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Abstract 1 

A biosensor based on tyrosinase immobilized with ordered mesoporous carbon-Au (OMC-Au), 2 

L-Lysine membrane and Au nanoparticles (tyrosinase/OMC-Au/L-Lysine/Au) was combined with 3 

artificial neural networks (ANNs) for the simultaneous determination of catechol (CC) and 4 

hydroquinone (HQ) in compost bioremediation of municipal solid waste. The good performance of 5 

biosensor provided the potential applicability for the simultaneous identification and quantification of 6 

catechol and hydroquinone in real samples, and the combination with ANNs offered a good 7 

chemometric tool for data analysis in respect to the dynamic, nonlinear, and uncertain characteristics of 8 

the complex composting system. Good prediction ability was attained after the ANNs model 9 

optimization, and the direct detection range for catechol and hydroquinone were directly analyzed by 10 

the ANNs model varied between 1.0×10
−7

 and 1.1×10
−4

 M, significantly extended than the linear model 11 

(4.0×10
−7

 to 8.0×10
−5

 M). Finally, the performance of the ANNs model was compared with the linear 12 

regression model. The results demonstrated that the prediction results by the ANNs model were more 13 

precise than those by the linear regression, and the latter was far from accurate at high levels of 14 

catechol and hydroquinone beyond the linear range. All the results showed that the combination of the 15 

biosensor and ANNs was a rapid and sensitive method in the quantitative study of composting system. 16 

Keywords: biosensor; DPV signals; catechol; hydroquinone; artificial neural networks; compost 17 

bioremediation. 18 

19 
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Introduction 20 

Phenolic compounds are widely distributed as environmental pollutants because many of them are 21 

resistant to biotic and abiotic degradation. They are mostly derived from various agricultural and 22 

industrial activities, including waste discharge from wood preservatives, coking, textiles, plastics, dyes, 23 

paper, herbicides industries and the partial degradation of phenoxy contaminants in remediation 24 

processes
1,2

. The toxicity of phenols generated from bioremediation processes, such as composting, can 25 

bring on undesirable ecological effects and seriously reduce removal efficiencies
3
. Catechol (CC) and 26 

hydroquinone (HQ) are two isomers of phenolic compounds which are harmful to human health and 27 

ecological environment. During the application of composting technology in disposal of municipal 28 

solid waste, CC and HQ are generally direct pollutant or by-product of the aromatic pollutant
4
. 29 

Therefore, detection and quantification of the toxicity of these phenolic compounds from compost 30 

bioremediation of municipal solid waste is a critical issue. Up to now, a great number of analytical 31 

methods have been established to determine dihydroxybenzene isomers in compost systems. On the 32 

one hand, there are techniques such as high-performance liquid chromatography (HPLC)
5
, 33 

spectrophotometry
6
 and gas chromatography

7
, which allow individual identification of phenols, but 34 

these procedures usually require specific equipment, laboratory conditions, and are not suitable for 35 

on-site analyses. On the other hand, electrochemical methods are applied to detect the hydroquinone, 36 

catechol, phenol, resorcinol, cresol. These methods have the advantages of fast response, cheap 37 

instrument, low cost, simple operation, timesaving, but the key point lies in improving the sensitivity, 38 

selectivity and the potential applicability for the quantification of phenols in real samples. In an attempt 39 

to overcome the deficiencies of these analytical methods, the applications of enzyme sensors to specific 40 

pollutant detection have been increasingly reported to exhibit superior sensitivity, stability, reusability, 41 

Page 3 of 28 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
n

al
yt

ic
al

 M
et

h
o

d
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t



4 

 

selectivity, and portability
8
. Especially the biosensor provided the potential to quantify the pollutant 42 

levels in real environmental. The operation efficiency of compost systems will be much improved if 43 

enzyme sensors are applied in pollutant detection. 44 

In our previous works, a tyrosinase biosensor was developed for linear calibration and 45 

simultaneous determination of hydroquinone and catechol
9
. The biosensor was evaluated by differential 46 

pulse voltammetry (DPV) measurements, which is used to make electrochemical measurements, and 47 

the DPV peak currents increased linearly with concentration over the range of 4.0×10
−7

 to 8.0×10
−5

 M, 48 

the detection limits of HQ and CCwere 5×10−8 and 2.5×10−8 M (S/N=3), respectively. The sensitivities 49 

in the linear calibration regions for low concentration show the following order: 0.4511 A/M (catechol, 50 

n=4) > 0.338 A/M (hydroquinone, n=13). And the electrode showed a rapid and sensitive 51 

bioelectrocatalytic response of 65 and 89 s after addition of catechol and hydroquinone, respectively. 52 

Using the differential pulse voltammetry (DPV), the wide peak separation and low peak potential 53 

ensured the avoidance of interferences, making this biosensor a potential device for real sample 54 

applications. However, the detection procedures are still susceptible to the complex samples containing 55 

heterogeneous organic components and certain functional groups, such as phenolic OH and carboxyl, 56 

especially in compost system which a variety of organic compounds coexisting, owing to both the 57 

redox and sorption of the interfering matrix constituents on the electrode surface
8
. As a result, an 58 

unstable baseline or even the overlapped differential pulse voltammetry signal will be obtained with a 59 

carbon electrode when it was applied to large quantities of compost samples. Although the data 60 

generated by simultaneous determination of phenols compounds from compost bioremediation can be 61 

analyzed using the linear regression model, nonlinearities and uncertainties also occur in the process as 62 

mentioned above, which restrict the biosensor in practical application. Thus, the quantification 63 
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capability of the linear model will be limited by the dynamic, nonlinear, and uncertain characteristics of 64 

the complex composting system, and will give erroneous results if the linear range is exceeded. 65 

Artificial neural network (ANN) are computational models inspired by animal central nervous systems 66 

(in particular the brain) that are capable of machine learning and pattern recognition. They are usually 67 

presented as systems of interconnected “neurons” that can compute values from inputs by feeding 68 

information through the network. It have found extensive utilization in solving many complex 69 

real-world problems. ANNs could be deemed as advanced signal processing variants allowing the 70 

interpretation, modelling and calibration of complex analytical signals for they can process very 71 

nonlinear and complex problems even if the data are imprecise and noisy
8,10,11

. The combination of the 72 

tyrosinase biosensor with ANNs modelling may represent an alternative to classical methods. This 73 

approach has already been introduced towards the analysis of phenols. For example, the group of 74 

Xavier Cetó and Francisco Céspedes has used this method to manage the sensor signal, and established 75 

electronic tongue and Bio-Electronic Tongue (BioET) based on voltammograms correlated to phenol 76 

contents in wines
12-16

. In addition, Tang group has used this method to handle the biosensor signal, 77 

processing the amperometric signals correlated to enzyme activities or phenol contents in compost 78 

system
8,26

. 79 

In this work, the application of ANN technique for evaluation of the DPV signals of 80 

multi-component analysis generated by the tyrosinase biosensor for the simultaneous determination of 81 

CC and HQ in compost extract samples was explored, which has not been reported. This method 82 

combining the advantages of both parts, calibrated the complex overlapping analytical signals and 83 

imprecise data from composting samples. The aim of the study was to extend the limited measuring 84 

range of the biosensor to a useful and wider working band. This assay provided the potential 85 
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applicability of the biosensor for the quantification of CC and HQ in compost system, and the 86 

development of fast and inexpensive on-line monitoring systems in municipal solid waste compost 87 

bioremediation. 88 

Experimental 89 

Apparatus and reagents 90 

Cyclic voltammetric (CV) measurement and differential pulse voltammetry (DPV) measurement 91 

were carried out on CHI660B electrochemistry system (Chenhua Instrument, Shanghai, China). Model 92 

PHSJ-3F laboratory pH meter (Leici Instrument, Shanghai, China) was used to test pH value. A Sigma 93 

4K15 laboratory centrifuge, a vacuum freezing dryer and a mechanical vibrator were used in the assay. 94 

The three-electrode system used in this work consisted of a tyrosinase/OMC-Au/L-Lysine/Au/glassy 95 

carbon electrode (GCE) as working electrode, a saturated calomel electrode (SCE) as reference 96 

electrode and a Pt foil auxiliary electrode. All the work was conducted at room temperature (25 
◦
C) 97 

unless otherwise mentioned.  98 

Tyrosinase (EC 1.14.18.1, from mushroom as lyophilized powder), catechol and hydroquinone 99 

were purchased from Sigma-Aldrich (USA). Tetraethoxysilane (TEOS), L-Lysine, Gold(III) chloride 100 

trihydrate (HAuCl4·4H2O, 99.9%) and all other chemicals were of analytical grade and used as received. 101 

Phosphate buffer solutions (1/15 M PBS) with different pH 6.98 were prepared by mixing the stock 102 

solutions of KH2PO4 and Na2HPO4·12H2O. All solutions were prepared with double-distilled water. 103 

The synthesis of OMCs-Au nanoparticles and the immobilization of tyrosinase on the surface of 104 

nanoparticles were achieved according to the procedure introduced by Tang et al
9
. 105 

Procedures 106 
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The preparation of tyrosinase/OMC-Au/L-Lysine/Au/GCE and the measurements of CC and HQ 107 

were carried out as described in our previous work
9
. Briefly, the AuNPs and L-Lysine were 108 

immobilized on glassy carbon electrode by electrochemical method. OMC-Au/L-Lysine/Au/GCE was 109 

prepared by casting 5.0 µL of the OMC-Au suspension onto the surface of the L-Lysine/Au/GCE, 110 

Finally, tyrosinase was immobilized on the electrode surface, as presented in Scheme S1. Au 111 

nanoparticles (AuNPs) modified glassy carbon electrode (GCE) due to their high effective surface area, 112 

nano-scaled dimension effects, and most importantly, binding affinity with L-Lysine. In addition, 113 

L-Lysine provided amino and became the cross-linking agent between AuNPs film and OMC-Au film, 114 

and OMC-Au could not only unite with L-Lysine, but also combined with tyrosinase. This makes the 115 

enzyme more fixed on the biosensor, accelarates the electron transfer from the enzyme-catalysed redox 116 

reaction to electrode surface, and extend its using life as well
9
. Under the optimized condition, 10 mL 117 

compost extract samples containing different concentrations of CC and HQ were added into an 118 

electrochemical cell, and then the three-electrode system was installed on it. The DPV was recorded 119 

from +0.6 to -0.2 V with pulse amplitude of 0.05 V, pulse width of 0.05 s, and pulse period of 0.2 s. 120 

The CV was performed between −0.6 and +0.8 V at scan rate of 50 mV·s
−1

, sample interval of 0.0001 121 

V and quiet time of 2 s. 122 

Preparation of compost extracts 123 

The biosensor simultaneous determination of the CC and HQ concentration was applied in 124 

compost bioremediation. The composting process has been introduced previously
17

. The components of 125 

compost were soil, straw, restaurant leftover, and bran, and the water ratio was 51%. The soil was 126 

collected from 100 cm underground on the unfrequented hillside of Yuelu Mountain (Changsha, China), 127 

from which large organic scraps were removed. Then aerobic compost was managed 40 days under the 128 
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condition of 30 
◦
C temperature and 0.033m

3
·h

-1
 ventilation. 10 g of compost sample was placed in a 129 

flask and 200 mL water was added in. The suspension was agitated on a mechanical vibrator at 200 130 

rpm for 2 h. The supernatant was centrifuged at 10000 rpm for 5 min, and then filtered to get the filtrate 131 

as the compost extract. All the work was done at room temperature unless otherwise mentioned. The 132 

dosage of CC and HQ into each compost extract was controlled using certain volumes of CC and HQ 133 

stock solutions. 134 

Data processing 135 

Chemometric processing was done by specific routines in MATLAB 7.0 (Math Works, Natick, 136 

MA) written by the authors, using Neural Network Toolboxes to develop the ANN models. SigmaPlot 137 

12.0 (Systat Software Inc, California, USA) was used for graphic representations of data and results. 138 

The measured data of a total set of 38 samples using the biosensor were divided into three datasets. 139 

22 samples for the training set were used to build the proper modeling of the response, 8 samples 140 

randomly distributed for the testing set were used to estimate the modeling performances, and another 141 

8 extract samples were used to validate the ANN model application. The biosensor DPV responses of 142 

compost samples with corresponding CC and HQ concentrations were analyzed using a feed-forward 143 

back propagation (BP-ANN). This artificial neural network model for variable selection aims to find an 144 

optimal set of inputs that can quickly and successfully classify or predict the desired outputs. It was a 145 

feed-forward network combining a back propagation algorithm which was used to train the network 146 

according to a learning rule
18

. For each sample, a complete DPV was recorded for forming the array 147 

and data. In order to reduce the high dimensionality of the recorded signals, to prevent larger numbers 148 

from overriding smaller ones, and to prevent premature saturation of hidden nodes, which impedes the 149 

learning process, a pre-processing stage was required. There is no one standard procedure for 150 
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normalizing inputs and outputs
19

. But it is recommended that the data be normalized between slightly 151 

offset values such as 0.1-0.9 and to avoid saturation of the sigmoid function leading to slow or no 152 

learning20,21. For this, the input values of both the training and the test subsets were kept in interval 153 

[0.1,0.9] corresponding to the range of the normalized function: 154 

）（
min-max

min-
0.80.1

ii

ii
i

ZZ

ZZ
X +=                                    (1) 155 

where Xi is the normalized value of input variable, Zi is the original value, and Zi max, Zi min are 156 

the maximum and minimum original values of primitive data, respectively. After simulation of the 157 

networks, the estimated results were reconverted by inverse function of Eq. (1) to be compared with the 158 

target values. 159 

For complete assessment of model performances, the root mean square error (RMSE) was used, 160 

which was calculated between expected and predicted concentration values for each sample (i) and for 161 

each of the two analytes (j) considered: 162 

1-3n

Z-Z
ij

2

ijij∑
=

）（
)

RMSE
                                               (2) 163 

Results and discussion 164 

Artificial neural network architecture 165 

In present study, examples of the different curves of current versus time were obtained 166 

corresponding to the mixed CC and HQ concentration in spiked compost extract samples. Fig. 1 shows 167 

the current response curves for 22 compost extract samples in the training set. The concentrations of 168 

CC and HQ in the filtrates both varied from 0.10 to 110 µM. In addition, Fig. 1 presents that a 169 

maximum and a minimum signal (any of the 38 currents) of the target concentration were included in 170 

the training set, avoiding the need for extrapolation when test the model with the external dataset. It 171 

will not give precise results to assign a specific reduction peak potential to each phenolic compound 172 
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using the statistics of the fitted regression linear model
12

, due to some signal overlapping (as shown in 173 

Fig. 1). Therefore, BP-ANN method was used to deconvolve the strong overlapping signal and to 174 

quantify the concentrations of two phenolic compounds separately, because ANN modelling was 175 

considered to be an appropriate chemometric tool for solving overlapping and nonlinear problems, 176 

whose structure was designed to imitate the organization of human brain
22

.  177 

“Here Fig. 1” 178 

Generally, a BP-ANN comprises three parts: an input layer, an output layer and in between the 179 

two layers, there are one or more hidden layers23. Each layer is formed by a series of interconnected 180 

neurons, and the value at each neuron is weighted and transformed by a transfer function
24

. A 181 

simplified scheme of the procedure followed for the measurement and data processing could be seen in 182 

Fig. 2. The architecture of the ANN used was defined by these data: the response curves of 22 samples 183 

for the training set, the response curves of 8 samples to evaluate model’s response, and another 8 184 

extract samples to validate the BP-ANN model application compared with regression liner model. The 185 

input layer consisted of a certain number of individual data points of each DPV curve and the output 186 

layer consisted of two neurons, namely the two concentrations sought. We used a single intermediate 187 

layer, known as the hidden layer, since it was stated that an appropriate level of modelling could be 188 

achieved with a single hidden layer in the electrochemical signal resolving process in the relative 189 

literature25. So did our experience in previous work also show8,26. Thus, Networks with more than one 190 

hidden layer were not considered. 191 

“Here Fig. 2” 192 

Network optimization 193 

A study of the BP-ANN architecture was performed in order to optimize the separate 194 
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quantifications of the two phenols considered. 22 current intensities at specific potentials for the array 195 

of DPV were selected as input vector in the BP-ANN, the corresponding concentrations being the 196 

targets that the modelling should reach. The learning accomplished (the degree of modelling) was 197 

estimated by the root mean square error (RMSE, equation 2). The training process was continued until 198 

a preset fitness degree was achieved (RMSE value). Fig. 2 shows the BP-ANN architecture and scheme 199 

of this BP-ANN based approach. There are four elements that comprise the ANNs architecture: (a)The 200 

number of layers, (b)The number of neurons in each layer, (c)The activation function of each layer, 201 

(d)The training algorithm (because this determines the finalvalue of the weights and biases). The 202 

number of neurons in each of these two layers is specified by the number of input and output 203 

parameters that are used to model each problem so it is readily determined. Therefore, the objective is 204 

to find the number of neurons in hidden layer firstly
24

. Besides, the effects of different transfer function 205 

combinations and hidden neuron numbers on the network performance were studied synchronously. 206 

Combinations of tan-sigmoidal (Tansig), sat-lineal(Satlin), pure-lineal (Purelin) and log-sigmoidal 207 

(Logsig) transfer functions and the hidden neuron numbers (changed from 2 to 16) were tested, as seen 208 

on Fig. 3A, with the optimum results of 27 as input neuron number and Levenberg-Marquardt 209 

backpropagation (trainlm) as optimization algorithm. Each architecture was retrained five times to get 210 

the average RMSEs for the external test set to result in a accurate measure of performance. According 211 

to Fig. 3A, the lowest RMSE value was obtained with 10 hidden neurons and Logsig-Purelin as 212 

transfer function. 213 

Afterwards, the next step was to determine the importance of network inputs and different 214 

optimization algorithms. Similarly, the effects of the input neuron and different optimization algorithms 215 

on the model performance were evaluated and optimized in parallel. Fig. 3B shows the RMSEs for 216 
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different input neuron numbers and optimization algorithms with the optimal transfer function 217 

combination of Logsig-Purelin and hidden neuron number of 10. According to Fig. 3B, the BP-ANN 218 

models with trainbr (Bayesian regularization backpropagation), trainbfg (BFGS quasi-Newton method), 219 

traingdm (momentum backpropagation), traincgb (Powell-Beale restarts), traingd (gradient descent 220 

backpropagation) and traingdx (backpropagation) as optimization algorithms, respectively, could not 221 

meet the performance goal and lowest RMSE. So those algorithms were not taken into account. 222 

Trainlm (Levenberg-Marquardt backpropagation) was chosen as the one for the best performance. 223 

Once the BP-ANN model was trained, inputs that made relatively small contributions to the variance in 224 

our experiment, and it was reasonable that the accuracy of the simulation of the ANN model might 225 

increase with more input current values, but the training time was prolonged remarkably with no 226 

obvious decrease of RMSE. Therefore, the value number of 9 was selected as the input neuron number 227 

with adequate accuracy of simulation. 228 

“Here Fig. 3” 229 

For all these reasons, the best model was obtained by using a 9×10×2 network that used a Logsig 230 

transfer function in the hidden layer and a Purelin function in the output layer with 231 

Levenberg-Marquardt backpropagation (trainlm) as optimization algorithm (shown in Table 1). 232 

“Here Table 1” 233 

Performance of the best ANN 234 

Fig. 4 presented the training performances for the two analytes with the optimal BP-ANN 235 

configuration, where the predicted concentrations of the two considered phenols were compared with 236 

their expected concentrations. The concentrations of CC and HQ added in compost extract in the 237 

experiment both varied between 0.10 and 110 µM. Error bars were plotted by five different retrainings 238 
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with random reinitialization of weights for the best architecture, giving information about the 239 

reproducibility of model. According to Fig. 4, an excellent ability to represent the information on the 240 

learning process was obtained with BP-ANN. More valuable was the modelling and prediction 241 

capability working with dataset not included in the learning process. Fig. 5 showed the performance of 242 

the best ANN on the external testing subset, with data not included in the learning process. Prediction 243 

capability of the model could be considered satisfactory due to the very good correlations were 244 

obtained in all cases. 245 

“Here Fig. 4” 246 

“Here Fig. 5” 247 

Comparison of prediction results between regression model and ANN model in composting 248 

system 249 

In order to compare the performance of the BP-ANN model with the linear regression model in 250 

respect to correlation coefficient, adaptability to uncertainty, etc., some compost extract samples were 251 

spiked with various amounts of the two phenolic compounds distributed in the range of the 252 

experimental design. These were prepared and analyzed employing the BP-ANN model and linear 253 

regression model. Both the linear model composed of Eqs. (3) and Eqs. (4) obtained in our previous 254 

work
9 

and the BP-ANN model established here were applied into composting system to predict CC and 255 

HQ concentrations in eight compost extract samples. 256 

PHQ= -66.954-9.5357lg[HQ] (PHQ: µA, [HQ]: M); (R = 0.9565)                   (3) 257 

PCC= -88.394-13.081lg[CC] (PCC: µA, [CC]: M); (R=0.9771)                     (4) 258 

Practically, there exist a variety of organic compounds in compost extract, such as aromatic, 259 

aliphatic, phenolic and quinolic derivatives with varying molecular sizes and properties. It was a 260 
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complex mixture with diversity, nonlinearity, and uncertain characteristics. In this case, although high 261 

specificity and selectivity of biosensor were obtained, when linear model is applied to determine the 262 

real samples, the overlapped differential pulse voltammetry signal and the concentration of analyte 263 

often exceeds the linear detection range of biosensor, which will affect the accuracy of determination. 264 

Therefore, for the sake of obtaining a more applicable and convenient detection method, the 265 

combination of biosensors with BP-ANN modelling may turn out to be an alternative tool to classical 266 

methods, taking benefit of the advantages of both parts. On one hand, the selectivity, reproducibility 267 

and stability of biosensor confirmed the potential applicability for the simultaneous determination of 268 

CC and HQ in real environmental samples
9
. On the other hand, the use of ANNs modelling to 269 

deconvolve complex signals can enlarge the detection range, and then make the quantification and the 270 

result analysis more efficient
25

. 271 

In this study, The DPV peak currents of HQ and CC were linear with correlative concentrations 272 

over the range from 4.0×10−7 to 8.0×10−5 M9, while the BP-ANN model can directly analyze CC and 273 

HQ concentrations varying between 1.0×10
−7 

and 1.1×10
−4

 M. Each of the calibration was done five 274 

times with the relative standard deviations (RSD) not more than 5%. Also in this case, the recovery 275 

yield for the two phenolic compounds was calculated, which is summarized in Table 2. As can be seen, 276 

the recovery yield of CC obtained by linear regression model ranges from 73.9% to 115.2%, while that 277 

obtained by BP-ANN model ranges from 96.0% to 115.3%. It is also observed that the recovery yield 278 

of HQ calculated by linear regression model ranges from 74.6% to 119.0% , while that calculated by 279 

BP-ANN model ranges from 88.15% to 112.0%. As seen on Table S1, the RSD in the linear regression 280 

model for CC and in the ANN for CC were 7.73% and 3.7781%, respectively. Although the RSD of 281 

linear regression model in the compost extract sample of 4 is lower than the RSD of ANN, the RSD of 282 
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the rest samples are lower when analyzed by the ANNs model. In addition, the average (RSD) of ANN 283 

is lower than the RSD of linear regression model. What’s more, the RSD in the linear regression model 284 

for CC (21.2004%) is significantly higher than the RSD for the ANN (2.1151%) when sample 285 

concentration exceeded the linear range of the biosensor. Correspondingly, as seen on Table S2, the 286 

RSD in the linear regression model for HQ and in the ANN for HQ were 10.9592% and 4.8468%, 287 

respectively. Obviously, the average (RSD) of ANN is lower than the RSD of linear regression model. 288 

The results demonstrated that the prediction results by the ANN model were more precise than the 289 

linear regression. The prediction result by linear regression was far from accurate at high levels of CC 290 

and HQ beyond the linear range, while the fitting degree of experimental and predicted value using the 291 

ANN model were satisfactory (see table 2), thus confirming the BP-ANN model was superior to the 292 

linear regression especially for the determination of high levels of CC and HQ in the compost system. 293 

Furthermore, the results also showed that the correlation coefficient, adaptability to uncertainty, etc., 294 

obtained after combining the biosensor with BP-ANN were superior to direct linear determination of 295 

the CC concentration by the biosensor in the compost system. Obviously, combined with the BP-ANN 296 

model, the direct detection range for CC and HQ in the compost system of the biosensor were widened, 297 

and the satisfactory results confirmed the potential applicability of the biosensor for quantification of 298 

CC and HQ in real compost extract sample determination. 299 

“Here Table 2” 300 

Conclusions 301 

In summary, a very good quantification of the two phenolic compounds has been achieved by 302 

using the tyrosinase biosensor to get specific signal and BP-ANN as the tool for building the response 303 

model. From all the results shown above, it is demonstrated that the combination of tyrosinase 304 
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biosensor and BP-ANN can give satisfactory quantifications of the CC and HQ concentration 305 

simultaneously in composting system with good rapidity and sensitivity. Besides, the direct detection 306 

range for CC and HQ of the biosensor was extended to 1.0×10−7-1.1×10−4 M, which was superior to the 307 

direct determination by the biosensor with linear data analysis. What’s more, this assay provided the 308 

potential applicability of the biosensor for the quantification of CC and HQ in composting system 309 

though with plenty of interfering substances. In future work, this biosensor combined with artificial 310 

neural networks model may be alternatively applied for the quantification of different phenolic 311 

mixtures in real contaminated compost samples or other complex environments samples. 312 
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Table captions 

Table 1. Optimal results of ANN architecture and training parameters. 

Table 2. Detailed results obtained for the spiked compost extract samples against added concentrations 

of the two phenolic compounds considered. Recovery yield was also expressed for each compost 

extract sample. 
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Figure captions 

Fig. 1 Measured signals were obtained from 22 compost extract samples using in the training set. 

Fig. 2 Example of the ANN architecture used to interpret DPV signals. The input vector comprises 9 to 

27 individual data points in the DPV curve. The number of hidden neurons ranges from 2 to 16 (for 

clarity, only 10 are shown here). 

Fig. 3 Obtained RMSEs in: (A) prediction for different transfer function combinations and neuron 

numbers in the hidden layer with input neuron number of 27 and Levenberg-Marquardt 

backpropagation (trainlm) as optimization algorithm. (B) prediction for different input neuron numbers 

and optimization algorithms with the optimal transfer function combination of Logsig–Purelin and 

hidden neuron number of 10. 

Fig. 4 Modeling performance achieved for the optimized BP-ANN with 22 samples from the training  

set. Error bars correspond to 5 different retrainings with random reinitialization of weights for the final  

architecture. Expected concentrations are plotted against those obtained from the BP-ANN, good  

correlations were obtained for catechol and hydroquinone. 

Fig. 5 Modelling performance of the optimised BP-ANN for the external test set. Expected 

concentrations are plotted against those obtained by BP-AN. Good correlations were obtained for 

catechol and hydroquinone. 
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Table 1. Optimal results of ANN architecture and training parameters. 

Architecture / parameter Value 

Input neuron number 9 

Hidden neuron number 10 

Output neuron number 2 

Transfer function in the hidden layer Logsig 

Transfer function in the output layer Purelin 

Optimization algorithm Levenberg-Marquardt backpropagation (trainlm) 
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Table 2. Detailed results obtained for the spiked compost extract samples against added concentrations 

of the two phenolic compounds considered. Recovery yield was also expressed for each compost 

extract sample. 

Compost 

extract 

sample 

CC concentration /µM  HQ concentration /µM 

Added 
L
 predicted 

B
predicted 

L 
Recovery 

B 
Recovery  Added 

L
 predicted 

B
predicted 

L 
Recovery 

B 
Recovery 

1 1.3 1.1±0.37 1.5±0.33 84.6% 115.3%  2.5 2.0±0.46 2.8±0.36 80.0% 112.0% 

2 4.6 5.3±0.41 5.0±0.18 115.2% 108.7%  15.5 14.3±0.39 14.9±0.28 92.3% 96.1% 

3
 

17.8 17.4±0.23 17.9±0.11 97.8% 100.6%  20.5 20.0±0.44 20.6±0.37 97.6% 100.5% 

4 25.6 27.5±0.44 28.0±0.17 107.4% 109.4%  36.3 31.2±0.40 32.0±0.16 86.0% 88.15% 

5
 

32.3 30.5±0.39 31±0.29 94.4% 96.0%  10.5 12.5±0.29 8.9±0.19 119.0% 88.6% 

6 39.5 37.7±0.35 40.3±0.30 95.4% 102.0%  60.5 57.1±0.36 58.6±0.23 94.4% 96.9% 

7 59.3 63.5±0.42 60.2±0.15 107.1% 101.5%  83.6 65.8±0.32 85.9±0.29 78.7% 102.8% 

8 95.5 70.6±0.47 98.4±0.26 73.9% 103.0%  105.4 78.6±0.38 109.8±0.21 74.6% 104.2% 

B 
BP-ANN model 

L 
linear model 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Selected current intensities of the DPV from biosensor are taken as the input in the 

ANN. Appropriate weights and biases are applied by the learning algorithm until the 

targets are satisfied. 
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