Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/methods Registered Charity Number 207890

1	L-cysteine/Glycine composite film modified glassy carbon electrode as enhanced
2	sensing platform for catechol determination
3	
4	Jiahong He ^{a,b,c} , Shaohua Xing ^b , Ri Qiu ^b , Zhongrong Song ^c , Shengtao Zhang ^a *
_	
5	a School of Chemistry and Chemical Engineering, Chongqing University,
6	Chongqing 400044, P. R. China
7	b Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang
8	Ship Material Research Institute, Qingdao 266101, P. R. China
9	c School of Materials and Chemical Engineering, Chongqing University of Arts and
10	Sciences, Yong chuan 402160, P. R. China
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Analytical Methods Accepted Manuscript

^{*} Corresponding author. Tel: +86-23-65102531.

Email: stzhang@cqu.edu.cn; 20110901036@ cqu.edu.cn

22 Abstract

In this report, a novel voltammetric sensor based on a glassy carbon electrode 23 modified with L-cysteine/glycine composite film (L-cysteine/glycine/GCE) was 24 25 developed for the quantitative detection of catechol. The as-fabricated electrode exhibited good electrochemical performance with low electron transfer resistance. 26 The results of electrochemical impedance spectroscopy (EIS) revealed that 27 electron transfer through L-cysteine/glycine film was more facile than that of the 28 bare glassy carbon electrode. The electrochemical behavior of catechol was also 29 investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) 30 31 at the prepared electrode. The modified electrode showed excellent electrocatalytic activity towards the oxidation of catechol in NaOH-KH₂PO₄ buffer solution 32 33 (pH=6.0). Under the optimum conditions, the linear relationship between the oxidation peak current and concentration of catechol can be obtained in the range 34 from 3 μ M to 280 μ M with the detection limit as 0.32 μ M (3 σ). In addition, the 35 interference and stability study showed a satisfactory detection result by this 36 electrode. Besides, the proposed method was successfully applied to the 37 determination of catechol in water samples with satisfactory results. 38

- 39 Keywords
- 40 Glycine; L-cysteine; Catechol; Electrocatalysis; Sensor
- 41
- 42
- 43

44 **1. Introduction**

As an essential industrial raw material, catechol is widely used in rubber, dyes, 45 46 plastics, pesticides, flavoring agents, antioxidant, leather tanning, photography and other synthetic chemical industries [1-2]. Thus, it can be easily introduced into the 47 environment as pollutant. Moreover, catechol is highly toxic to living beings. McCue 48 et al. [3] found that cigarette tar contained a trace amount of catechol, which could 49 50 induce damage to DNA and cause cancer to humans [4-5]. Due to its extreme 51 harmfulness to creatures even at very low concentration, the US Environmental 52 Protection Agency (EPA) and the European Union (EU) consider catechol as an 53 environmental pollutant [6-7]. In the national standard (GB 8978-1996) of China, the permitted emission concentration of phenolic compounds is regulated as 0.5 mg/L 54 (for dihydroxybenzene, 4.54×10^{-3} M) [8]. With the increasing demand in the 55 environmental protection and public safety, the determination of this toxicity has 56 received much attention. Up to now, several methods have been devoted for the 57 determination of catechol, such as chemiluminescence [9-10], spectrophotometry 58 59 [11-12], high performance liquid chromatography (HPLC) [13-14], fluorescence quenching method [15], electro-chemiluminescent [16], and H-point curve isolation 60 61 method [17]. Although these methods have been successfully applied to catechol 62 determination, they still suffer from some drawbacks such as complex operating conditions, time-consuming processes, expensive equipments, and so forth. 63

Electrochemical method is a promising technique for the determination of the smallorganic compounds in aqueous solution due to its advantages of fast response, cheap

66	instrument, low cost, simple operation, high sensitivity and excellent selectivity. In
67	recent years, many efforts have been paid to the electrochemical determination of
68	catechol at different electrodes. For example, based on cyclic voltammetry and
69	differential pulse voltammetry methods, Deng et al. [18] detected catechol by using
70	gold nanoparticle/sulfonated graphene modified electrode. Compared with graphene
71	modified electrode, the composite modified one exhibited obvious desorption
72	properties toward aromatic species of catechol, and the results illustrated that the
73	sensor displayed high chemical selectivity, fast response and good reproducibility to
74	low concentration of catechol. Wang et al. [19] reported a gold nanoparticles/TiO $_2$
75	composite modified indium tin oxide (ITO) electrode to study the electrochemical
76	behavior of catechol using cyclic voltammetry and differential pulse voltammetry
77	techniques. The proposed sensor was applied to determine catechol in tea samples,
78	and the results were satisfactory compared with the chromatography approach.
79	Besides, Zheng et al. [20] prepared polydopamine (PDA)-reduced graphene oxide
80	(RGO) nanocomposite electrode by one-step procedure. Their research showed that
81	the PDA-RGO modified electrode exhibited high electrocatalytic activity toward the
82	oxidation of catechol and the electrode was successfully applied to the determination
83	of catechol in tap water samples with excellent stability, reproducibility and
84	selectivity. In addition, other modified electrodes such as GO-MnO ₂ /GCE [21],
85	GMC/GCE [22], EGE/MMT [23], ECF/CPE [24], and MWNTs-IL-Gel/GCE [25],
86	also emerged for catechol determination. Although these sensors have good
87	electrochemical performances, their preparation process is usually complex, which

88 may play the hurdle for their practical application.

In this paper, we chose cheap and environmentally friendly glycine and L-cysteine as 89 modification materials to fabricate a novel L-cysteine/glycine/GCE. The 90 91 electrochemical behavior of catechol on L-cysteine/glycine/GCE was investigated. It 92 was found that the modified electrode exhibited excellent electrocatalytic activity 93 towards the oxidation of catechol, and the oxidation peak current was linear to catechol concentration in a certain range. To the best of our knowledge, this is the 94 95 first time that such high sensitivity has been achieved for the detection of catechol using L-cysteine/glycine modified electrode. 96

97

98 **2. Experimental**

99 2.1 Apparatus and reagents

100 Electrochemical experiments were performed on a CHI660D electrochemical 101 workstation (Shanghai Chenhua Co., Ltd., China) cabled with a conventional 102 three-electrode cell. A bare or modified GCE was used as the working electrode, and 103 a platinum wire electrode was applied as the auxiliary electrode. A saturated calomel 104 electrode (SCE) worked as the reference electrode. If there is no specific indication, 105 all potentials reported in this paper are quoted with SCE. Electrochemical impedance 106 spectroscopy (EIS) measurements were conducted using PARSTAT2273 (EG&G, 107 USA). An S-2F digital pH meter (Leici instrument factory, Shanghai, China) was 108 used to determine pH of buffer solution.

109 All reagents were obtained as analytical grade and used without further purification.

Doubly distilled water obtained from a Milli-Q water purification system
(18MΩ•cm) was for all experiments. Catechol was purchased from Sinopharm
Chemical Reagent Beijing Co., Ltd. Glycine and L-cysteine were obtained from
Shanghai Kangda Amino Acid Company.

114 **2.2 Preparation of modified electrode**

115 Scheme 1 illustrates the procedure for the fabrication of L-cysteine/glycine onto 116 GCE. Firstly, prior to the electrodeposition of glycine and L-cysteine, GCE (Φ =3mm) 117 was polished repeatedly with 0.3 and 0.05 µm alumina powder. Then, it was successively sonicated in nitric acid (1:1), acetone, ethanol and doubly distilled 118 119 water for 5 min and dried at room temperature. Secondly, GCE was immersed into 120 0.01 M glycine solution (NaOH-KH₂PO₄ buffer, pH=6.0), and cyclic voltammetry 121 was used to deposit glycine onto GCE surface. The potential range was selected as 122 $-0.5 \sim 1.5$ V with the sweeping rate 100 mV/s, and the sweeping cycle number was 123 16. The solution was deoxygenated for 20 min with nitrogen prior to 124 electrodeposition. Thirdly, in an aqueous solution containing 0.01 M L-cysteine 125 (NaOH-KH₂PO₄ buffer solution, pH 6.0), L-cysteine was electrodeposited by cyclic 126 voltammetry in a potential range of $-0.8 \sim 0.6$ V for 8 cycles with the sweeping rate 127 of 100 mV/s.

128

129

Preferred position for Scheme 1.

130

131 **2.3 Morphology and electrochemical property of the electrodes.**

132	The surface morphology was revealed by a field emission scanning electron
133	microscopy (FE-SEM, Zeiss Ultra 55). The electrochemical property of the
134	electrodes were evaluated on CHI 660D electrochemical workstation in a
135	conventional three-electrode cell. High-purity nitrogen was used for purging oxygen
136	before each experiment. The measurements were carried out at ambient temperature
137	(25±2 °C). The electrochemical performance of L-cysteine/glycine/GCE was
138	measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in
139	buffer solution (NaOH-KH ₂ PO ₄ , pH= 6.0) in the potential range of $-0.2 \sim 0.6$ V with
140	the scan rate 100 mV/s. Besides, the electrochemical impedance spectroscopy was
141	performed in 5 mM $\text{Fe}(\text{CN})_6^{3-/4-}$ solution containing 0.1 M KCl and the frequency
142	range was from 0.01 to 10^5 Hz.

143 **3. Results and discussion**

144 **3.1 Electrode preparation**

145 To determine the electrodepostion order during the preparation of the electrode, 146 glycine /L-cysteine/ GCE and L-cysteine/glycine/GCE were prepared to compare the 147 electrochemcial activity to catechol. Fig. 1 shows the CV curves of catechol at the 148 two electrodes in the potential range of -0.2 V to +0.6 V. The employed scan rate is 149 50 mV/s. For glycine/L-cysteine/GCE (curve a), the redox peaks of cathodic shown 150 at 0.318 V and -0.053 V, and the peak-to-peak $(\Box E_p)$ value is calculated as 0.371 V. 151 Curve b is the CV of L-cysteine/glycine/GCE. A pair of redox peaks can be observed 152 with the anodic peak potential as 0.148 V and the cathodic peak potential as 0.007 V. $\Box E_p$ value is calculated as 0.141 V. Compared with Curve a, the peak currents of 153

Analytical Methods Accepted Manuscript

154 Curve b have increased remarkably. The further decrease of $\Box E_p$ value and the 155 increase of redox peak currents demonstrate that the L-cysteine/glycine/GCE has 156 better performance for the cathodic determination of catechol. In this study, we select 157 L-cysteine/glycine/GCE as the representative for catechol determination. 158

- 159

Preferred position for Fig. 1

160

161 The L-cysteine/glycine film was fabricated through two steps. In the first step, the 162 CV curves to immobilize glycine onto GCE surface are shown as Fig. 2a. During the 163 electrodeposition process, it is clear that an oxidation peak is observed at 0.96 V 164 during the anodic scan. Two reduction peaks appears at 0.45 V and -0.13 V in the 165 reverse reduction scan due to the formation of glycine film. During the electrode 166 reaction, glycine molecules are oxidized to free radicals. By combining with the 167 GCE surface rapidly (Scheme 2), glycine will finally immobile on the electrode 168 surface. After that, L-cysteine was further electrodeposited onto the as-form 169 glycine/GCE surface to reach L-cysteine/glycine/GCE state. The CV curves during 170 electrodeposition of L-cysteine are shown as Fig. 2b. A reduction peak appears at 171 -0.63 V during the reduction scan. The reduction peak current enhances with the 172 increment of the cycle number. It is assumed the reaction indicated in Scheme 3 occurs during the electrodeposition process: 173

174

Preferred position for Fig. 2

- 175
- 176Preferred position for Scheme 2.
 - 8

ipt
SCr
Snu
Ma
Ď
pte
CCe
A
Spc
the
Me
<u>Sal</u>
ytic
Jal
A

177	Preferred position for Scheme 3.
178	
179	For further confirmation of the achievement of L-cysteine/glycine/GCE during the
180	two step protocol, SEM technique is employed to reveal the surface morphology of
181	glycine/GCE, L-cysteine/GCE and L-cysteine/glycine/GCE, which are shown as Fig.
182	3. It is found that the external shape of as-deposited glycine and L-cysteine is quite
183	different. After two-step-procedure to realize L-cysteine/glycine/GCE, the surface is
184	similar to the L-cysteine/GCE, since L-cysteine acts as the "external shell" in the
185	composite film. With the SEM images, it is demonstrated that L-cysteine/glycine
186	composite has been formed on GCE surface. The composite surface behaves as a
187	highly rough structure, which increases the specific surface area of the electrode.
188	With this structure, the diffusion of the ions or target molecules to the electrode will
189	be promoted, so that a high catalytic capability will be obtained.

190

Preferred position for Fig. 3

191

3.2 Electrochemical impedance spectroscopy measurement.

Electrochemical impedance spectroscopy (EIS) is a powerful and non-destructive method to study electrochemical property of solid/liquid interface [26]. In this report, EIS measurements were carried through by using 5.0 mM Fe[(CN)₆]^{3-/4-} as the redox probe, and the results are shown in Fig. 4. The diameter of the semicircle is equivalent to the charge transfer resistance (R_{ct}), which is the direct and sensitive parameter corresponding to chemical reaction near the electrode-solution interface

199	[27]. It can be observed that the semicircle diameter of the L-cysteine/glycine/GCE
200	is smaller than that of the bare GCE, L-cysteine/GCE and glycine /GCE, suggesting
201	that the charge transfer rate of GCE modified with L-cysteine/glycine composite film
202	is much faster than other electrodes. Also, it is indicated that L-cysteine/glycine
203	composite film has been successfully modified on GCE.
204	
205	Preferred position for Fig. 4
206	
207	3.3 Electrochemical behavior of catechol at modified GCE
208	The electrochemical behavior of catechol at various modified electrodes has been
209	studied by CV. Fig. 5 shows the CV response of catechol on various electrodes in the
210	potential range of -0.2 V to + 0.6 V in buffer solution (NaOH-KH ₂ PO ₄ , pH=6.0). In a
211	blank buffer solution (Curve a), L-cysteine/glycine/GCE shows no redox peaks due
212	to the absence of catechol. On bare GCE (curve b), a pair of broad redox peaks can
213	be observed with the anodic peak potential (E_{pa}) as 0.512 V and the cathodic peak
214	potential (E _{pc}) as -0.016 V. The peak-to-peak separation (ΔE_{p}) value is calculated as
215	0.528 V, indicating that catechol exhibits an irreversible electrochemical behavior at
216	bare GCE [28-29]. On glycine/GCE (curve c) and L-cysteine/GCE (curve d), the
217	redox peaks of catechol are shown at 0.276/-0.042 V and 0.224/-0.028 V,
218	respectively. The ΔE_p values decrease to 0.318 V and 0.252 V, and the redox peak
219	currents increase, illustrating that both glycine and L-cysteine can act as effective
220	mediators during the electrocatalytic oxidation of catechol. When combining both

221	mediators together to form L-cysteine/glycine/GCE (curve e), a pair of well-defined
222	redox peaks are observed with ΔE_p value as 0.138 V. Also, the enhanced anodic and
223	cathodic peak currents, i. e., -37.354 μA and 30.294 $\mu A,$ can be observed. The
224	decrease of the ΔE_p value and the increase of redox peak currents demonstrate that
225	L-cysteine/glycine film acts as an efficient promoter to enhance the kinetics of
226	electrochemical process, which is probably attributed to the synergistic
227	electrocatalysis effect of L-cysteine and glycine. The results indicate that the
228	L-cysteine/glycine composite film modified electrode is qualified for the
229	determination of catechol.
230	
231	Preferred position for Fig. 5
231	r referreu position for rig. 5
231	ricierieu position for rig. 5
232 233	The excellent performance of L-cysteine/glycine/GCE can be attributed to the
231232233234	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and
 231 232 233 233 234 235 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of
 231 232 233 233 234 235 236 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged
 231 232 233 233 234 235 236 237 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged L-cysteine/glycine composite film can interact with the positively charged catechol
 231 232 233 233 234 235 236 237 238 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged L-cysteine/glycine composite film can interact with the positively charged catechol (pK _a = 9.40 [30]) through the favorable electrostatic attraction, which helps to lower
 231 232 233 233 234 235 236 237 238 239 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged L-cysteine/glycine composite film can interact with the positively charged catechol (pK _a = 9.40 [30]) through the favorable electrostatic attraction, which helps to lower activation energy required during the redox reactions, so that the overpotential for
 231 232 233 234 235 236 237 238 239 240 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged L-cysteine/glycine composite film can interact with the positively charged catechol (pK _a = 9.40 [30]) through the favorable electrostatic attraction, which helps to lower activation energy required during the redox reactions, so that the overpotential for the reaction will be decreased [31]. Secondly, the L-cysteine/glycine/GCE surface is
 231 232 233 234 235 236 237 238 239 240 241 	The excellent performance of L-cysteine/glycine/GCE can be attributed to the following reasons. Firstly, as shown in Scheme 4, the amino, carboxyl, and sulfhydryl group in glycine and L-cysteine can interact with the hydroxyl groups of catechol via H-bonding. In the buffer solution (pH=6.0), the negatively charged L-cysteine/glycine composite film can interact with the positively charged catechol (pK _a = 9.40 [30]) through the favorable electrostatic attraction, which helps to lower activation energy required during the redox reactions, so that the overpotential for the reaction will be decreased [31]. Secondly, the L-cysteine/glycine/GCE surface is intrinsically rough, so that a high specific surface area makes the enrichment of

transfer kinetics of L-cysteine/glycine/GCE is fast. Therefore, the redox reaction of

244 catechol on L-cysteine/glycine/GCE is accelerated.

245

246

Preferred position for Scheme 4

247

3.4 pH effect on CV behavior of the sensor

Electrolyte acidity affects electro-oxidation behavior of catechol, because proton participates in the electrode reaction [31]. In this work, the voltammetric behavior of catechol in different electrolyte solutions, i. e., KH₂PO₄-Na₂HPO₄ (PBS), HAc-NaAc, NaOH-KH₂PO₄, Britton-Robinson buffer solution (B-R) are investigated. The results indicate that NaOH-KH₂PO₄ buffer solution has the best effect on the electro-oxidation behavior of catechol. Thus, we choose NaOH-KH₂PO₄ buffer solution as the electrolyte.

On L-cysteine/glycine/GCE, pH effect on peak potentials and peak currents of 256 catechol are carefully investigated by CV. As shown in Fig. 6A, it is observed that 257 258 the oxidation peak current of catechol increases with the enhancement of pH value 259 until it reaches 6.0. After that, the current decreases slightly. Liu, et al. [32] proposed 260 that the electrostatic repulsion between the electrode and the target molecules could 261 be the most possible reason for this phenomenon. Also, other two important reasons 262 should be taken into consideration [8, 33-34]. Firstly, the solution with high pH 263 value is not advantageous to electrochemical reaction due to the shortage of proton; 264 Secondly, catechol molecule has proton in its own structure, which can easily

265	undergo deprotonation and turn into anions in high pH aqueous solution. Meanwhile,
266	glycine and L-cysteine on electrode surface are also negatively charged due to the
267	further dissociation of carboxyl and sulfhydryl group. Consequently, the electrostatic
268	repulsion between catechol and electrode will be enhanced with the increase of pH
269	value, which leads to low adsorption capacity on the electrode surface and low peak
270	current. Hence, pH of 6.0 has been chosen as the optimum acidity for further
271	experiments.
272	As shown in Fig. 6B, the relationship between the peak potential and pH is also
273	investigated. It is found that peak potential shifts negatively with the increase of pH.
274	Two linear relationship are obtained with the regression equations of $E_{pa}(V)$ =
275	-0.0633 pH + 0.5553 (R = 0.9958) for oxidation process and $E_{pc}(V)$ = -0.0672 pH +
276	0.3192 (R = 0.9963) for reduction process. According to the formula $dEp/dpH =$
277	2.303mRT/nF [35], in which m and n are the number of proton and electron, for
278	catechol oxidation process, m/n was calculated as 1.07. It indicates that the number
279	of proton is same to that of the electron involved in the redox process of catechol.
280	
281	Preferred position for Fig. 6
282	
283	3.5 Effect of the scan rate on the electrochemical behavior of catechol

For further understanding electrochemical behavior of catechol at the L-cysteine/glycine/GCE, the influence of scan rate is examined. As shown in Fig. 7, both cathodic and anodic peak current (I_{pc} and I_{pa}) of catechol are linear to the square

287	root of scan rate in the range of $20 \sim 130$ mV/s. The redox peak currents follow the
288	linear regression equation of I_{pa} = -3.5751 v ^{1/2} + 5.1731 (µA, mV/s, R = 0.9984) and
289	I_{pc} = 3.3723 $\upsilon^{1/2}$ - 6.9117 (µA, mV/s, R = 0.9984), indicating that the electrode
290	process of catechol is a diffusion-controlled process [36-38]. Besides, from Fig. 7, it
291	can also be seen that E_{pa} shifts to more positive values along with the increase of the
292	scan rate. These results illustrate that the electron transfer is quasi-reversible [39].
293	

- Preferred position for Fig. 7
- 295

294

3.6 Effect of cycle number during L-cysteine/glycine deposition on GCE

297 The as-grown film thickness is essentially dependent on the cycle number of CV 298 during the electrodeposition process [40]. In this report, the dependent relationship 299 between CV cycle number for L-cysteine/glycine deposition and catechol redox 300 ability is also studied. Fig. 8 (A) and (B) illustrate the variation of electrochemical 301 behavior toward to catechol on L-cysteine/glycine/GCE with different cycle numbers 302 of L-cysteine/glycine films. In Fig. 8 (A), when the cycle number of glycine and L-cysteine deposition adopts 16 and 8, E_{pa} and E_{pc} reach the minimum and 303 304 maximum value, respectively. At the same time, the oxidation peak currents of 305 catechol also arrive at a maximum value in the same case (Fig. 8 (B)). Moreover, 306 when the cycle number increases further, the electrochemical activity of L-cysteine/glycine film will decrease. Since the as-achieved thick film has high 307 308 impedance, it is hard for electrons to penetrate through to reach the electrode surface

309	[41]. In other words, a very thick or thin film is not beneficial for electrode response.
310	Only optimum thickness originated from the reasonable CV cycle number (16 cycles
311	for glycine and 8 cycles for L-cysteine) can enable the lowest ΔE_p and the highest
312	sensitivity.
313	
314	Preferred position for Fig. 8
315	
316	3.7 The response characteristics of the sensor to catechol
317	The amperometric responses are measured at the bare GCE, glycine/GCE,
318	L-cysteine/GCE and L-cysteine/glycine/GCE. During the experiments, the potential
319	of 0.148 V is exerted onto the electrodes. At this potential, amperometric response
320	reaches a maximum value (Fig. 5). Therefore, the typical current-time curves are
321	obtained by plotting the reaction time against the corresponding current (Fig. 9). As
322	illustrated, the sensor rapidly responds and reaches a steady state within a short time
323	after the addition of catechol into the solution, demonstrating the high sensitivity to
324	catechol. This phenomenon can be attributed to the well-defined surface area of
325	electrode [42]. Furthermore, drastic increase in the responsive current is observed at
326	the L-cysteine/glycine/GCE with the addition of the catechol. However,
327	glycine/GCE, L-cysteine/GCE and bare GCE show relatively small current response
328	to catechol. L-cysteine/glycine/GCE behaves faster response and higher sensitivity
329	than other electrodes due to the synergistic effect between glycine and L-cysteine.
330	

Preferred position for Fig. 9

332

333 **3.8 Interference of coexisting substances**

334 In order to evaluate the selectivity of the proposed method for catechol 335 determination, the effect of various foreign species is also investigated. The 336 tolerance limit is taken as the maximum concentration of the foreign substances 337 causing an approximately $\pm 5\%$ relative error in their determination. The results show that 500-fold concentration of Na⁺, K⁺, NH₄⁺, NO₃⁻, 300-fold concentration of Ca²⁺, 338 Mg²⁺, Cu²⁺, Al³⁺, Fe²⁺, SO₄²⁻ and 100-fold concentration of ascorbic acid, phenol, 339 340 resorcinol do not show interference to the detection of 50 µM catechol. However, 341 20-fold concentration of hydroquinone disturbs the determination. It is confirmed 342 that the as-modified electrode performs good selectivity.

343 **3.9 Analytical property characterization**

344 The linear range and detection limitation are studied using DPV under the optimum 345 conditions. The DPV responses for various concentration of catechol are illustrated 346 in Fig. 10. With the increase of catechol concentration, the oxidation peak current 347 linearly enhances to the concentration of catechol in the range of $3 \sim 280 \ \mu\text{M}$. The linear equation is $I_{pa}(\mu A) = -12.3153 + 0.2613C (\mu M)$ with a correlation coefficient 348 349 of 0.9981. The detection limit is 0.32 μ M (3 σ). Compared with other modified electrodes reported previously, the as-prepared L-cysteine/glycine/GCE in this work 350 351 behaves superior electroanalysis property (listed in Table.1).

353	Preferred position for Fig. 10
354	Preferred position for Table 1

356 **3.10 Stability and reproducibility of the modified electrode**

357 Good reproducibility and stability are considered as two key criteria for judging a 358 sensor [51]. Under the optimal conditions, the reproducibility of the amperometric 359 sensor is evaluated by successive determination (n=8) of catechol (50 μ M), and the 360 relative standard deviation (RSD) is calculated as 1.39%. The fabrication reproducibility is also estimated with five different electrodes, which are fabricated 361 362 independently by the same procedure. The RSD is 4.36% for measuring the peak 363 current in a 50 μ M catechol solution, which demonstrates the reliability of the 364 fabrication procedure. For the stability evaluation of the modified electrode, when 365 the electrode is kept at 4 °C for two weeks, the peak currents retain more than 92.9% of the initial values. The results reveal that the as-modified electrode presents a good 366 repeatability and durability. 367

368 3.11 Samples analysis

In order to assess the applicable capability of this method for the determination of catechol, local tap water samples without any pretreatment are used for quantitative analysis. Standard solutions of catechol are added into the water sample. The catechol is then determined by DPV method. The results are summarized in Table 2. The recoveries of the samples range between 99.2% and 102.6%, and these results clearly indicate the reliability of the method.

Analytical Methods Accepted Manuscript

375	
376	Preferred position for Table 2
377	
378	4. Conclusions
379	(1) Electrodeposition is proven applicable to obtain L-cysteine/glycine composite
380	film onto GCE surface.
381	(2) L-cysteine/glycine composite film exhibits electrocatalytic activity to catechol
382	oxidation. Well-defined oxidation peaks with lower anodic overpotential and the
383	significantly increased peak current of catechol are observed at
384	L-cysteine/glycine/GCE.
385	(3) A plausible mechanism for catechol electrocatalysis has been demonstrated.
386	(4) L-cysteine/glycine/GCE has been employed as a sensor for determination of
387	catechol. High sensitivity, good stability, wide linear range and reproducibility
388	enable it as a new potential candidate for catechol determination.
389	Acknowledgement
390	The authors are grateful to financial support of the Natural Science Foundation of
391	China (Grant No. 41101223, 21372265), Natural Science Foundation of Yongchuan
392	(Yeste,2013ne8001) and Foundation of Chongqing Education Commission of China
393	(No. KJ131205)
394	
395	References

396 [1] H. Zhang, J. S. Zhao, H. T. Liu, R. M. Liu, H. S. Wang, J. F. Liu, Microchim.

- 397 Acta, 2010, 169, 277-282.
- 398 [2] B. Unnikrishnan, P. L. Ru, S. M. Chen, Sens. Actuators, B, 2012, 169, 235-242.
- 399 [3] J. M. McCue, K. L. Link, S. S. Eaton, B. M. Freed, J. Immunol, 2000, 165,
 400 6771-6775.
- 401 [4] K. Hirakawa, S. Oikawa, Y. Hiraku, I. Hirosawa, S. Kawanishi, Chem. Res.
- 402 Toxicol, 2002, 15, 76-82.
- 403 [5] N. Schweigert, J. L. Acero, U. V. Gunten, S. Canonica, A. J. B. Zehnder, R. I. L.
- 404 Eggen, Environ. Mol. Mutagen, 2000, 36, 5-12.
- 405 [6] T. Y. Xie, Q. W. Liu, Y. R. Shi, Q. Y. Liu, J. Chromatogr A, 2006, 1109, 317-321.
- 406 [7] S. Timur, N. Pazarlioglu, R. Pilloton, A. Telefoncu, Talanta, 2003, 61, 87-93.
- 407 [8] H. S. Yin, Q. M. Zhang, Y. L. Zhou, Q. Ma, T. Liu, L. S. Zhu, S. Y. Ai,
- 408 Electrochim. Acta, 2011, 56, 2748-2753.
- 409 [9] L. J. Zhao, B. Q. Lv, H. Y. Yuan, Z. D. Zhou, D. Xiao, Sensors, 2007, 7, 578-588.
- 410 [10] S. F. Li, X. Z. Li, J. Xu, X. W. Wei, Talanta, 2008, 75, 32-37.
- 411 [11] P. Nagaraja, R.A. Vasantha, K.R. Sunitha, Talanta, 2001, 55, 1039-1046.
- 412 [12] E. C. Figueiredo, C. R. T. Tarley, L. T. Kubota, S. Rath, M. A. Z. Arruda,
- 413 Microchem. J., 2007, 85, 290-296.
- 414 [13] G. Marrubini, E. Calleri, T. Coccini, A. F. Castoldi, L. Manzo, Chromatographia,
- 415 2005, 62, 25-31.
- 416 [14] A. Asan, I. Isildak, J. Chromatogr., A, 2003, 988, 145-149.
- 417 [15] W. J. Dong, J. P. Song, C. Dong, M. M. F. Choi, Chinese Chem. Lett., 2010, 21,
 418 346-348.
- 419 [16] Y. G. Sun, H. Cui, Y. H. Li, X. Q. Lin, Talanta, 2000, 53, 661-666.
- 420 [17] M. Hasani, M. Mohammadi, M. S. Rad, H. Abdollahi, Spectrochim acta a, 2012,
- 421 96, 563-568.
- 422 [18] D. H. Deng, S. J. Li, M. J. Zhang, X. N. Liu, M. M. Zhao, L. Liu, Anal.
- 423 Methods, 2013, 5, 2536-2542.
- 424 [19] G. F. Wang, X. P. He, F. Zhou, Z. J. Li, B. Fang, X. J. Zhang, L. Wang, Food
- 425 Chem., 2012, 135, 446-451.
- 426 [20] L. Z. Zheng, L. Y. Xiong, Y. D. Li, J. P. Xu, X. W. Kang, Z. J. Zou, S. M. Yang,

Analytical Methods Accepted Manuscript

- 427 J. Xia, Sens. Actuators, B, 2013, 177, 344-349.
- 428 [21] T. Gan, J. Y. Sun, K. J. Huang, L. Song, Y. M. Li, Sens. Actuators, B, 2013, 177,
- 429 412-418.
- 430 [22] S. K. Lunsford, H. Choi, J. Stinson, A. Yeary, D. D. Dionysiou, Talanta, 2007,
- 431 73, 172-177.
- 432 [23] Y. Kong, Y. Y. Xu, H. H. Mao, C. Yao, X. F. Ding, J. Electroanal. Chem., 2012,
 433 669, 1-5.
- 434 [24] Q. H. Guo, J. S. Huang, P. Q. Chen, Y. Liu, H. Q. Hou, T. Y. You, Sens.
 435 Actuators, B, 2012, 163, 179-185.
- 436 [25] C. H. Bu, X. H. Liu, Y. J. Zhang, L. Li, X. B. Zhou, X. Q. Lu, Colloids Surf., B,
- 437 2011, 88, 292-296.
- 438 [26] B. W. Park, D. Y. Yoon, D. S. Kim, J. Electroanal. Chem., 2011, 661, 329-335.
- [27] D. M. Zhao, X. H. Zhang, L. J. Feng, L. Jia, S. F. Wang, Colloids Surf., B, 2009,
 74, 317-321.
- [28] A. J. S. Ahammad, S. Sarker, M. A. Rahman, J. J. Lee, Electroanal., 2010, 22,
 694-700.
- [29] P. Yang, Q. Y. Zhu, Y. H. Chen, F. W. Wang, J. Appl. Polym. Sci., 2009, 113,
 2881-2886.
- [30] A. J. S. Ahammad, M. M. Rahman, G. R. Xu, S. Kim, J. J. Lee, Electrochim.
 Acta, 2011, 56, 5266-5271.
- [31] K. Nakano, K. Ohkubo, H. Taira, M. Takagi, N. Soh, T. Imato, J. Electroanal.
 Chem., 2008, 623, 49-53.
- 449 [32] W. L. Liu, C. Li, L. Tang, A. Y. Tong, Y. Gu, R. Cai, L. Zhang, Z. Q. Zhang,
- 450 Electrochim. Acta, 2013, 88, 15-23.
- [33] H. J. Du, J. S. Ye, J. Q. Zhang, X. D. Huang, C. Z. Yu, J. Electroanal. Chem.,
 2011, 650, 209-213.
- [34] J. T. Han, K. J. Huang, J. Li, Y. M. Liu, M. Yu, Colloids Surf., B, 2012, 98,
 58-62.
- 455 [35] E. Laviron, Adsorption, J. Electroanal. Chem. 1974, 52, 355-393.
- 456 [36] W. Sun, Y. Z. Li, M. X. Yang, J. Li, K. Jiao, Sens. Actuators, B, 2008, 133,

- 457 387-392.
- 458 [37] X. M. Ma, Z. N. Liu, C. C. Qiu, T. Chen, H. Y. Ma, Microchim. Acta, 2013, 180,
- 459 461-468.
- 460 [38] Z. M. Liu, Z. L. Wang, Y. Y. Cao, Y. F. Jing, Y. L. Liu, Sens. Actuators, B, 2011,
- 461 157, 540-546.
- 462 [39] X. L. Yuan, D. S. Yuan, F. L. Zeng, W. J. Zou, F. Tzorbatzoglou, P. Tsiakarasb, Y.
- 463 Wang, Appl catal b-environ., 2013, 129, 367-374.
- 464 [40] C. Y. Lumibao, L. M. V. Tillekeratne, J. R. Kirchhoff, D. M. D. Fouchard, R.
- 465 A. Hudson, Electroanalysis, 2008, 20, 2177-2184.
- 466 [41] W. M. Si, W. Lei, Y. H. Zhanga, M. Z. Xia, F. Y. Wang, Q. L. Hao, Electrochim.
- 467 Acta, 2012, 85, 295-301.
- [42] D. H. Yuan, S. H. Chen, F. X. Hu, C. Y. Wang, R. Yuan, Sens. Actuators, B,
 2012, 168, 193-199.
- 470 [43] Z. A. Xu, X. Chen, X. H. Qu, S. J. Dong, Electroanalysis, 2004, 16, 684-687.
- 471 [44] S. Tembe, S. Inamdar, S. Haram, M. Karve, S. F. D. Souza, J. Biotechnol., 2007,
 472 128, 80-85.
- 473 [45] Y. Umasankar, A. P. Periasamy, S. M. Chen, Anal. Biochem., 2011, 411, 71-79.
- 474 [46] A. S. Kumar, P. Swetha, K. C. Pillai, Anal. Methods, 2010, 2, 1962-1968.
- 475 [47] B. P. Lopezab, A. Merkoci, Analyst, 2009, 134, 60-64.
- 476 [48] M. G. Li, F. Ni, Y. L. Wang, S. D. Xu, D. D. Zhang, S. H. Chen, L. Wang,
- 477 Electroanalysis, 2009, 21, 1521-1526.
- 478 [49] X. G. Kong, X. Y. Rao, J. B. Han, M. Wei, X. Duan, Biosens Bioelectron, 2010,
 479 26, 549-554.
- 480 [50] L. Su, L. Q. Mao, Talanta, 2006, 70, 68-74.
- 481 [51] S. Y. Zhu, H. J. Li, W. X. Niu, G. B. Xu, Biosens. Bioelectron., 2009, 25,
 482 940-943.

$$GCE \not\downarrow_{-}^{|} NH-CH_{2}-COOH + HOOC-CH-CH_{2}-HS \longrightarrow GCE \not\downarrow_{-}^{|} - NH-CH_{2}-C-NH \\ HS-CH_{2}-CH-COOH$$

Scheme 3. The immobilization procedure of L-cysteine onto glycine/GCE.

19

17 Fig. 2. CV curves during the electrodeposition (a) glycine and (b) L-cysteine on GCE with

scan rate 100 mV/s. The solutions are 0.01 M glycine or L-cysteine in NaOH-KH₂PO₄ buffer

solution (pH 6.0).

Fig. 4. Nyquist plots of different electrodes in 0.1 M KCl containing 5.0 mM $[Fe(CN)_6]^{3-/4-}$.

27 (a) GCE, (b) Glycine/GCE, (c) L-cysteine/GCE, (d) L-cysteine/glycine/GCE.

Fig. 5. CV curves of the L-cysteine/glycine/GCE in (a) blank and (e) 50 μM catechol buffer
 solution (NaOH-KH₂PO₄, pH=6.0. (b) - (d) CV curves of the bare GCE, Glycine/GCE, and
 L-cysteine/GCE in buffer solution containing 50 μM catechol. The scan rate is 50 mV/s.

41 **Fig. 6.** (A) CV response of the L-cysteine/glycine/GCE in NaOH-KH₂PO₄ buffer solution

40

60 40 30 20 50 40 Current/ I/A 30 20 Current/µA 10 7 8 9 /2_(mV s⁻¹)1/2 0 -10 а -20 -30 -40 0.0 0.4 0.6 -0.2 0.2 Potential/V(vs.SCE)

45

47 **Fig. 7.** Effect of the scan rate on the redox behavior of 50 μM catechol. (a-i) 20, 30, 40, 50,

48 60, 70, 90, 110, 130 mV/s. Inset: the redox peak current of catechol vs. square root of the

scan rate.

49

50

modified GCE during the electrodeposition process.

56

53

52

Fig. 10. DPV responses of catechol on the L-cysteine/glycine film electrode at different
catechol concentrations. (a-1: 0, 3, 15, 30, 50, 75, 110, 140, 180, 210, 240, 280 μM). The inset
shows the linear relationship between the oxidation peak current (i_{pa}) and concentration (c).

Electrodes	Technique	Linear range (µM)	Detection limit (µM)	References
MWNTs-modified electrode	DPV	20-1200	10.0	[43]
AGG/Tyr-modified electrode	DPV	60-800	6.0	[44]
MWCNT-NF-PMG	DPV	360-4050	5.8	[45]
GCE/{Nf-fc}-MME	CV	250-2500	10.8	[46]
CNTEC-Tyr	CV	0-150	10.0	[47]
LDHf/GCE	DPV	3-1500	12.0	[48]
(LDH/HB/LDH/HRP) ₂	CV	6-170	5.0	[49]
Au-NP/HS(CH ₂) ₆ SH-Au electrode	CV	4-20	-	[50]
L-cysteine/Glycine/GCE	DPV	3-280	0.32	This study

 Table 1. Comparison of different modified electrodes for catechol determination.

68

67

Samples	Original concentration of catechol (µM)	Amount of standard catechol added (µM)	Total amount of catechol Found ^b (µM)	Recovery (%)	RSD (%)
1	ND ^a	80.00	79.35	99.2	2.26
2	ND ^a	100.00	102.58	102.6	2.78
3	ND ^a	120.00	120.35	100.3	1.96
4	ND ^a	150.00	151.22	100.8	3.12

Table 2. Determination of catechol in water samples (n = 6)

71 ^a ND: Not detected.

72 ^b Average of six measurements.