Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Simultaneous determination of hydroquinone and catechol in compost bioremediation using a tyrosinase biosensor and artificial neural networks

ZHOU Yaoyu^{1,2}, TANG Lin^{1,2,*}, ZENG Guangming^{1,2,*}, ZHANG Yi^{1,2}, LI Zhen³, LIU Yuanyuan^{1,2},

CHEN Jun^{1,2}, YANG Guide^{1,2}, ZHOU Lu^{1,2}, ZHANG Sheng^{1,2}

1 College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China

2 Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of

Education, Changsha 410082, China

3 The Institute of Packaging and Materials Engineering of Hunan University of Technology, Zhuzhou

412007, China

^{*} Corresponding author: Tel.: +86-731-88822778; Fax.: +86-731-88822778

E-mail: tanglin@hnu.edu.cn(L. Tang), zgming@hnu.edu.cn(G.M. Zeng).

1 Abstract

2	A biosensor based on tyrosinase immobilized with ordered mesoporous carbon-Au (OMC-Au),
3	L-Lysine membrane and Au nanoparticles (tyrosinase/OMC-Au/L-Lysine/Au) was combined with
4	artificial neural networks (ANNs) for the simultaneous determination of catechol (CC) and
5	hydroquinone (HQ) in compost bioremediation of municipal solid waste. The good performance of
6	biosensor provided the potential applicability for the simultaneous identification and quantification of
7	catechol and hydroquinone in real samples, and the combination with ANNs offered a good
8	chemometric tool for data analysis in respect to the dynamic, nonlinear, and uncertain characteristics of
9	the complex composting system. Good prediction ability was attained after the ANNs model
10	optimization, and the direct detection range for catechol and hydroquinone were directly analyzed by
11	the ANNs model varied between 1.0×10^{-7} and 1.1×10^{-4} M, significantly extended than the linear model
12	$(4.0 \times 10^{-7} \text{ to } 8.0 \times 10^{-5} \text{ M})$. Finally, the performance of the ANNs model was compared with the linear
13	regression model. The results demonstrated that the prediction results by the ANNs model were more
14	precise than those by the linear regression, and the latter was far from accurate at high levels of
15	catechol and hydroquinone beyond the linear range. All the results showed that the combination of the
16	biosensor and ANNs was a rapid and sensitive method in the quantitative study of composting system.
17	Keywords: biosensor; DPV signals; catechol; hydroquinone; artificial neural networks; compost

18 bioremediation.

20	Introd	uction

21	Phenolic compounds are widely distributed as environmental pollutants because many of them are
22	resistant to biotic and abiotic degradation. They are mostly derived from various agricultural and
23	industrial activities, including waste discharge from wood preservatives, coking, textiles, plastics, dyes,
24	paper, herbicides industries and the partial degradation of phenoxy contaminants in remediation
25	processes ^{1,2} . The toxicity of phenols generated from bioremediation processes, such as composting, can
26	bring on undesirable ecological effects and seriously reduce removal efficiencies ³ . Catechol (CC) and
27	hydroquinone (HQ) are two isomers of phenolic compounds which are harmful to human health and
28	ecological environment. During the application of composting technology in disposal of municipal
29	solid waste, CC and HQ are generally direct pollutant or by-product of the aromatic pollutant ⁴ .
30	Therefore, detection and quantification of the toxicity of these phenolic compounds from compost
31	bioremediation of municipal solid waste is a critical issue. Up to now, a great number of analytical
32	methods have been established to determine dihydroxybenzene isomers in compost systems. On the
33	one hand, there are techniques such as high-performance liquid chromatography (HPLC) ⁵ ,
34	spectrophotometry 6 and gas chromatography 7 , which allow individual identification of phenols, but
35	these procedures usually require specific equipment, laboratory conditions, and are not suitable for
36	on-site analyses. On the other hand, electrochemical methods are applied to detect the hydroquinone,
37	catechol, phenol, resorcinol, cresol. These methods have the advantages of fast response, cheap
38	instrument, low cost, simple operation, timesaving, but the key point lies in improving the sensitivity,
39	selectivity and the potential applicability for the quantification of phenols in real samples. In an attempt
40	to overcome the deficiencies of these analytical methods, the applications of enzyme sensors to specific
41	pollutant detection have been increasingly reported to exhibit superior sensitivity, stability, reusability,

selectivity, and portability⁸. Especially the biosensor provided the potential to quantify the pollutant
levels in real environmental. The operation efficiency of compost systems will be much improved if
enzyme sensors are applied in pollutant detection.

45	In our previous works, a tyrosinase biosensor was developed for linear calibration and
46	simultaneous determination of hydroquinone and catechol ⁹ . The biosensor was evaluated by differential
47	pulse voltammetry (DPV) measurements, which is used to make electrochemical measurements, and
48	the DPV peak currents increased linearly with concentration over the range of 4.0×10^{-7} to 8.0×10^{-5} M,
49	the detection limits of HQ and CCwere 5×10^{-8} and 2.5×10^{-8} M (S/N=3), respectively. The sensitivities
50	in the linear calibration regions for low concentration show the following order: 0.4511 A/M (catechol,
51	n=4) > 0.338 A/M (hydroquinone, $n=13$). And the electrode showed a rapid and sensitive
52	bioelectrocatalytic response of 65 and 89 s after addition of catechol and hydroquinone, respectively.
53	Using the differential pulse voltammetry (DPV), the wide peak separation and low peak potential
54	ensured the avoidance of interferences, making this biosensor a potential device for real sample
55	applications. However, the detection procedures are still susceptible to the complex samples containing
56	heterogeneous organic components and certain functional groups, such as phenolic OH and carboxyl,
57	especially in compost system which a variety of organic compounds coexisting, owing to both the
58	redox and sorption of the interfering matrix constituents on the electrode surface ⁸ . As a result, an
59	unstable baseline or even the overlapped differential pulse voltammetry signal will be obtained with a
60	carbon electrode when it was applied to large quantities of compost samples. Although the data
61	generated by simultaneous determination of phenols compounds from compost bioremediation can be
62	analyzed using the linear regression model, nonlinearities and uncertainties also occur in the process as
63	mentioned above, which restrict the biosensor in practical application. Thus, the quantification

Analytical Methods

64	capability of the linear model will be limited by the dynamic, nonlinear, and uncertain characteristics of
65	the complex composting system, and will give erroneous results if the linear range is exceeded.
66	Artificial neural network (ANN) are computational models inspired by animal central nervous systems
67	(in particular the brain) that are capable of machine learning and pattern recognition. They are usually
68	presented as systems of interconnected "neurons" that can compute values from inputs by feeding
69	information through the network. It have found extensive utilization in solving many complex
70	real-world problems. ANNs could be deemed as advanced signal processing variants allowing the
71	interpretation, modelling and calibration of complex analytical signals for they can process very
72	nonlinear and complex problems even if the data are imprecise and noisy ^{8,10,11} . The combination of the
73	tyrosinase biosensor with ANNs modelling may represent an alternative to classical methods. This
74	approach has already been introduced towards the analysis of phenols. For example, the group of
75	Xavier Cetó and Francisco Céspedes has used this method to manage the sensor signal, and established
76	electronic tongue and Bio-Electronic Tongue (BioET) based on voltammograms correlated to phenol
77	contents in wines ¹²⁻¹⁶ . In addition, Tang group has used this method to handle the biosensor signal,
78	processing the amperometric signals correlated to enzyme activities or phenol contents in compost
79	system ^{8.26} .
80	In this work, the application of ANN technique for evaluation of the DPV signals of

Analytical Methods Accepted Manuscript

multi-component analysis generated by the tyrosinase biosensor for the simultaneous determination of CC and HQ in compost extract samples was explored, which has not been reported. This method combining the advantages of both parts, calibrated the complex overlapping analytical signals and imprecise data from composting samples. The aim of the study was to extend the limited measuring range of the biosensor to a useful and wider working band. This assay provided the potential

applicability of the biosensor for the quantification of CC and HQ in compost system, and the development of fast and inexpensive on-line monitoring systems in municipal solid waste compost bioremediation. Experimental **Apparatus and reagents** Cyclic voltammetric (CV) measurement and differential pulse voltammetry (DPV) measurement were carried out on CHI660B electrochemistry system (Chenhua Instrument, Shanghai, China). Model PHSJ-3F laboratory pH meter (Leici Instrument, Shanghai, China) was used to test pH value. A Sigma 4K15 laboratory centrifuge, a vacuum freezing dryer and a mechanical vibrator were used in the assay. The three-electrode system used in this work consisted of a tyrosinase/OMC-Au/L-Lysine/Au/glassy carbon electrode (GCE) as working electrode, a saturated calomel electrode (SCE) as reference electrode and a Pt foil auxiliary electrode. All the work was conducted at room temperature (25 °C) unless otherwise mentioned. Tyrosinase (EC 1.14.18.1, from mushroom as lyophilized powder), catechol and hydroquinone were purchased from Sigma-Aldrich (USA). Tetraethoxysilane (TEOS), L-Lysine, Gold(III) chloride trihydrate (HAuCl₄·4H₂O, 99.9%) and all other chemicals were of analytical grade and used as received. Phosphate buffer solutions (1/15 M PBS) with different pH 6.98 were prepared by mixing the stock solutions of KH₂PO₄ and Na₂HPO₄·12H₂O. All solutions were prepared with double-distilled water. The synthesis of OMCs-Au nanoparticles and the immobilization of tyrosinase on the surface of nanoparticles were achieved according to the procedure introduced by Tang et al⁹. Procedures

Analytical Methods

107	The preparation of tyrosinase/OMC-Au/L-Lysine/Au/GCE and the measurements of CC and HQ
108	were carried out as described in our previous work9. Briefly, the AuNPs and L-Lysine were
109	immobilized on glassy carbon electrode by electrochemical method. OMC-Au/L-Lysine/Au/GCE was
110	prepared by casting 5.0 μ L of the OMC-Au suspension onto the surface of the L-Lysine/Au/GCE,
111	Finally, tyrosinase was immobilized on the electrode surface, as presented in Scheme S1. Au
112	nanoparticles (AuNPs) modified glassy carbon electrode (GCE) due to their high effective surface area,
113	nano-scaled dimension effects, and most importantly, binding affinity with L-Lysine. In addition,
114	L-Lysine provided amino and became the cross-linking agent between AuNPs film and OMC-Au film,
115	and OMC-Au could not only unite with L-Lysine, but also combined with tyrosinase. This makes the
116	enzyme more fixed on the biosensor, accelarates the electron transfer from the enzyme-catalysed redox
117	reaction to electrode surface, and extend its using life as well ⁹ . Under the optimized condition, 10 mL
118	compost extract samples containing different concentrations of CC and HQ were added into an
119	electrochemical cell, and then the three-electrode system was installed on it. The DPV was recorded
120	from +0.6 to -0.2 V with pulse amplitude of 0.05 V, pulse width of 0.05 s, and pulse period of 0.2 s.
121	The CV was performed between -0.6 and $+0.8$ V at scan rate of 50 mV·s ⁻¹ , sample interval of 0.0001
122	V and quiet time of 2 s.
123	Preparation of compost extracts

Analytical Methods Accepted Manuscript

The biosensor simultaneous determination of the CC and HQ concentration was applied in compost bioremediation. The composting process has been introduced previously¹⁷. The components of compost were soil, straw, restaurant leftover, and bran, and the water ratio was 51%. The soil was collected from 100 cm underground on the unfrequented hillside of Yuelu Mountain (Changsha, China), from which large organic scraps were removed. Then aerobic compost was managed 40 days under the

Analytical Methods Accepted Manuscript

129	condition of 30 $^\circ C$ temperature and $0.033 m^3 \cdot h^{-1}$ ventilation. 10 g of compost sample was placed in a
130	flask and 200 mL water was added in. The suspension was agitated on a mechanical vibrator at 200
131	rpm for 2 h. The supernatant was centrifuged at 10000 rpm for 5 min, and then filtered to get the filtrate
132	as the compost extract. All the work was done at room temperature unless otherwise mentioned. The
133	dosage of CC and HQ into each compost extract was controlled using certain volumes of CC and HQ
134	stock solutions.
135	Data processing
136	Chemometric processing was done by specific routines in MATLAB 7.0 (Math Works, Natick,
137	MA) written by the authors, using Neural Network Toolboxes to develop the ANN models. SigmaPlot
138	12.0 (Systat Software Inc, California, USA) was used for graphic representations of data and results.
139	The measured data of a total set of 38 samples using the biosensor were divided into three datasets.
140	22 samples for the training set were used to build the proper modeling of the response, 8 samples
141	randomly distributed for the testing set were used to estimate the modeling performances, and another
142	8 extract samples were used to validate the ANN model application. The biosensor DPV responses of
143	compost samples with corresponding CC and HQ concentrations were analyzed using a feed-forward
144	back propagation (BP-ANN). This artificial neural network model for variable selection aims to find an
145	optimal set of inputs that can quickly and successfully classify or predict the desired outputs. It was a
146	feed-forward network combining a back propagation algorithm which was used to train the network
147	according to a learning rule ¹⁸ . For each sample, a complete DPV was recorded for forming the array
148	and data. In order to reduce the high dimensionality of the recorded signals, to prevent larger numbers
149	from overriding smaller ones, and to prevent premature saturation of hidden nodes, which impedes the
150	learning process, a pre-processing stage was required. There is no one standard procedure for

Analytical Methods

normalizing inputs and outputs¹⁹. But it is recommended that the data be normalized between slightly offset values such as 0.1-0.9 and to avoid saturation of the sigmoid function leading to slow or no learning^{20,21}. For this, the input values of both the training and the test subsets were kept in interval [0.1,0.9] corresponding to the range of the normalized function: $X_i = 0.1 + 0.$ $\frac{Z_i - Z_i \min}{Z_i \max - Z_i \min}$ (1) where X_i is the normalized value of input variable, Z_i is the original value, and $Z_i \max, Z_i \min$ are the maximum and minimum original values of primitive data, respectively. After simulation of the networks, the estimated results were reconverted by inverse function of Eq. (1) to be compared with the target values. For complete assessment of model performances, the root mean square error (RMSE) was used, which was calculated between expected and predicted concentration values for each sample (i) and for each of the two analytes (j) considered: $RMSE = \sqrt{\frac{\sum_{ij} Z_{ij} - \hat{Z}_{ij})^2}{3n - 1}}$ (2)

Analytical Methods Accepted Manuscript

Results and discussion

165 Artificial neural network architecture

In present study, examples of the different curves of current versus time were obtained corresponding to the mixed CC and HQ concentration in spiked compost extract samples. Fig. 1 shows the current response curves for 22 compost extract samples in the training set. The concentrations of CC and HQ in the filtrates both varied from 0.10 to 110 μ M. In addition, Fig. 1 presents that a maximum and a minimum signal (any of the 38 currents) of the target concentration were included in the training set, avoiding the need for extrapolation when test the model with the external dataset. It will not give precise results to assign a specific reduction peak potential to each phenolic compound

Analytical Methods Accepted Manuscript

using the statistics of the fitted regression linear model¹², due to some signal overlapping (as shown in Fig. 1). Therefore, BP-ANN method was used to deconvolve the strong overlapping signal and to quantify the concentrations of two phenolic compounds separately, because ANN modelling was considered to be an appropriate chemometric tool for solving overlapping and nonlinear problems, whose structure was designed to imitate the organization of human $brain^{22}$. "Here Fig. 1" Generally, a BP-ANN comprises three parts: an input layer, an output layer and in between the two layers, there are one or more hidden layers²³. Each layer is formed by a series of interconnected neurons, and the value at each neuron is weighted and transformed by a transfer function²⁴. A simplified scheme of the procedure followed for the measurement and data processing could be seen in Fig. 2. The architecture of the ANN used was defined by these data: the response curves of 22 samples for the training set, the response curves of 8 samples to evaluate model's response, and another 8 extract samples to validate the BP-ANN model application compared with regression liner model. The input layer consisted of a certain number of individual data points of each DPV curve and the output layer consisted of two neurons, namely the two concentrations sought. We used a single intermediate layer, known as the hidden layer, since it was stated that an appropriate level of modelling could be achieved with a single hidden layer in the electrochemical signal resolving process in the relative literature²⁵. So did our experience in previous work also show^{8,26}. Thus, Networks with more than one hidden layer were not considered. "Here Fig. 2" **Network optimization** A study of the BP-ANN architecture was performed in order to optimize the separate

Analytical Methods

195	quantifications of the two phenols considered. 22 current intensities at specific potentials for the array
196	of DPV were selected as input vector in the BP-ANN, the corresponding concentrations being the
197	targets that the modelling should reach. The learning accomplished (the degree of modelling) was
198	estimated by the root mean square error (RMSE, equation 2). The training process was continued until
199	a preset fitness degree was achieved (RMSE value). Fig. 2 shows the BP-ANN architecture and scheme
200	of this BP-ANN based approach. There are four elements that comprise the ANNs architecture: (a)The
201	number of layers, (b)The number of neurons in each layer, (c)The activation function of each layer,
202	(d)The training algorithm (because this determines the finalvalue of the weights and biases). The
203	number of neurons in each of these two layers is specified by the number of input and output
204	parameters that are used to model each problem so it is readily determined. Therefore, the objective is
205	to find the number of neurons in hidden layer firstly ²⁴ . Besides, the effects of different transfer function
206	combinations and hidden neuron numbers on the network performance were studied synchronously.
207	Combinations of tan-sigmoidal (Tansig), sat-lineal(Satlin), pure-lineal (Purelin) and log-sigmoidal
208	(Logsig) transfer functions and the hidden neuron numbers (changed from 2 to 16) were tested, as seen
209	on Fig. 3A, with the optimum results of 27 as input neuron number and Levenberg-Marquardt
210	backpropagation (trainlm) as optimization algorithm. Each architecture was retrained five times to get
211	the average RMSEs for the external test set to result in a accurate measure of performance. According
212	to Fig. 3A, the lowest RMSE value was obtained with 10 hidden neurons and Logsig-Purelin as
213	transfer function.
214	Afterwards, the next step was to determine the importance of network inputs and different
215	optimization algorithms. Similarly, the effects of the input neuron and different optimization algorithms

on the model performance were evaluated and optimized in parallel. Fig. 3B shows the RMSEs for

Analytical Methods Accepted Manuscript

2
3
4
5
ñ
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
20
20
27
28
29
30
31
20
32
33
34
35
36
37
38
20
39
40
41
42
43
44
15
40
40
47
48
49
50
51
50
52
53
54
55
56
57
50
00
59
60

217	different input neuron numbers and optimization algorithms with the optimal transfer function
218	combination of Logsig-Purelin and hidden neuron number of 10. According to Fig. 3B, the BP-ANN
219	models with trainbr (Bayesian regularization backpropagation), trainbfg (BFGS quasi-Newton method),
220	traingdm (momentum backpropagation), traincgb (Powell-Beale restarts), traingd (gradient descent
221	backpropagation) and traingdx (backpropagation) as optimization algorithms, respectively, could not
222	meet the performance goal and lowest RMSE. So those algorithms were not taken into account.
223	Trainlm (Levenberg-Marquardt backpropagation) was chosen as the one for the best performance.
224	Once the BP-ANN model was trained, inputs that made relatively small contributions to the variance in
225	our experiment, and it was reasonable that the accuracy of the simulation of the ANN model might
226	increase with more input current values, but the training time was prolonged remarkably with no
227	obvious decrease of RMSE. Therefore, the value number of 9 was selected as the input neuron number
228	with adequate accuracy of simulation.
229	"Here Fig. 3"
230	For all these reasons, the best model was obtained by using a $9 \times 10 \times 2$ network that used a Logsig
231	transfer function in the hidden layer and a Purelin function in the output layer with
232	Levenberg-Marquardt backpropagation (trainlm) as optimization algorithm (shown in Table 1).
233	"Here Table 1"
234	Performance of the best ANN
235	Fig. 4 presented the training performances for the two analytes with the optimal BP-ANN
236	configuration, where the predicted concentrations of the two considered phenols were compared with
237	their expected concentrations. The concentrations of CC and HQ added in compost extract in the
238	experiment both varied between 0.10 and 110 μ M. Error bars were plotted by five different retrainings

Analytical Methods

239	with random reinitialization of weights for the best architecture, giving information about the
240	reproducibility of model. According to Fig. 4, an excellent ability to represent the information on the
241	learning process was obtained with BP-ANN. More valuable was the modelling and prediction
242	capability working with dataset not included in the learning process. Fig. 5 showed the performance of
243	the best ANN on the external testing subset, with data not included in the learning process. Prediction
244	capability of the model could be considered satisfactory due to the very good correlations were
245	obtained in all cases.
246	"Here Fig. 4"
247	"Here Fig. 5"
248	Comparison of prediction results between regression model and ANN model in composting
249	system
250	In order to compare the performance of the BP-ANN model with the linear regression model in
251	respect to correlation coefficient, adaptability to uncertainty, etc., some compost extract samples were
252	spiked with various amounts of the two phenolic compounds distributed in the range of the
253	experimental design. These were prepared and analyzed employing the BP-ANN model and linear
254	regression model. Both the linear model composed of Eqs. (3) and Eqs. (4) obtained in our previous
255	work ⁹ and the BP-ANN model established here were applied into composting system to predict CC and
256	HQ concentrations in eight compost extract samples.
257	$P_{\rm HQ}$ = -66.954-9.5357lg[HQ] ($P_{\rm HQ}$: µA, [HQ]: M); (R = 0.9565) (3)
258	$P_{\rm CC}$ = -88.394-13.0811g[CC] ($P_{\rm CC}$: µA, [CC]: M); (R=0.9771) (4)
259	Practically, there exist a variety of organic compounds in compost extract, such as aromatic,
260	aliphatic, phenolic and quinolic derivatives with varying molecular sizes and properties. It was a
	13

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

2
3
Δ
-
5
6
7
8
0
9
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
20
27
28
29
20
30
31
32
33
31
34
35
36
37
20
30
39
40
41
42
-TZ 40
43
44
45
46
47
47
48
49
50
51
51
52
53
54
55
55
56
57
58
50
00

261	complex mixture with diversity, nonlinearity, and uncertain characteristics. In this case, although high
262	specificity and selectivity of biosensor were obtained, when linear model is applied to determine the
263	real samples, the overlapped differential pulse voltammetry signal and the concentration of analyte
264	often exceeds the linear detection range of biosensor, which will affect the accuracy of determination.
265	Therefore, for the sake of obtaining a more applicable and convenient detection method, the
266	combination of biosensors with BP-ANN modelling may turn out to be an alternative tool to classical
267	methods, taking benefit of the advantages of both parts. On one hand, the selectivity, reproducibility
268	and stability of biosensor confirmed the potential applicability for the simultaneous determination of
269	CC and HQ in real environmental samples ⁹ . On the other hand, the use of ANNs modelling to
270	deconvolve complex signals can enlarge the detection range, and then make the quantification and the
271	result analysis more efficient ²⁵ .
272	In this study, The DPV peak currents of HQ and CC were linear with correlative concentrations
273	over the range from 4.0×10^{-7} to 8.0×10^{-5} M ⁹ , while the BP-ANN model can directly analyze CC and
274	HQ concentrations varying between 1.0×10^{-7} and 1.1×10^{-4} M. Each of the calibration was done five
275	times with the relative standard deviations (RSD) not more than 5%. Also in this case, the recovery
276	yield for the two phenolic compounds was calculated, which is summarized in Table 2. As can be seen,
277	the recovery yield of CC obtained by linear regression model ranges from 73.9% to 115.2%, while that
278	obtained by BP-ANN model ranges from 96.0% to 115.3%. It is also observed that the recovery yield
279	of HQ calculated by linear regression model ranges from 74.6% to 119.0% , while that calculated by
280	BP-ANN model ranges from 88.15% to 112.0%. As seen on Table S1, the RSD in the linear regression
281	model for CC and in the ANN for CC were 7.73% and 3.7781%, respectively. Although the RSD of
282	linear regression model in the compost extract sample of 4 is lower than the RSD of ANN, the RSD of

Analytical Methods

283	the rest samples are lower when analyzed by the ANNs model. In addition, the average (RSD) of ANN
284	is lower than the RSD of linear regression model. What's more, the RSD in the linear regression model
285	for CC (21.2004%) is significantly higher than the RSD for the ANN (2.1151%) when sample
286	concentration exceeded the linear range of the biosensor. Correspondingly, as seen on Table S2, the
287	RSD in the linear regression model for HQ and in the ANN for HQ were 10.9592% and 4.8468%,
288	respectively. Obviously, the average (RSD) of ANN is lower than the RSD of linear regression model.
289	The results demonstrated that the prediction results by the ANN model were more precise than the
290	linear regression. The prediction result by linear regression was far from accurate at high levels of CC
291	and HQ beyond the linear range, while the fitting degree of experimental and predicted value using the
292	ANN model were satisfactory (see table 2), thus confirming the BP-ANN model was superior to the
293	linear regression especially for the determination of high levels of CC and HQ in the compost system.
294	Furthermore, the results also showed that the correlation coefficient, adaptability to uncertainty, etc.,
295	obtained after combining the biosensor with BP-ANN were superior to direct linear determination of
296	the CC concentration by the biosensor in the compost system. Obviously, combined with the BP-ANN
297	model, the direct detection range for CC and HQ in the compost system of the biosensor were widened,
298	and the satisfactory results confirmed the potential applicability of the biosensor for quantification of
299	CC and HQ in real compost extract sample determination.
300	"Here Table 2"

Analytical Methods Accepted Manuscript

301 Conclusions

In summary, a very good quantification of the two phenolic compounds has been achieved by using the tyrosinase biosensor to get specific signal and BP-ANN as the tool for building the response model. From all the results shown above, it is demonstrated that the combination of tyrosinase

Analytical Methods Accepted Manuscript

biosensor and BP-ANN can give satisfactory quantifications of the CC and HQ concentration simultaneously in composting system with good rapidity and sensitivity. Besides, the direct detection range for CC and HQ of the biosensor was extended to 1.0×10^{-7} - 1.1×10^{-4} M, which was superior to the direct determination by the biosensor with linear data analysis. What's more, this assay provided the potential applicability of the biosensor for the quantification of CC and HQ in composting system though with plenty of interfering substances. In future work, this biosensor combined with artificial neural networks model may be alternatively applied for the quantification of different phenolic mixtures in real contaminated compost samples or other complex environments samples.

313 Acknowledgements

The study was financially supported by Program for the Outstanding Young Talents of China, the National Natural Science Foundation of China (51222805), the Program for New Century Excellent Talents in University from the Ministry of Education of China (NCET-11-0129), Interdisciplinary Research Project of Hunan University, China Scholarship Council (CSC) (2010843195), the Fundamental Research Funds for the Central Universities, Hunan University, Foundation for the Author of Excellent Doctoral Dissertation of Hunan Province.

Analytical Methods

2	
3	
1	
4	
5	
6	
7	
, 0	
8	
9	
10	
14	
11	
12	
13	
11	
14	
15	
16	
17	
10	
18	
19	
20	
21	
<u>کا</u>	
22	
23	
24	
27	
25	
26	
27	
20	
28	
29	
30	
31	
00	
32	
33	
34	
25	
35	
36	
37	
20	
30	
39	
40	
<u></u>	
40	
42	
43	
44	
15	
40	
46	
47	
48	
40	
49	
50	
51	
50	
52	
53	
54	
55	
55	
56	
57	
58	
50	
59	
60	

	References
320	1 D. Shan, J. Zhang, H. G. Xue, Y. C. Zhang, S. Cosnier and S. N. Ding, Biosens. Bioelectron., 2009,
321	24 , 3671-3676.
322	2 L. Lu, L. X. Zhang, S. Zhang, S. Huan, G. Shen and R. Yu, Anal. Chim. Acta., 2010, 665, 146-151.
323	3 A. Lante, A. Crapisi, Krastanov A and P. Spettoli, Process Biochem., 2000, 36, 51-58.
324	4 S. Canofeni, S. D. Sario, J. Mela and R. Pilloton, Anal Lett., 1994, 27, 1659-1662.
325	5 A. Escarpa, M. D. Morales and M. C. Gonzalez, Anal. Chim. Acta., 2002, 460, 61-72.
326	6 P. Nagaraja, R.A. Vasantha and K.R. Sunitha, J. Pharm, Biomed. Anal., 2001, 25, 417-424.
327	7 B. Levaj, V. D. Uzelac, K. Delonga, K. K. Ganic, M. Banovic and D. B. Kovacevic, Food. Technol.
328	Biotechnol., 2010, 48, 538-547.
329	8 L.Tang, G. M. Zeng, J. X. Liu, X. M. Xu, Y. Zhang, G. L. Shen, Y. P. Li and C. Liu, Anal. Bioanal
330	Chem., 2008, 391 , 679-685.
331	9 T. Lin, Y. Y. Zhou, G. M. Zeng, Z. Li. Y. Y. Liu, Y. Zhang, G. Q. Chen, G. D. Yang, X. X. Lei and M. S.
332	Wu, Analyst, 2013, 138, 3552-3560.
333	10 F. Despagne and D. L. Massart, Analyst, 1998, 123, 157R-178R.
334	11 Y. N. Ni and S. Kokot, Anal. Chim. Acta., 2008, 626, 130-146.
335	12 A. Gutés, F. Céspedes, S. Alegret and M. delValle, Biosens. Bioelectron., 2005, 20, 1668-1673.
336	13 X. Cetó, F. Céspedes, M. I. Pividori, J. M. Gutiérrez and M. delValle, Analyst, 2012, 137, 349-356.
337	14 A. Gutés, A. B. Iba'nez, F. Céspedes, S. Alegret and M. delValle, Anal. Bioanal.Chem., 2005, 382,
338	471-476.
339	15 X. Cetóa, J. M. Gutiérrezb, M. Gutiérrezc, F. Céspedesa, J. Capdevilad, S. Mínguezd, C. J.
340	Jorquerac and M. Vallea, Anal. Chim. Acta., 2012, 732, 172-179.

Analytical Methods Accepted Manuscript

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
27
20
26
27
28
29
30
21
31
32
33
34
35
36
27
31
38
39
40
41
42
12
44
45
46
47
48
40
50
51
52
53
54
55
55
50
5/
58
59

60

1

342 17 G. M. Zeng, L. Tang, G. L. Shen, G. H. Huang and C. G. Niu, Int. J. Environ. Anal. Chem., 2004, 84,

343 761-774.

344 18 J. R. M. Smits, W. J. Melssen, L. M. C. Buydens and G. K. Chemom. Intell. Lab. Syst., 1994, 22,

345 165-189.

- 346 19 I. A. Basheera and M. Hajmeer, J. Basic. Microbiol., 2000, 43, 3-31.
- 347 20 M. H. Hassoun, MIT Press, Cambridge, MA. 1995.
- 348 21 T. Masters, Academic Press, Boston, MA. 1994.
- 349 22 F. Rosenblatt, *Psychol. Rev.*, 1958, **65**, 386-408.
- 350 23 C. G. Looner, Oxford University Press, New York, MA. 1997.
- 351 24 P. G. Benardos and G. C. Vosniakos, *Engineering Applications of Ar.*, 2007, **20**, 365-382.
- 352 25 A. Gutés, A. B. Ibáńez, F. Céspedes, S. Alegret and M. delValle, Anal. Bioanal. Chem., 2005, 382,
- 353 471-476.
- 354 26 L. Tang, G. M. Zeng, G. L. Shen, Y. Zhang, G. H. Huang and J. B. Li, Anal. Chim. Acta., 2006, 579,

355 109-116.

Table captions

Table 1. Optimal results of ANN architecture and training parameters.

Table 2. Detailed results obtained for the spiked compost extract samples against added concentrations

of the two phenolic compounds considered. Recovery yield was also expressed for each compost

extract sample.

Analytical Methods Accepted Manuscript

Figure captions

Fig. 1 Measured signals were obtained from 22 compost extract samples using in the training set.

Fig. 2 Example of the ANN architecture used to interpret DPV signals. The input vector comprises 9 to 27 individual data points in the DPV curve. The number of hidden neurons ranges from 2 to 16 (for clarity, only 10 are shown here).

Fig. 3 Obtained RMSEs in: (A) prediction for different transfer function combinations and neuron numbers in the hidden layer with input neuron number of 27 and Levenberg-Marquardt backpropagation (trainlm) as optimization algorithm. (B) prediction for different input neuron numbers and optimization algorithms with the optimal transfer function combination of Logsig–Purelin and hidden neuron number of 10.

Fig. 4 Modeling performance achieved for the optimized BP-ANN with 22 samples from the training set. Error bars correspond to 5 different retrainings with random reinitialization of weights for the final architecture. Expected concentrations are plotted against those obtained from the BP-ANN, good correlations were obtained for catechol and hydroquinone.

Fig. 5 Modelling performance of the optimised BP-ANN for the external test set. Expected concentrations are plotted against those obtained by BP-AN. Good correlations were obtained for catechol and hydroquinone.

Analytical Methods

Table 1. Optimal results of ANN architecture and training parameters.

Architecture / parameter	Value				
Input neuron number	9				
Hidden neuron number	10				
Output neuron number	2				
Transfer function in the hidden layer	Logsig				
Transfer function in the output layer	Purelin				
Optimization algorithm	Levenberg-Marquardt backpropagation (trainlm)				

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

Table 2. Detailed results obtained for the spiked compost extract samples against added concentrations

of the two phenolic compounds considered. Recovery yield was also expressed for each compost

extract sample)
----------------	---

Compost	CC concentration /µM				HQ concentration $/\mu M$					
sample	Added	^L predicted	^B predicted	^L Recovery	^B Recovery	Added	^L predicted	^B predicted	^L Recovery	^B Recovery
1	1.3	1.1 ± 0.37	1.5 ± 0.33	84.6%	115.3%	2.5	2.0 ± 0.46	2.8 ± 0.36	80.0%	112.0%
2	4.6	5.3 ± 0.41	5.0 ± 0.18	115.2%	108.7%	15.5	14.3 ± 0.39	14.9 ± 0.28	92.3%	96.1%
3	17.8	17.4±0.23	17.9±0.11	97.8%	100.6%	20.5	20.0 ± 0.44	20.6 ± 0.37	97.6%	100.5%
4	25.6	27.5 ± 0.44	28.0 ± 0.17	107.4%	109.4%	36.3	31.2 ± 0.40	32.0 ± 0.16	86.0%	88.15%
5	32.3	30.5 ± 0.39	31 ± 0.29	94.4%	96.0%	10.5	12.5±0.29	8.9±0.19	119.0%	88.6%
6	39.5	37.7±0.35	40.3 ± 0.30	95.4%	102.0%	60.5	57.1±0.36	58.6±0.23	94.4%	96.9%
7	59.3	63.5 ± 0.42	60.2 ± 0.15	107.1%	101.5%	83.6	65.8 ± 0.32	85.9±0.29	78.7%	102.8%
8	95.5	70.6 ± 0.47	98.4±0.26	73.9%	103.0%	105.4	78.6 ± 0.38	109.8±0.21	74.6%	104.2%
Bern										

^B BP-ANN model

^L linear model

- 22
- 25
- 27

- 32

58

60

Fig. 1

Fig. 2

Fig. 3

Analytical Methods Accepted Manuscript

Fig. 4

Fig. 5

Analytical Methods Accepted Manuscript

Contents entry

Selected current intensities of the DPV from biosensor are taken as the input in the ANN. Appropriate weights and biases are applied by the learning algorithm until the targets are satisfied.