Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Graphical Abstract

A novel poly (2-hydroxypropyl methacrylate-ethylene dimethacrylate) (HPMA-EDMA) monolithic capillary column was synthesized and selected as the extraction medium for polymer monolith microextraction (PMME).

Fig 1. Scheme of the PMME

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

1	Determination of trace fungicides in environmental water
2	samples using poly (HPMA-EDMA) monolith
3	microextraction coupled to high performance liquid
4	chromatography
5	
6 7	Mi Chen, Miao Zhang, Xiangfang Wang, Sha Peng, Jing Cheng
8	Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of
9	Chemistry, Central China Normal University, Wuhan 430079, China
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	* Corresponding author. Tel.: +86-27-67867961. Fax: +86-27-67867961
21	Email address: chengjingok@mail.ccnu.edu.cn (J. Cheng)
22	
23	
	1

1	
2	
2	
1	
4	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
<i>১।</i>	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
02 E 0	
53	
54	
55	
56	
57	
58	
59	
60	

24	Abstract
25	
26	A simple, rapid and sensitive strategy has been presented for the simultaneous determination of three fungicides
27	(azoxystrobin, diethofencarb and pyrimethanil) in water samples by coupling polymer monolith microextraction
28	(PMME) to high performance liquid chromatography. A novel poly (2-hydroxypropyl methacrylate-ethylene
29	dimethacrylate) (HPMA-EDMA) monolithic capillary column was synthesized and selected as the extraction
30	medium for PMME. To achieve optimum extraction performance, the conditions of PMME including sample flow
31	rate, sample pH, eluent volume, eluent flow rate, sample volume and salt effect have been investigated. Under the
32	optimum conditions, the limits of detection of azoxystrobin, diethofencarb and pyrimethanil are 0.19, 0.22 and
33	0.65 μ g L ⁻¹ , respectively. The reproducibility of the method was obtained with intra-day and inter-day relative
34	standard deviations less than 3.1 % and 6.3 %, respectively. The proposed method has been successfully applied to
35	the determination of the three fungicides in environmental water samples with a recovery range of 80.2-115.6 % in
36	all the samples.
37	
38	
39	
40	
41	
42	
43	
44	Keywords: Polymer monolith microextraction; High performance liquid chromatography; Fungicide;
45	Environmental water
46	

47 Introduction

49	Fungicides are a group of chemicals which are used primarily to control spoilage of crops through fungal attack.
50	Azoxystrobin is a strobilurin fungicide, which is used for treating downy and powdery mildews and widely
51	employed in cereals growing. Diethofencarb is a very effective fungicide for controlling various fungal species,
52	such as Botrytis spp., Cercospora spp. and Venturia spp., that are resistant to benzimidazole fungicides. ¹
53	Pyrimethanil is used for the control of grey mould and leaf scab on grape, strawberry, tomato, fruit, vegetables and
54	ornamentals. ² Besides, research shows that the mixed use of diethofencarb and pyrimethanil can effectively control
55	gray mold disease because of their different mechanism of action. ³
56	Due to their widespread use in agricultural areas, these fungicides may entered into the environment by all
57	kinds of ways such as spraying, soil and storage, as well as the discharge of wastewater. Many fungicides are
58	highly toxic and may have a consequent potential impact on the environment and public health. ⁴ Therefore, the
59	evaluation and monitoring of trace levels of these fungicides in water are imperative for human health protection
60	and environmental control.
61	Owing to the complexity of environmental matrices and the relative low concentration of the target analytes in
62	samples, sample pretreatment and enrichment procedure is a crucial step in an analytical process to obtain accurate
63	and sensitive results. Conventional extraction methods, such as liquid-liquid extraction (LLE) ⁵ and solid-phase
64	extraction (SPE) ⁶⁻⁸ are the most commonly used techniques for preconcentration and cleanup of fungicide residues.
65	However, these methods involving multistep procedures that are complicate, labor-intensive and time-consuming.
66	Besides, LLE requires the use of large amounts of organic solvents, which cause the pollution problem
67	accompanied risk for health.
68	Recent research activities are oriented towards the development of simplification, miniaturization, rapidity, and

environment-friendly sample preparation techniques that could greatly reduce the organic solvent consumptions.

70	9,10 As a result, new microextraction techniques such as solid-phase microextraction (SPME) and liquid phase
71	microextraction (LPME) have been developed. Solid-phase microextraction (SPME) ¹¹⁻¹³ has been applied to the
72	determination of fungicides, belonging to different chemical classes, in wine using gas chromatography (GC), ¹⁴⁻¹⁶
73	liquid chromatography (LC) ¹⁷ and even capillary electrophoresis. ¹⁸ SPME is a solvent-free extraction technique
74	that integrates sample extraction, concentration and sample introduction into a single procedure. But SPME fibers
75	are generally fragile, expensive, have a limited lifetime, and can also suffer from analyte carryover. ¹⁹ As a further
76	alternative to SPME, a method termed polymer monolith microextraction (PMME) based on the use of a capillary
77	monolithic column was introduced in 2006. ²⁰ Compared with traditional in-tube SPME, ²¹ PMME has shown
78	several attractive features including frit-free construction, easy preparation with good control of porosity and
79	diverse surface chemistry. Furthermore, it has advantages in convenience, flexibility, and easy operation. So far,
80	poly (methacrylic acid-ethylene dimethacrylate) (MAA-EDMA) ²²⁻²⁴ and poly (methyl methacrylate-ethylene
81	dimethacrylate) (MMA-EDMA) ²⁵ have been employed for the preparation of polymer monolithic column,
82	Moreover, most polymer monolithic capillary columns whose monomers are methyl acrylate with different alkyl
83	substitutes are reported to show hydrophobic properties, ^{26, 27} however, 2-hydroxypropyl methacrylate itself carries
84	an extra hydroxy, so poly (2-hydroxypropyl methacrylate-ethylene dimethacrylate) (HPMA-EDMA) monolithic
85	capillary column may be used to extract somewhat polar analytes, and its combination with HPLC has not yet been
86	reported.
87	The objective of the present work is to propose a novel method based on poly (HPMA-EDMA) monolith
88	microextraction combined with HPLC for the simultaneous determination of three fungicides (azoxystrobin,
89	diethofencarb and pyrimethanil) in environmental water samples. Several important parameters affecting the
90	extraction efficiency such as sample flow rate, sample pH, eluent volume, eluent flow rate, sample volume and salt
91	effect have been carefully optimized. Under the experimental conditions, the proposed method is validated for the

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

92	quantitative analysis and applications for tap water, rain lake water, field water, pool water and reservior water
93	samples have been illustrated.
94	
95	Experimental
96	
97	Chemicals and materials
98	
99	Azoxystrobin, diethofencarb and pyrimethanil were purchased from Sigma-Aldirich Chemical Company (St. Louis,
100	MO, USA). 2-Hydroxypropyl methacrylate (HPMA), ethylene dimethacrylate (EDMA) and
101	γ -methacryloxypropyltrimethoxysilane (γ -MAPS) were purchased from Acros (New Jersey, USA).
102	Azobisisobutyronitrile (AIBN), toluene, dodecanol, sodium chloride, sodium hydroxide and hydrochloric acid
103	were obtained from Tianjin Kermel chemical reagents development centre (Tianjin, China). Methanol, acetonitrile
104	and ethanol were ordered from Tedia (USA). All chemical reagents were chromatographic or analytical grade.
105	Ultrapure water was purified on a Mill-Q water purification system (Millipore, Billerica, MA, USA). Fused silica
106	capillaries with 530 µm i.d. were purchased from Yongnian Optical Fiber Factory (Hebei, China).
107	The stock standard solutions of 20 $\mu g \ mL^{-1}$ of each compound were prepared in methanol. A series of standard
108	solutions were daily prepared by appropriate diluting from stock solutions with methanol. All solutions prepared
109	were maintained at 4 °C protected against daylight.
110	
111	Instrumentation
112	
113	Chromatographic analysis was performed on an Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, CA,
114	USA), equipped with a quaternary pump and degasser, a thermostated autosampler (4 $^{\circ}$ C) and column compartment

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

115	(40 °C), a DAD detector and ChemStation software. A reverse phase Agilent HC-C18 column (250 mm \times 4. 6 mm
116	i.d., 5 $\mu m)$ was used for separation of the analytes. The mobile phase was methanol-water (70:30, v/v) at a flow
117	rate of 1.0 mL min ⁻¹ . The column temperature was 40 $^{\circ}$ C and the detection wavelength was set at 254 nm. The
118	injection volume was 5 µL. Ultrasonic instrument KQ-100DE was purchased from Kunshan Ultrasonic Instrument
119	Co., Ltd. (Jiangsu, China) and a pHS-3C digital pH meter (Shanghai Rex Instruments Factory, China) was
120	employed for pH measurements.
121	
122	Sample preparation
123	
124	Tap water was collected from our laboratory and lake water was obtained from South Lake (Wuhan, China) and
125	Sha Lake (Wuhan, China) Field water was obtained from a vegetable field in the outskirt of Wuhan (Hubei, China).
126	Pool water was collected from a swimming pool in Wuhan city (Hubei, China)_near a pesticide plant. Reservior
127	water for irrigation was collected from a reservior_near a big vineyard also in Wuhan city. All the samples were
128	analyzed after filtering with a 0.45 μm micropore membrane, and stored at the temperature of 4 $^\circ C$ after collection.
129	
130	Preparation of poly (HPMA-EDMA) monolithic capillary
131	
132	The poly (HPMA-EDMA) monolith was synthesized inside a fused silica capillary (10 cm×530 μ m i.d.) by a heat
133	initiated polymerization method. The polymerization method was described in detail previously. ²⁸ At first, the
134	fused silica capillary was cleaned and activated by 1 mol L^{-1} NaOH, H ₂ O, 0.1 mol L^{-1} HCl, H ₂ O for one hour,
135	successively. After it was dried by nitrogen gas, the capillary was filled with silanization solution containing 50%
136	(v/v) r-MAPS in methanol, sealed with rubber and then thermostatted at 40 $^\circ C$ for 24 h. After silanization, the
137	capillary was flushed with 50 column-volumes of methanol and dried by the purge of nitrogen gas.

Analytical Methods

Analytical Methods Accepted Manuscript

138	The pre-polymerization mixture solution consisting of monomer HPMA (30 mg), cross-linker EDMA (214 mg),
139	porogenic solvents toluene (55 mg) and dodecanol (436 mg), and initiator AIBN (2.75 mg) was completely mixed
140	ultrasonically into a homogenous solution. Subsequently, the mixture solution was purged with N_2 to remove the
141	oxygen and filled into the pretreated capillary. Immediately, the capillary was sealed with silicon rubber at both
142	ends, and then the reaction was initiated at 60 $^\circ C$ for 36 h. Following polymerization, the capillary was washed
143	with methanol to remove the unreacted components and porogenic solvents.
144	
145	PMME apparatus and procedure
146	
147	The PMME apparatus was composed of a plastic syringe (2 mL), a poly (HPMA-EDMA) monolithic capillary
148	tube (530 μm i.d. \times 3 cm) and an extraction pinhead. The syringe barrel was coupled seamlessly to one end of the
149	pinhead, while on the other end of the pinhead, the metallic needles were removed and replaced by a 3 cm
150	monolithic capillary tube with adhesive. ²⁵
150 151	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed
150 151 152	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and
150 151 152 153	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the
150 151 152 153 154	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed
150 151 152 153 154 155	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed through the capillary at 0.2 mL min ⁻¹ , and then 0.2 mL of Milli-Q water was pumped through at 0.1 mL min ⁻¹ to
150 151 152 153 154 155 156	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed through the capillary at 0.2 mL min ⁻¹ , and then 0.2 mL of Milli-Q water was pumped through at 0.1 mL min ⁻¹ to eliminate the residual matrix for avoiding the interference of separation and detection. Then the residual solution in
150 151 152 153 154 155 156 157	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed through the capillary at 0.2 mL min ⁻¹ , and then 0.2 mL of Milli-Q water was pumped through at 0.1 mL min ⁻¹ to eliminate the residual matrix for avoiding the interference of separation and detection. Then the residual solution in the pinhead and monolithic capillary tube was pushed out with an empty and clean syringe to avoid polluting the
150 151 152 153 154 155 156 157 158	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed through the capillary at 0.2 mL min ⁻¹ , and then 0.2 mL of Milli-Q water was pumped through at 0.1 mL min ⁻¹ to eliminate the residual matrix for avoiding the interference of separation and detection. Then the residual solution in the pinhead and monolithic capillary tube was pushed out with an empty and clean syringe to avoid polluting the eluate. In the desorption step, ethanol was injected via the monolithic capillary at 0.04 mL min ⁻¹ for 1.5 min and the
150 151 152 153 154 155 156 157 158 159	monolithic capillary tube with adhesive. ²⁵ A syringe infusion pump (SN-50C6, Shengnuo Medical Equipment Co., Ltd., Shenzhen, China) was employed for the delivery of solutions in the whole extraction process including precondition, sample loading, washing, and desorption. For precondition, 0.3 ml methanol was introduced into the syringe and expelled to pass through the monolithic capillary tube at a speed of 0.06 mL min ⁻¹ . For the sorption, 2.0 mL of sample solution was pushed through the capillary at 0.2 mL min ⁻¹ , and then 0.2 mL of Milli-Q water was pumped through at 0.1 mL min ⁻¹ to eliminate the residual matrix for avoiding the interference of separation and detection. Then the residual solution in the pinhead and monolithic capillary tube was pushed out with an empty and clean syringe to avoid polluting the eluate. In the desorption step, ethanol was injected via the monolithic capillary at 0.04 mL min ⁻¹ for 1.5 min and the eluate was collected into a vial for the subsequent analysis by HPLC.

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

161	Results and discussion
162	
163	Optimization of the PMME method
164	
165	To achieve the best extraction efficiency of the poly (HPMA-EDMA) monolithic capillary towards target analytes,
166	various parameters affecting the extraction efficiency such as sample flow rate, sample volume, sample pH, eluent
167	volume, eluent flow rate and salt effect have been optimized. The peak area of analyte as the HPLC response was
168	used to evaluate the extraction efficiency under the various conditions.
169	
170	Effect of extraction flow rate
171	
172	The flow rate of the sample solution is an important parameter affecting the PMME process, which not only affects
173	the recoveries of the analytes, but also controls the time of analysis. The flow rate of the sample solution was
174	optimized in the range of 0.05-0.3 mL min ⁻¹ . As shown in Fig. 1, changing the flow rate had no significant
175	influence on the extraction efficiency in the investigated range. Therefore, the flow rate of 0.2 mL min ⁻¹ was
176	selected considering the extraction time and the pressure of monolithic capillary column.
177	
178	Effect of pH value of the sample matrix
179	
180	Sample pH plays an important role on the extraction efficiency for analytes. It not only influences the molecule
181	form of the analytes but also relates closely to the interactions between analytes and the extraction phase. In order
182	to evaluate the effect of sample pH, the standard solutions containing 0.2 μ g mL ⁻¹ azoxystrobin, diethofencarb and

1
2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
56
57
58
59
60
00

183	pyrimethanil have been loaded onto the poly (HPMA-EDMA) monolithic capillary after pH adjustment using
184	H_3PO_4 or NaOH solutions. The effect of sample pH within the range of 2.0-10.0 was shown in Fig. 2. The result
185	exhibited that as the pH value increased, the extraction efficiency increased firstly, and then decreased, with the
186	maximum value at pH 7.0. The explanation might be based on the fact that three fungicides are extracted by the
187	monolithic column mostly by hydrogen bond interaction, which arise from the polymer bone structure and its
188	carboxyl and hydroxyl. In the acidic or alkaline matrix, the hydrogen bond interaction between HPMA-EDMA and
189	the target analytes would be influenced and decreased, thus a slow decrease was observed in the high or low pH
190	value range. As a result, the analytical samples were adjusted to pH 7.0 in the microextraction process.
191	
192	Effect of desorption solvent type
193	
194	The desorption procedure has been carefully optimized to achieve an accurate quantitative analysis of the three
195	fungicides. The comparison study among methanol, mobile phase (methanol-H ₂ O, 70:30, v/v) and ethanol was
196	performed, and the results indicated that ethanol gave the highest extraction efficiency .Therefore, ethanol was
197	selected as the eluent for the desorption of the three fungicides.
198	
199	Effect of desorption volume
200	
201	In order to determine the required volume of ethanol to elute the analytes from the monolithic capillary, the effect
202	of eluent volumes has been investigated. After sample extraction, 0.06 mL ethanol was used to elute the analytes.
203	The same procedure was repeated twice, and then each of the 0.06 mL eluates was collected for detection. The
204	results showed that the first 0.06 mL of ethanol could elute more than 90 % extracted analytes from the monolithic

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

205	capillary, which was enough for quantitative analysis. Further, increasing the methanol volume would lower the
206	detection sensitivity. Therefore, 0.06 mL ethanol was employed to desorb the analytes.
207	
208	Effect of desorption flow rate
209	
210	The flow rate of the desorption solution has been optimized in the range of 0.02-0.1 mL min ^{-1} as seen in Fig. 3,
211	and the flow rate of 0.04 mL min ^{-1} was found to be suitable to attain faster desorption and satisfactory desorption
212	efficiency.
213	
214	Effect of extraction volume
215	
216	The extraction equilibrium profile was monitored by increasing the volume of the analyte solution extracted from
217	0.5 to 3.0 mL at a constant flow rate of 0.2 mL min ^{-1} . The results were shown in Fig. 4, the yield of the three
218	fungicides extracted increased with increasing volume of the extracted sample, indicating that the monolithic
219	capillary exhibited remarkable extraction capacity towards the three fungicides. Although increasing the sample
220	volume might improve the sensitivity for the analytes, the sample volume should be chosen according to the
221	required sensitivity and the time acceptable for a whole analysis. To achieve sufficient sensitivity within a short
222	time, 2.0 mL was chosen as the sample volume for subsequent analysis.
223	
224	Effect of salt addition
225	
226	In general, addition of salt into the sample solutions could lead to the salting-out effect, and more analyte

Analytical Methods

2		
3	227	moleo
4 5	,	
6	228	and th
7		
8 9	229	conce
10		
11	230	at a c
12		
13	231	efficie
15		
16	232	effici
17		
18 10	233	
20		
21	224	Б І
22	234	Evan
23		
25	235	
26		
27	236	Stabi
28 20	227	
29 30	237	
31	238	As an
32		
33	239	evalu
35		
36	240	capill
37		
38 30	241	mono
40		
41	242	its sta
42		
43 11	243	spike
45		
46	244	
47		
48 49	245	Valid
50		
51	246	
52	247	In ord
วง 54	271	11 010
55	248	ofeta
56	210	51 514
57 59	249	good
วช 59	27)	500 u
60		

27	molecules would be extracted onto the extraction phase. Meanwhile, the viscosity of sample solution became high
28	and the diffusion rate of solute decreased, which decreased the extraction efficiency. So the effect of inorganic salt
29	concentration of the sample matrix on the extraction efficiency has also been investigated. Sodium chloride (NaCl)
230	at a concentration from 0 % to 20 % (w/v) was added to sample solution to study its influence on extraction
31	efficiency. The obtained results revealed that salt concentration had no obvious influence on the extraction
.32	efficiency. Hence, PMME was performed without salt addition to the sample solutions.
.33	
34	Evaluation of the PMME method
.35	
36	Stability of poly (HPMA-EDMA) monolithic capillary
37	
.38	As an extraction media, the stability of the monolithic capillary is one of the most important factors for the
39	evaluation of the PMME process. In order to evaluate the stability of the poly (HPMA-EDMA) monolithic
240	capillary under the experimental conditions, the reusability of the capillary has been investigated. The sample
41	monolithic column could be used for more than 200 times without any decrease in extraction efficiency, indicating
.42	its stability for practical use. Besides, the interbatch precision of the relative peak areas were 8.0% for 10 $\mu g \ L^{-1}$
.43	spiked sample solutions.
244	
.45	Validation of the proposed method
246	
.47	In order to evaluate the efficiency of the proposed method, calibration curves have been constructed with a series
.48	of standard samples under the optimal experimental conditions. The results are listed in Table 1. It can be seen that
.49	good linearities for all compounds were obtained with the correlation coefficient (r) were always greater than

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

250	0.9991. The limits of detection (LODs) were studied for low concentrations and calculated at a signal-to-noise
251	ratio (S/N) of 3. The LODs of the three fungicides were in the range of 0.19 -0.65 $\mu g \ L^{-1}.$
252	The utility of this method was examined using recovery studies by adding three fungicides in blank water
253	samples at different concentration levels. The recoveries and relative standard deviations (RSD) are summarized in
254	Table 2; mean recoveries are in the range of 80.2-115.6 %.
255	The reproducibility of the developed method was assessed by the intra-day and inter-day precisions that were
256	expressed as the relative standard deviation (RSD). The intra-day relative standard deviations (RSD) were
257	evaluated on the peak areas of 0.2 $\mu g \ mL^{-1}$ standard solutions using six replicates over a day .The inter-day
258	precision was similarly evaluated on six successive days. As shown in Table 1, excellent method reproducibility
259	was found by intra-day and inter-day precisions, yielding the RSD less than 3.1 and 6.3 %, respectively.
260	
261	Application in real samples
262	
263	Under the optimized conditions, the proposed PMME and HPLC-UV detection method has been applied for the
264	simultaneous determination of three fungicides (azoxystrobin, diethofencarb and pyrimethanil) in tap water, lake
265	water, field water, pool water and reservior water samples. The chromatograms obtained after PMME and direct
266	injecton under optimal experimental conditions are shown in Fig. 5. In comparison with the chromatogram of
267	direct injection, a dramatic enhancement of the peak height was observed, indicating the remarkable
268	preconcentration capbility of the monolithic capillary to the three fungicides. The result indicates that the proposed
269	method is effective for the determination of the three fungicides in water samples.
270	
270	

2	7	1

Comparison of PMME with other extraction methods

273	In order to evaluate the feasibility of the proposed method, the comparison of PMME with other extraction
274	methods for the determination of three fungicides (azoxystrobin, diethofencarb and pyrimethanil) has been
275	investigated. As can be seen from table 3, inspite of comparable LODs could be achieved using other extraction
276	methods, sample volume consumed in PMME using poly (HPMA-EDMA)monolith was much less. Besides, other
277	existing methods such as SPE usually need more organic solvent to redissolve target analytes, however, only small
278	volumes of organic solvent was needed for desorption of analytes in PMME due to the small caliber of the
279	capillary. What's more, PMME showed higher extraction capacity because of its unique porous structure, so the
280	method showed greater enrichment of analytes and subsequent higher sensitivity. Though mass spectra detection
281	has higher sensitivity than UV detection, the pretreatment method in this paper had better enrichment capacity for
282	the three fungicides than some existing pretreatment methods. In conclusion, the method developed from this work
283	using HPLC-UV is more sensitive than some existing methods using mass detection. The results demonstrated that
284	PMME using poly (HPMA-EDMA) monolith was simple, fast, sensitive, cheap, environmental friendly and can be
285	used for the trace residue analysis of three fungicides from water samples.
286	
287	Conclusions
288	
289	The proposed novel PMME using a poly (HPMA-EDMA) monolith with HPLC has been developed and validated

290 for the analysis of trace three fungicides (azoxystrobin, diethofencarb and pyrimethanil) in tap water, rain water
291 and lake water samples. Effects of sample flow rate, sample pH, eluent volume, eluent flow rate, sample volume

and salt effect were investigated to obtain the optimum experimental conditions. The stability, linearity, trueness

2		
3	293	and precision have been investigated. In conclusion, this proposed PMME has been advocated as a simple
4	2)5	
5		
0	294	sensitive, inexpensive, environmentally friendly and rapid sample preparation technique, which can be used as an
0		
0	295	alternative tool for monitoring the three fungicides in water samples.
9		
10		
10	296	
12		
14	297	Acknowledgements
15	_ ,	
16	• • • •	
17	298	Financial support from National Natural Science Foundation of China (30971948) is greatly appreciated.
18		
19	299	
20		
21		
22	300	References
23		
24	301	
25		
26	302	1 H. Tarui, Y. Tomigahara, M. Matsui, Isobe N, H. Kaneko, N. Mikami, J. Agric. Food Chem. 2004, 52,538.
27		
28	303	2 C. Tomlin, The Pesticide Manual: a World Compendium, 10th edition, British Crop Protection Council, Croydon, UK, 1994.
29		
30	204	
31	304	3 C.Q. Zhang, J.L. Hu, F.L. Wei, G.N Zhu, Phytoparasitica, 2009, 37 , 351.
32		
33	305	4 Q.X. Zhou, J.P. Xiao, Y.J. Ding, Anal. Chim. Acta, 2007, 602, 223.
34		
35	206	
36	300	5 S. De Melo Abreu, P. Caboni, P. Cabras, V.L. Garau, A. Alves, Anal. Chim. Acta, 2006, 573-574, 291.
37		
38	307	6 A, Juan-García, J, Mañes, G, Font, Y, Picó, J. Chromatogr. A, 2004, 1050 ,119.
39		
40	308	7 & M. Rodrigues, V. Ferreira, V. Vale Cardoso, F. Ferreira, M.I. Renoliel, J. Chromotogr. A. 2007, 1150, 267
41	508	/ A.M. Roungues, V. Ferrena, V. Vale Cardoso, E. Ferrena, M.J. Benoner, J. Chromatogi. A, 2007, 1150, 207.
42		
43	309	8 S. Polati, M. Bottaro, P. Frascarolo, F. Gosetti, V. Gianotti, M.C. Gennaro, Anal. Chim. Acta, 2006, 579, 146.
44		
45	310	9 C. Blasco, Y. Picó, Trend, Anal. Chem. 2009. 28, 745
46	210	, <u></u> ,,,,,,
4/		
48	311	10 A. Giordano, M. Fernández-Franzón, M.J. Ruiz, G. Font, Y. Picó, Anal. Bioanal. Chem, 2009, 393, 1733.
49		
50	312	11 D. Djozan, Y. Assadi, S.H. Haddadi, Anal. Chem, 2001, 73, 4054.
51		• • • • • • • • • • • •
52 53	212	
54	313	12 D. Djozan, Y. Assadi, Chromatographia, 2004, 60 , 313.
55		
56	314	13 D. Djozan, Y. Assadi, Michrochem. J, 1999, 63 , 276.
57		
58	215	14 T. Dadajanan Cake, I. Dadajanan, M. Damil, D. Cale, J. Characteris, A. 2011, 1210, (202)
59	515	14 1. Kouriguez-Cabo, I. Kouriguez, M. Kamii, K. Cela, J. Chromatogr. A, 2011, 1218, 6603.
60		14
		· ·

Analytical Methods

Analytical Methods Accepted Manuscript

Z
3
4
5
ĉ
6
7
8
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
2U
21
22
23
24
24
25
26
27
20
28
29
30
31
22
32
33
34
35
26
30
37
38
30
40
40
41
42
43
11
44
45
46
47
40
48
49
50
51
51
52
53
54
55
55
56
57
58
50
09
60

1

216					
316	15 C.G. Zambonin, A.	Cilenti, F. Palmisano	, J. Chromatogr. A	1, 2002, 96 7	, 255.

- 317 16 L. Urruty, M. Montury, M. Braci, J. Fournier, J.M. Dournel, J. Agric. Food Chem, 1997, 45, 1519.
- 318 17 S. Millán, M.C. Sampedro, N. Unceta, M.A. Goicolea, E. Rodríguez, R.J. Barrio, J. Chromatogr. A, 2003, 995, 135.
- 319 18 L.M. Ravelo-Pérez, J. Hernández-Borges, T.M. Borges-Miquel, MÁ Rodríguez-Delgado, Food Chem, 2008 111, 764.
- 320 19 H. Prosen, L. Zupančič-Kralj, Trend. Anal. Chem, 1999, 18, 272.
- 321 20 M. Zhang, F. Wei, Y.F. Zhang, J. Nie, Y.Q. Feng, J. Chromatogr. A, 2006, 1102, 294.
- 322 21 K. Mitani, S. Narimatsu, F. Izushi, H. Kataoka, J. Pharm. Biomed. Anal, 2003, 32, 469.
- 323 22 H.J. Zhang, J.F. Huang, B. Lin, Y.Q. Feng, J. Chromatogr. A, 2007, 1160, 114.
- 324 23 Y.B. Wu, J.H. Wu, Z.G. Shi, Y.Q. Feng, J. Chromatogr. B, 2009, 877, 1847.
- 325 24 T. Li, Z.G. Shi, M.M. Zheng, Y.Q. Feng, J. Chromatogr. A, 2008, 1205, 163.
- 326 25 L. Liu, J. Cheng, G. Matsadiq, J.K. Li, Chemosphere, 2011, 83, 1307.
- 327 26 X.J. Huang, Q.Q. Wang, H. Yan, Y. Huang, B.L. Huang, J. Chromatogr. A, 2005, 1062, 183.
- 328 27 Y. Ueki, T. Umemura, Y. Iwashita, T. Odake, H. Haraguchi, K. Tsunoda, J. Chromatogr. A, 2006, 1106, 106.
- 329 28 X. Shu, L.X. Chen, B.C. Yang, Y.F. Guan, J. Chromatogr. A, 2004, 1052, 205,
- 330 29 P.P. Bolaños, R. Romero-González, A.G. Frenich, J.L. Martínez Vidal, J. Chromatogr. A, 2008, 1208, 16.
- 331 30 J. Cheng, J. Xiao, Y.W. Zhou, Y.T. Xia, F. Guo, J.K. Li, Microchim Acta, 2011, 172, 51.
- 332

333 Figure captions

- 334
- **Fig.1** Effect of extraction flow rate on the PMME. Fungicides concentration =0.2 μg mL⁻¹, sample volume = 1.0 mL, sample pH
- 336 7.0, eluent flow rate = 0.6 mL min^{-1} , microextraction conditions and HPLC conditions are outlined in Section 2.5.

Analytical Methods

338	Fig.2 Effect of	pH value of the san	nple matrix. F	ungicides concer	tration = $0.2 \ \mu g$	mL^{-1} , sample flow rate = 0.	2 mL min ⁻¹ , sample
339	volume	= 1.0 mL, eluent f	How rate $= 0$.	6 mL min ⁻¹ , mi	croextraction cor	iditions and HPLC conditi	ons are outlined in
340	Section	2.5.					
341							
342	Fig.3 Effect of	desorption flow rat	te on the PMN	ME. Fungicides of	concentration = 0	$0.2 \ \mu g \ mL^{-1}$, sample flow ra	$ate = 0.2 \text{ mL min}^{-1},$
343	sample	volume = 1.0 mL, sa	ample pH 7.0,	microextraction	conditions and H	PLC conditions are outline	d in Section 2.5.
344							
345	Fig.4 Effect of	extraction volume	on the PMM	E. Fungicides co	encentration $= 0.2$	2 μ g mL ⁻¹ , sample flow ra	te = 0.2 mL min ⁻¹ ,
346	sample	pH 7.0, eluent flow 1	rate = 0.6 mL	min ⁻¹ , microext	raction condition	s and HPLC conditions are	outlined in Section
347	2.5.						
348							
349	Fig.5 Chromat	tograms of three f	ungicides ob	tained by direc	t injection (a) a	and PMME (b). Peaks: 1	1. azoxystrobin, 2.
350	diethofe	encarb, 3. pyrimetha	nil, spiking lev	vel was 5.0 µg L	¹ . Optimal micro	extraction conditions and H	IPLC conditions are
351	outlined	l in Section 2.5.					
352							
353	Table capt	ions					
354							
355	Table 1 Quanti	tative results of azox	xystrobin, diet	hofencarb and py	rimethanil from	water samples.	
	Analyte	Linear range (µg L ⁻¹)	r	LODs (µg L ⁻¹)	LOQs (µg L ⁻¹)	Intra-day Repeatability (%)	Inter-day Repeatability (%)
	Azoxystrobin	3-1000	0.9991	0.19	0.63	2.4	4.9
	Diethofencarb	3-1000	0.9993	0.22	0.73	3.1	5.8

Pyrimethanil

3-1000

0.9992

 2.15

2.6

6.3

0.65

Table 2 Analytical results and recoveries of three fungicides in real water samples.

358	^a N.D.: not-detected.
-----	----------------------------------

Analytaa	Samula	Real	Added	Relative recovery	RSD (n=3)
Analytes	Sample	$(\mu g L^{-1})$	$(\mu g L^{-1})$	(µg L ⁻¹)	(%)
	To a sector	NIDa	1	80.2	3.5
	Tap water	ND"	10	85.9	2.3
			1	115.6	2.8
	South lake water	ND"	10	110.1	0.6
	D ield south a	1.24	1	98.2	4.2
	Field water	1.34	10	93.7	3.1
Azoxystrobin	Dealanter	0.84	1	85.4	3.6
	Pool water	0.84	10	82.1	2.4
	D	0.21	1	93.1	2.8
	Reservior water	0.21	10	87.4	2.1
		0.42	1	90.8	2.8
	Sha lake	0.43	10	91.2	2.6
			1	94.2	2.8
	Tap water	ND^{a}	10	99.0	2.2
			1	100.1	4.2
	South lake water	ND ^a	10	107.6	3.7
	Field water	ND ^a	1	90.6	3.2
D : 1 A 1			10	96.5	2.8
Diethofencarb		0.25	1	81.2	3.4
	Pool water		10	87.4	2.8
		0.38	1	81.8	3.8
	Reservior water		10	90.6	3.2
		0.26	1	89.2	3.1
	Sha lake		10	95.4	2.4
		N 77 0	1	85.6	4.1
	Tap water	ND^{a}	10	94.9	3.3
	~		1	99.8	3.9
	South lake water	ND"	10	105.4	3.2
			1	88.5	2.8
	Field water	ND^{a}	10	93.5	2.4
Pyrimethanil			1	88.6	3.6
	Pool water	1.64	10	96.4	2.8
			1	90.2	3.9
	Reservior water	0.75	10	99.6	3.4
	_		1	81.6	3.6
	Sha lake	ND^{a}	10	89.4	29

Analytical Methods

		LOD	Sample volume	D.C
Analytes	Methods	(µg L ⁻¹)	(mL)	Keterence
	SPE-HPLC-UV	9.7 μg L ⁻¹	5 mL	[8]
Azoxystrobin	LLE-LC-DAD	$200 \ \mu g \ L^{-1}$	5 mL	[5]
	PMME-HPLC-DAD	0.19 μg L ⁻¹	2 mL	This work
	HF-LPME-UHPLC-MS/MS	$0.5 \ \mu g \ L^{-1}$	15 mL	[29]
Diethofencarb	DLLME-SFO-HPLC-DAD	$0.24 \ \mu g \ L^{\text{-1}}$	5 mL	[30]
	PMME-HPLC-DAD	$0.22~\mu g~L^{-1}$	2 mL	This work
	SPE-LC-MS	5.0 µg g ⁻¹	25 mL	[6]
Pyrimethanil	SPE-LC-MS	1.8 μg L ⁻¹	400 mL	[7]
	PMME-LC-DAD	0.65 μg L ⁻¹	2 mL	This work

Table 3 Comparison of PMME with other extraction methods.

287x215mm (300 x 300 DPI)

287x215mm (300 x 300 DPI)

287x215mm (300 x 300 DPI)

287x213mm (300 x 300 DPI)

202x160mm (300 x 300 DPI)