were used to determine the accuracy of HPLC method. Three concentrations i.e. 0.01, 0.05 and 0.10 mgmL\(^{-1}\) were used. The chromatographic runs were carried out five times (n = 5). The accuracy was determined by interpolation of five replicates peak areas of these molecules.

ROBUSTNESS

The method robustness was determined by a slight variation in the chromatographic parameters such as flow rate, temperature, mobile phase composition and wavelength. The retention time, peak area and shape were analyzed under the established and slightly varied experimental conditions.

RUGGEDNESS

The ruggedness of the method was determined by the change of the experimental environment such as different operators, different days.

RESULTS AND DISCUSSION

EXTRACTION OF CURCUMINOIDS FROM TURMERIC POWDER

As discussed above 1.40 g of curcuminoids were obtained from 50.0 g turmeric powder. The amounts of curcumin, demethoxycurcumin and bis-demethoxycurcumin were 1.06, 0.23 and 0.05 g, respectively (Table 1). Figure 2 depicts the UV-vis. spectra of the curcuminoids in methanol (2 x 10\(^{-5}\) M) (Figure 2). \(\lambda_{\text{max}}\) values of C, DMC and BDMC were 420, 416 and 412 nm, respectively.
The percentage recoveries of these were 2.1, 0.46 and 0.1, respectively. The values of RSD, correlation coefficients and confidence levels were 2.0-2.5, 0.9998-0.9999 and 98.80-99.00, respectively (Table 1). The attempts have been made to extract these curcuminoids from turmeric powder by using methanol, acetonitrile, ethyl acetate and ethanol as pure or their mixtures but maximum recoveries could be achieved with pure dichloromethane only. Therefore, dichloromethane was used as an extracting solvent for the reported curcuminoids. The attempts have been made to compare the extraction recoveries with those reported in the literature41-45. It was observed that the extraction recoveries of these curcuminoids were comparable. However, the extracted curcuminoids were pure as there was no extra peak in HPLC studies.

HPLC METHOD DEVELOPMENT

The separation and identification of curcuminoids were carried out on column and mobile phase as described in HPLC instrumentation section. The separated curcuminoids in commercial samples were identified by running and comparing the retention times of the individual curcuminoid. The calibration curves were plotted for all curcuminoids and used to determine their concentrations in turmeric powder. The quantitative analyses of curcuminoids in turmeric powder were carried out by comparing their peak areas with those of standards. The capacity (k), separation (α) and resolution (Rs) factors for these compounds in standard solutions and turmeric powder were calculated and given in Table 2, respectively. The chromatograms of curcuminoids mixtures in standard and extracted sample are given in Figure 3. It is clear from this figure that...
all three curcuminoids are base lined separated with sharp peak within 10.5 min. The order of elution observed was BDMC > DMC > C. The capacity, separation and resolution factors of curcumin were 4.2 to 4.9, 1.07 to 1.10 and 1.07 to 2.05, respectively (Table 2).

Figure 3: HPLC chromatograms of (A): standard mixture and (B): extracted curcuminoids. Experimental conditions as given in text.

HPLC METHOD OPTIMIZATION

To optimize the chromatographic conditions, various combinations of acetonitrile-methanol-water (40:20:40, v/v) were tried. The influence of flow, pH, detection wave length and amount injected were studied. Besides, other solvents such as phosphate buffer, acetate buffer and ratio of different organic solvents were also tested. As a result of exhaustive experimentation, the best chromatographic conditions were optimized and reported herein. The optimizations of chromatographic parameters are discussed in the following paragraphs.

Effect of pH

pH of the mobile phase is one of the important factors for controlling HPLC separation. pH of the mobile phase was varied from 3.0-7.0. Above pH 7.0, the chances of curcuminoids decomposition are high,\(^{32}\) that’s why the experiments were carried out maximum up to pH 7.0. The resolution factors ranged from 0.88 to 1.32 for these molecules at pH 3.0-6.0. Contrarily, these values at pH 7.0 were 1.07 to 1.45 (Figure 4). Good separation of the reported molecules at pH 7.0 might be due to the presence of curcuminoid phenoxide ions (having higher \(\pi\) electron
density), leading to $\pi-\pi$ interactions with phenyl column. Contrarily, this situation is not available at low pH values (in acidic media) and, hence, poor separation.

![Effect of pH on the resolution of curcuminoids.](image)

Figure 4: Effect of pH on the resolution of curcuminoids. (Rs$_1$: resolution between peak 1-2, Rs$_2$: resolution between peak 2-3, Peak 1: BDMC, Peak 2: DMC and Peak 3: C).

Effect of Acetonitrile

Amount of acetonitrile was varied from 10 to 60 parts, keeping methanol and water constant. Interestingly, it was observed that there were no peaks within 20 mins. at 10 mL acetonitrile (low amount). Further increasing volume of acetonitrile from 10 \rightarrow 20, two peaks (10.5 and 11.1 min.) were detected. Furthermore, at 30 parts of acetonitrile, three clear peaks (14.6, 15.5 and 16.6 min.) were observed; with Rs values 0.95, 0.71 and 0.78 of C, DMC and BDMC, respectively. However, this system was laced with drawback of low detection of DMC and BDMC. On further increment to 40 mL, better peak shape with clear separation was observed; with Rs values 1.27, 1.07 and 2.05 of C, DMC and BDMC, respectively. These values indicated satisfactory separation. Further increase in acetonitrile concentration to 50 and 60 mL resulted into poor resolution. It might be due to weak bonding among molecules and column stationary phase due to acetonitrile effect (π-electron of nitrile functionality involved in bonding.
with phenyl group by replacing analyte molecules). As a result, the best volume of acetonitrile was selected as 40 mL (Figure 5).

![Figure 5](image-url)

Figure 5: Effect of acetonitrile on the resolution of peaks. (R_s1: resolution between peak 1-2, R_s2: resolution between peak 2-3), (Peak 1: BDMC, Peak 2: DMC and Peak 3: C).

Effect of Methanol

Amount of methanol was varied from 10 to 60 mL. The resolution was poor ($R_s = 1.15, 0.85$ and 1.7) at low amount of methanol (10 mL). However, at 20 mL of methanol R_s values were slightly higher i.e. 1.5, 1.07 and 1.56. Further increase of methanol R_s values decrease with broad peaks. It might be attributed to decreasing concentration of acetonitrile; responsible for sharp peaks. The results of this optimization are shown in Figure 6.

![Figure 6](image-url)

Figure 6: Effect of methanol on the resolution of peaks. (R_s1: resolution between peak 1-2, R_s2: resolution between peak 2-3), (Peak 1: BDMC, Peak 2: DMC and Peak 3: C).
Effect of Water

Amount of water was varied from 10 to 60 mL. Only two peaks were (3.73 and 4.32 min) observed with 10 mL water in mobile phase. It might be attributed to high polarity of solvent. Further increasing of water contents (20 → 40) three peaks were observed within 10.5 min. with poor resolution at 30 mL. However, peaks were well resolved and sharp at 40 mL of water. Further increase in water content resulted into partial separation with broad peaks. Therefore, 40 mL water gave the best results.

Effect of Flow Rate

Flow rate of the solvent system acetonitrile-methanol-water (40:20:40, v/v) was varied from 0.5 to 2.0 mL/min. and the chromatograms are shown in Figure 7. It was observed that at low flow rate (0.5 mL/min), the peaks were poorly resolved with high retention time (Fig. 7). Further increase in flow rate to 1.0 mL/min resulted into sharp and base lined separation. On the other hand, high flow rates (1.5 and 2.0 mL/min.) decreased retention times with partial separation. Figure 8 depicts a typical trend of Rs change with respect to flow rate. At 0.5 mL/min., the values of Rs were 0.79, 0.95 and 1.25 of C, DMC and BDMC, respectively. On increasing the flow rate to 1.0 mL/min., there was an increase in these values (Rs = 1.06, 1.26 and 1.6). At high flow rates (1.5 and 2.0 mL/min.), there was decrease in resolution among the peaks (Rs = 0.92, 1.18 and 1.3). Briefly, the peaks were well resolved at 1.0 mL/min. flow rate, which was considered as the best flow rate.
Figure 7: Effect of flow rates on the retention times of curcuminoids.

Figure 8: Effect of flow rate on the resolution of peaks. (Rs1: resolution between peak 1-2, Rs2: resolution between peak 2-3, Peak 1: BDMC, Peak 2: DMC and Peak 3: C).
MECHANISM OF SEPARATION

As mentioned in the introduction part that curcuminoids were poorly resolved on C\textsubscript{18} and amine columns but the present method was more advantageous such as working at normal temperature, acid free conditions and good efficiency. It is well known that van der Wall’s forces, hydrogen bondings, dipole-induced dipole interactions, ionic interactions and coordination bondings are the separation controlling forces in HPLC. It is interesting to note that the reported curcuminoids have little difference in their structures and such types of forces are almost of equal magnitudes. Hence, C\textsubscript{18} and amine phases involving above cited interactions are not capable to separate them successfully. Contrarily, π-π-interactions, cation-π or anion-π interactions are of quite good magnitude and are ideal for separation of such closely related molecules. Figure 1 clearly indicates the presence of two phenyl moieties in these molecules on each side. Therefore, phenyl column was used to overcome the problem of their poor separation. For these molecules, π-π-interactions played major role for their separation. Additionally, the above cited forces also contribute in separation mechanism. Phenyl column comprises several Si-O-(CH\textsubscript{2})\textsubscript{3}-Ph groups (Figure 9). The phenyl group on stationary phase retained the reported molecules at different extents which might be due to dissimilar magnitudes of π-π-interactions among curcuminoids and stationary phase; resulting into good resolution. Besides, due to the comparatively stronger π-π-interactions the diffusion of curcuminoids gets reduced; resulting into big and sharp peak (low detection limits). Briefly, the separation of the reported curcuminoids is controlled by π-π interactions along with other forces.

Phenyl-propyl column (alkyl chain stationary phase (C\textsubscript{8}/C\textsubscript{18}) is replaced by aromatic ring) has good potential for the analyses of natural products and other pharmaceuticals by exploiting the π-π type interactions with analytes.48 On the reported column π-π-reversed-phase (π-RP) retention mechanism is found to be prominent,49 with some other additional interactions.50 Even stereoisomers of identical properties can be separated by exploiting π-π type interactions on
chiral columns. It has already been established that solutes with \(\pi \)-electron systems displayed different retention behaviors on \(\pi \)-RP-phases than on ordinary RP-columns. Contrarily, the solutes without \(\pi \)-electrons or with sterically hindered \(\pi \)-electron systems behaved almost in similar fashion on \(C_8/C_{18} \) and \(\pi \)-RP-phases. Stronger \(\pi \)-\(\pi \) interactions are responsible for higher aromatic solute retention on \(\pi \)-RP-phases. As per Euerby et al. selectivity of phenyl ring bonded stationary phase varied with the length of spacer between phenyl group and silica surface. The authors reported low selectivity on column having phenyl ring directly attached to silica. However, selectivity of the stationary phase augments as the number of linker atoms between phenyl and silica increases. The authors observed poor \(\pi \)-\(\pi \) interactions on column having phenyl ring close to silica surface due to \(\pi \)-\(\pi \) stacking among analytes and stationary phases. On introduction of linker atoms, \(\pi \)-\(\pi \) interactions among analytes and stationary phase were quite enough, resulting into good separation. These results indicated phenyl propyl column as the best choice for the separation of analyses having \(\pi \) electrons.

The attempts have been made to develop the mechanism of separation at supra-molecular level (Figure 9). Curcuminoid structures can be differentiated from one another by the presence or absence of methoxy group (an electron donating group). Greater the number of methoxy group, greater will be electron density on aromatic ring and, hence, more will be \(\pi \)-\(\pi \) interactions. The experiments were carried out at pH 7.0 and all curcuminoids occur in phenoxide ionic form at this pH, increasing \(\pi \) electron density on phenyl rings. Therefore, there are stronger \(\pi \)-\(\pi \) interactions at pH 7.0 in comparison to acidic pHs. On the other hand, methoxy group effect \(\pi \) electron density on phenyl rings of these molecules. C and DMC have two methoxy groups while BDMC is devoiding it. It means \(\pi \) electron density on these molecules is in the order of \(C > DMC > BDMC \). Similarly, the binding capacity of these molecules on stationary phase will be in the same order. Consequently, the elution order of these compounds will be reversed, which was
observed experimentally. Therefore, it may be assumed that the separation of curcuminoids on phenyl phase is being controlled by π-π interactions along with other forces.

![Figure 9: Possible π-π interactions between stationary phase (propyl phenyl phase) and curcuminoids (C, DMC and BDMC). Solid and dotted lines represent strong and weak interactions, respectively.](image)

VALIDATION OF HPLC METHOD

HPLC method was validated with respect to various parameters including linearity, limit of detection (LOD), limit of quantitation (LOQ), precision, accuracy, selectivity, robustness and ruggedness.58

LINEARITY

The linearity of calibration curves (peak area vs. concentration) for curcuminoids standards as well as in turmeric powder were checked over the concentration ranges of 0.01.0-
0.10 mg mL\(^{-1}\). The plotted curves were linear over these concentration ranges \((n = 5)\) for all curcuminoids. The peak areas of curcuminoids were plotted versus their respective concentrations. The linear regression analysis was performed on the resultant curves. The correlation coefficient \((R^2)\) \((n = 5)\) were found to be 0.9999 for all curcuminoids. The values of RSD and confidence levels were in the range of 2.00-2.10 and 98.80-99.00, respectively, across the concentration ranges studied.

DETECTION AND QUANTITATION LIMITS

The values for LOD and LOQ for curcuminoids ranged from 0.30-0.50 ng and 1.00-2.00 ng, respectively. The resultant RSDs for these studies were in the range of 2.00-2.50%.

SPECIFICITY

The method is a quite good specific as can be seen from Fig. 3. The retention times of all curcuminoids are almost similar in both standard solutions and turmeric powder. There was no effect of the added impurities in standard on the retention times and peak shape of these curcuminoids. These findings indicate a good specificity of the reported method.

PRECISION

The precision data was calculated by taking three concentrations of all curcuminoids \(i.e.\) 0.01, 0.05 and 0.10 mg mL\(^{-1}\). Five chromatographic runs were carried out for all the three concentrations. RSDs were calculated and ranged from 2.00 to 2.80\%; indicating HPLC method precise.

ACCURACY

The accuracy of the method was tested by analyzing different samples of curcuminoids as described in experimental section. The accuracy was determined by interpolation of replicate \((n = 5)\) peak areas of three accuracy standards. In each case, the percent error was calculated and
found in the range of 0.60 to 1.20%. This range indicated a good accuracy of the developed method.

ROBUSTNESS

The small changes made include in mobile phase compositions, flow rates, amounts loaded and detection wavelengths. It was observed that there were no remarkable variations in HPLC results. No change in HPLC results by varying above experimental conditions indicated the reported method as robust.

RUGGEDNESS

The ruggedness assessment was performed during the development of HPLC method. RSD values for intra- and inter-days of curcuminoids were in the range of 2.00-2.51; indicating the robustness of the method. Besides, the results obtained with different operators were unaffected, which also indicated ruggedness of the method.

COMPARISON WITH OTHER METHODS

The reported results of curcuminoids separation were compared with those of reported in the literature.12,20,23,24,27,29-40,59 The comparison was carried out in terms of columns, mobile phase, flow rates, detection limits, peak shapes and economy. The data is given in Table 3. It is clear from this Table that all the methods used reversed phase C\textsubscript{18}, accucore and amine columns with acid in mobile phases. pHs of these mobile phase are expected between 1-2, which damage HPLC column. Only one column is based on amine group, which has a catalytic effect upon curcuminoids degradation and compositional variations; leading to variable results. Mostly methods used 1.5-2.0 mL/min as flow rates using moderate amounts of costly HPLC grade solvent. Besides, the retention times of these methods ranged 11-28 mins. In this ways these methods are costly and time consuming. Besides, in most of the cases the detection limits are not given as the separation is poor on C\textsubscript{18} columns. In some cases the detection limits are given but these are high and not acceptable. In some papers the peaks are not well resolved and sharp. Of
course, the separation time is 3.0 min on accucore column but this column is not capable to separate curcuminoids under natural laboratory conditions. HPLC instrument needs a heating device to achieve 40 °C temperature for good separation. Besides, low pH damaging column was another major drawback on Accucore column. On the other hand, the reported method on phenyl based reversed phase column showed sharp peaks with good resolution factors. The separation time is only 10.5 with low limits of detection i.e. 0.30-0.50 ng. pH of the mobile phase is 7.0, which did not affect column life. Low experimental time and use of water made this method economic and eco-friendly. By considering all these factors, it was concluded that the presented HPLC method was superior to the reported ones in terms of economy and eco-friendship, low limits of detection and sharp peaks.

APPLICATION OF DEVELOPED AND VALIDATED HPLC METHOD

The validity of the developed method was applied to analyze curcuminoids in turmeric powder extract. The qualitative and quantitative analyses of curcuminoids were carried out by using the above mentioned HPLC conditions. The chromatograms of curcuminoids in turmeric powder are shown in Figure 3. The quantitative analyses of curcuminoids in turmeric powder were carried out by comparing their peak areas with those of standards. For calculation of concentrations of curcuminoids in turmeric powder extract, five sets of HPLC experimentations were carried out under identical experimental conditions. The amounts of curcumin, demethoxycurcumin and bis-demethoxycurcumin in turmeric powder were 21.2, 4.60 and 1.0 g/kg, respectively.

CONCLUSION

A fast, reproducible, selective and effective HPLC method on phenyl reversed phase column was described for the analyses of curcuminoids within 10.5 minutes at a 360 nm. The values for LOD and LOQ for curcuminoids ranged from 0.30-0.50 ng and 1.00-2.00 ng, respectively. The linearity was observed in the concentrations ranges of 0.01 to 0.10 mgmL⁻¹ for
all curcuminoids. The method was used for analyses of curcuminoids in turmeric powder with concentrations of curcumin, demethoxycurcumin and bis-demethoxycurcumin as 21.2, 4.60 and 1.0 g/kg, respectively. The results of the proposed method were compared (Table 3) and observed that the present method was more advantageous such as working at normal temperature, acid free conditions and good efficiency. Besides, it can work under, the reported method can be used for the quality control of any food stuff having turmeric. Besides, the reported method can be used to identify these curcuminoids in food stuffs and some other natural products. The baseline separation; with good values of separation and resolution factors; of these molecules on phenyl column dictated its application at preparative scale for the separation of individual curcuminoids.

ACKNOWLEDGEMENT

The authors are thankful to CSIR (Council of Scientific and Industrial Research), New Delhi for providing Senior Research Fellowship to Mr. Ashanul Haque. The authors also thank to Dr. T. Samuel Manoharan, Principal Scientist & GM (R&D), SAMI Labs, Bangalore for supplying curcuminoids as gift sample for the research work. Thank is also to Chromanik, Japan for providing phenyl column as a gift.

REFERENCES

Table 1: Regression analyses data for the extraction of curcuminoids from turmeric powder.

<table>
<thead>
<tr>
<th>Curcuminoids</th>
<th>Recovery (%)</th>
<th>% RSD</th>
<th>Correlation coefficients (R^2)</th>
<th>Confidence levels (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumin</td>
<td>2.1</td>
<td>2.50</td>
<td>0.9998</td>
<td>98.78</td>
</tr>
<tr>
<td>Demethoxycurcumin</td>
<td>0.46</td>
<td>2.40</td>
<td>0.9999</td>
<td>98.80</td>
</tr>
<tr>
<td>Bis-demethoxycurcumin</td>
<td>0.1</td>
<td>2.00</td>
<td>0.9999</td>
<td>99.00</td>
</tr>
</tbody>
</table>

n = 5
Table 2: Chromatographic and precision data of curcuminoids.

<table>
<thead>
<tr>
<th>Curcuminoids</th>
<th>k</th>
<th>α</th>
<th>Rs</th>
<th>%RSD</th>
<th>Correlation Coefficients</th>
<th>Confidence Levels (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcumin</td>
<td>4.28</td>
<td>1.07</td>
<td>1.27</td>
<td>2.00</td>
<td>0.9999</td>
<td>99.00</td>
</tr>
<tr>
<td>Demethoxycurcumin</td>
<td>4.59</td>
<td>1.10</td>
<td>1.07</td>
<td>2.05</td>
<td>0.9999</td>
<td>99.00</td>
</tr>
<tr>
<td>Bis-demethoxycurcumin</td>
<td>4.92</td>
<td>1.08</td>
<td>1.06</td>
<td>2.10</td>
<td>0.9999</td>
<td>99.00</td>
</tr>
<tr>
<td>Turmeric Powder Extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcumin</td>
<td>4.23</td>
<td>1.05</td>
<td>1.06</td>
<td>2.00</td>
<td>0.9999</td>
<td>98.80</td>
</tr>
<tr>
<td>Demethoxycurcumin</td>
<td>4.50</td>
<td>1.08</td>
<td>1.06</td>
<td>2.10</td>
<td>0.9999</td>
<td>99.00</td>
</tr>
<tr>
<td>Bis-demethoxycurcumin</td>
<td>4.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n = 5

Note: k: Capacity factor, α: Separation factor and Rs: Resolution factor.
Column: Phenyl column (250 x 4.6 mm, 5.0 µm).
Isocratic HPLC Conditions: Acetonitrile-Methanol-Water (40:20:40, v/v), Flow Rate: 1.0 mL/min, UV detection: 360 nm, Temperature: 27±1 ºC.
Table 3: A comparison of curcuminoids separation by HPLC.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Columns</th>
<th>Mobile Phases</th>
<th>Sep. Time (min.)</th>
<th>Detection Limits & Flow Rates</th>
<th>Drawbacks</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C<sub>18</sub></td>
<td>CH<sub>3</sub>OH-2% CH<sub>3</sub>COOH-CH<sub>3</sub>CN</td>
<td>6.75</td>
<td>1 mL/min.</td>
<td>Very low difference in retention time, low pH leading to column damage; detection limits not given</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>C<sub>18</sub></td>
<td>(A) H<sub>2</sub>O (0.25% CH<sub>3</sub>COOH and(B) CH<sub>3</sub>CN, 0–17 min, 40–60% B; 17–32 min, 60–100% B; 32–38 min, 100% B; 38–40 min, 100–40% B</td>
<td>14.0</td>
<td>0.2 ml/min.</td>
<td>Carried out at 48 °C, low pH leading to column damage; detection limits not given</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>RP-5-NH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub>OH-H<sub>2</sub>O (96:04, v/v)</td>
<td>20.73</td>
<td>1 mL/min.</td>
<td>High separation time and, hence costly; amino-bonded stationary phase has a catalytic effect upon curcumin degradation; composite-onal variations leads to variable results (due to the use of azeotropic mixture of ethanol, detection limits not given</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>C<sub>18</sub></td>
<td>0.1 M of acetate buffer (pH 4.0) - CH<sub>3</sub>CN (57:43, v/v)</td>
<td>~28</td>
<td>1.5, 0.9 and 0.09 ngmL<sup>-1</sup> for C, DMC & BDMC, 1 mL/min.</td>
<td>High retention time and, hence, costly; low pH leading to damage of column</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>C<sub>18</sub></td>
<td>Gradient Elution Mobile</td>
<td>~11</td>
<td>1 mL/min.</td>
<td>Low pH leading to column</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH\textsubscript{3}CN-CH\textsubscript{3}OH-H\textsubscript{2}O (40:23:37, v/v)</td>
<td>pH 3.0</td>
<td>~12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100-5000 ng mL-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL/min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low pH leading to damage of column; high detection limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gradient Elution Mobile phase solvents (A) 3 mM H\textsubscript{3}PO\textsubscript{4} in H\textsubscript{2}O and (B) CH\textsubscript{3}CN</td>
<td>13.2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retention times too close; low pH leading to column damage; detection limits not given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05% CH\textsubscript{3}COOH-CH\textsubscript{3}OH (15:85, v/v)</td>
<td>~26</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High retention time and, hence, costly; low pH leading to column damage; detection limits not given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gradient Elution Mobile phase solvents (A) 0.25% CH\textsubscript{3}COOH in H\textsubscript{2}O and (B) CH\textsubscript{3}CN</td>
<td>17.0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High retention time and, hence, costly; low pH leading to column damage; detection limits not given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH\textsubscript{3}CN - 2% CH\textsubscript{3}COOH (40:60, v/v)</td>
<td>13.6</td>
<td>0.90, 0.84 and 0.08 μg/ for C, DMC & BDMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low pH leading to damage of column; high detection limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH\textsubscript{3}CN-0.1% CF\textsubscript{3}COOH- (50:50, v/v), (pH adjusted to 3.0 with NH\textsubscript{3})</td>
<td>9.0</td>
<td>27.99, 31.91 and 21.81 ng mL-1 for C, DMC & BDMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low pH leading to damage of column; moderate detection limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>TSK-GEL ODS 80 Ts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1% HCOOH-CH\textsubscript{3}CN (50:50, v/v)</td>
<td>10.0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low pH leading to damage of column; detection limits not given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>C\textsubscript{18}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% THF - 60% H\textsubscript{2}O with 1% citric acid,</td>
<td>9.27</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7 mL/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low pH leading to damage of column; broad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH 3.0</td>
<td></td>
<td>peaks, detection limits not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>C₁₈</td>
<td>CH₃CN-5% CH₃COOH (75:25, v/v)</td>
<td>2.0</td>
<td>1.0 mL/min.</td>
<td>Extremely low pH leading to damage of column; detection limits not given</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>C₁₈</td>
<td>1% H₃PO₄ - CH₃CN</td>
<td>6.36</td>
<td>2.5 μg/mL</td>
<td>Low pH leading to damage of column; detection limit high</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Chromolith column (Monolithic C₁₈)</td>
<td>H₂O-CH₃CN-CH₃COOH (60:40:1, v/v)</td>
<td>20.5</td>
<td>50 ng/mL</td>
<td>High retention time and, hence, costly; retention times too close</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>C₁₈</td>
<td>5.0 mM CH₃CN - H₃PO₄ (45:55, v/v)</td>
<td>18.6</td>
<td>0.207, 0.202 and 0.514 ng/mL for CUR, DMC and BDMC</td>
<td>High retention time and, hence, costly; detection limit high</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>C₁₈ and Accucore</td>
<td>MeOH-10 mM H₃PO₄ (80:20, v/v)</td>
<td>3.0</td>
<td>- 0.8 mL/min.</td>
<td>Not capable to separate under normal conditions (room temperature) and Low pH leading to damage of column</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>RP-Phenyl Column</td>
<td>ACN-MeOH-H₂O (40:20:40, v/v)</td>
<td>10.5</td>
<td>0.30-0.50 ng</td>
<td>Fast, reproducible, at a new wave length</td>
<td>Present work</td>
</tr>
</tbody>
</table>