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Abstract 

Molecular surface plasmon resonance (SPR) sensing is one of the most common applications of 

an array of periodic nanoholes in a metal film. However, metallic nanohole arrays (NHAs) with 

low-hole count have lower resolution and SPR sensing performance compared to NHAs with 

high-hole count. In this paper, we present a compact three-dimensional (3D) plasmonic 

nanostructure with extraordinary optical transmission properties benefiting from surface plasmon 

matching and enhanced localized surface plasmon coupling. The 3D nanostructure consisted of a 

gold film containing a NHA with an underlying cavity and a gold nanocone array (NCA) at the 

bottom of the cavity. Each nanocone was aligned with the nanohole above and the truncated apex 

of each nanocone was in close proximity (100 nm) to the gold film. The NHA-NCA structures 

outperformed conventional NHA structures in terms of bulk sensitivity and Figure of Merit 

(FOM). Furthermore, the NHA-NCA structure with 525-nm periodicity was capable of sensing 

streptavidin down to 2 nM exhibiting a 10-fold increase in streptavidin sensitivity compared to 

conventional NHA structures. The sensitivity and performance of the 3D nanostructure can be 

further improved by exploiting multiplexing methods in combination with stable light sources 

and detection systems. 
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Introduction 

Surface Plasmon Resonance (SPR) sensing has been recognized as one of the most important  

applications of metallic nanostructures and has been exploited for the detection of molecules 

[1,2]. The surface plasmon (SP), or physically exact surface plasmon polariton (SPP), is a 

collective oscillation of the free electron gas at the interface between a metal and a dielectric; it 

is a longitudinal wave propagating along the metal-dielectric interface producing evanescent 

fields in the metal and in the dielectric [3]. The SPR sensing principle is based on a change in the 

coupling conditions between an incident light beam and the SP due to a change in the 

surrounding dielectric material, e.g. resulting from material adhesion onto the metal, changing 

the refractive index architecture [4]. Localized surface plasmon resonance (LSPR), on the other 

hand, is the collective oscillation of the free electron gas in a metal nanoparticle leading to an 

absorption band whose location also depends on the refractive index architecture around the 

nanoparticle [5].  

A periodic array of nanoholes in a metal film allows wave vector matching between an incident 

light on a nanohole array (NHA) and the SP waves existing at the interface between a metal and 

a dielectric. This effect results in an interaction of the light with the SP waves [6]. The 

excitations of SP waves by an incident light on NHAs generate transmission based SPRs or so 

called extraordinary optical transmissions (EOTs). The EOTs of a NHA depend greatly on the 

dielectric functions of the metal and the dielectric materials and geometrical parameters of the 

NHA (hole spacing, hole arrangement and hole size) [7]. However, an individual nanohole can 

produce transmission based LSPR, which is associated to an interaction of the incident light with 

an LSP around the nanohole. Both an individual nanohole and a NHA have enhanced electric 

field intensity around each nanohole at the corresponding resonance wavelengths.   
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Both LSPR of a single nanohole and SPRs of a NHA were extensively exploited in LSPR or 

SPR-based detection of chemicals and molecules [2,6]. However, in the context of the NHA 

literature, SPR sensing performance of a NHA was evaluated by bulk sensitivity (nm per 

refractive index unit (RIU)) and figure of merit (FOM (1/RIU)).  The bulk sensitivity is well 

known as SPR peak shift (nm) of a NHA per RIU and the FOM is recognized as the bulk 

sensitivity over the peak width (FWHM) of the SPR. Nevertheless, the FOM terminology for 

nanoparticles and a signal nanohole is defined differently and it is calculated based on LSPR 

peak shifts per RIU. In this context, we use performance metrics associated to the NHA and 

name all resonances SPR despite some of them being local.    

Kretschmann-based SPR sensing remains the most sensitive method and has motivated several 

groups to study methods to improve the bulk sensitivity and FOM of NHAs [8-14]. Based on 

recent studies, SPR performance of NHAs was improved by narrowing the resonance peak 

width, incorporating a smooth metal surface, index matching the substrate and the sensing 

material, and using design strategies to increase the electric field near the nanoholes. For 

example, it was reported for a bulk SPR sensing experiment (where the environmental refractive 

index is changed) that the bulk sensitivity of a NHA in a gold film reached Kretschmann-like 

performance when the substrate was index-matched to the analyte, the gold NHA was fabricated 

with an ultra-smooth surface, and elliptical hole shapes were used [9]. Further improvements to 

the bulk sensitivity and FOM of metallic NHAs were achieved by fabricating the NHA with 

dimensions larger than the excited SP propagation length, which constructively enhanced the 

excited SP interactions thereby improving the transmission efficiency of the resonance and 

narrowing the resonance peak width [15]. Various transmission resonances of a NHA are 

associated to different SP excitation modes based on the relationship between the scattering 
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order of the holes, similar to Bragg diffraction in a crystal [6]. The transmission resonances are 

therefore classified with a number combination (x,y) regarding the plane of the NHA. The bulk 

sensitivity of various transmission resonance modes of a NHA are different and the maximum 

bulk sensitivity has been achieved for the (1, 0) transmission resonance of a NHA [13]. For 

example, the (1,0) resonances of large NHAs were reported to have bulk sensitivity as high as 

600 nm per refractive index unit (nm/RIU) [8,16,17], while the bulk sensitivity and FOM of a 

NHA with low hole count (i.e. less than 100) for the (1, 0) resonance was 286 nm/RIU and 4.1 

(1/RIU), respectively [16]. 

Some attempts to improve bulk sensitivity of a low-hole-count NHA were tested by 

incorporating Bragg reflectors into the structure [12,18]. Our group recently observed that a low-

hole-count NHA with a large integrated cavity provided a 1.6-fold improvement in bulk 

sensitivity compared to a NHA structure without a cavity, due to dynamic SP matching between 

the top and the bottom of the NHA [14]. The matching between SP propagating along the top 

and the bottom of the NHA were very similar due to the symmetric gold structure in the case 

with the cavity and therefore enhanced the transmission resonance by multiple fold [19]. Three-

dimensional (3D) metallic nanostructures consisting of co-registered nanoholes and nanodisks 

have recently been reported and shown to exhibit transmission resonances due to coupled LSP 

interaction between nanoholes and nanodisks through enhanced electric fields [20]. In bulk SPR 

sensing, the 3D metallic nanostructures had a higher bulk sensitivity than low-hole-count NHAs 

with cavities, but the resonance peak width was broader [20]. Building upon these prior results, 

the objective here was to design a new 3D nanostructure with improved bulk sensitivity and 

FOM, where transmission resonances resulted from the coupling and interaction of both LSP and 

SPP. The approach was to devise a structure with enhanced electric field near each nanohole by 
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incorporating dynamic-SP matching and one flat metal surface. We fabricated a 3D metallic 

nanostructure consisting of a NHA in a gold film with an underlying cavity carrying a gold 

nanocone array (NCA) at its bottom (Figure 1). The gold NCA was responsible for generating 

strong LSP interactions between each nanohole and nanocone as well as providing for coupling 

between the SPP and the LSP of the NHA and NCA, respectively. 

We performed both simulations and experimental studies to determine the transmission 

resonance properties of the NHA-NCA structures. Various NHA-NCA structures with different 

geometries were fabricated and tested as bulk SPR sensors. The NHA-NCA structures were 

functionalized with a binary mixture of OH-terminated and biotinylated thiols and evaluated as 

molecular SPR sensors for streptavidin. 

We employed an electron beam lithography and liftoff fabrication process to create the NHA in 

an 80-nm-thick gold film on a Pyrex substrate. Extensive description of the NHA fabrication 

methodology has been reported previously [21]. Prior to 80-nm gold deposition and the liftoff 

process, a 6-nm-thick Ti adhesion layer was evaporated on to the substrate using electron beam 

deposition. After fabrication, the NHA sample was immersed in Ti etchant (TFTN, Transene 

company, Inc.) for 70 seconds to remove the Ti adhesion layer and create a 250-nm-deep cavity 

within the Pyrex substrate beneath the NHA in the metal film. A 150-nm-thick gold film was 

deposited by electron beam evaporation on top of the freestanding gold NHA and resulted in a 

thickening of the gold film to 230 nm and formation of a NCA at the bottom of the cavity. A 

schematic of the fabrication processes before and after gold deposition is shown in Figure 1 (a). 

We fabricated various 3D nanostructures with different hole periodicities and diameters. All 

devices had a 250-nm-deep cavity and 150-nm-tall nanocones. The nanoholes and nanocones 

had periodicities between 375 nm and 550 nm in increments of 25 nm. The ratio between overall 
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nanohole area to filled gold area (i.e. square of hole periodicity) was 0.096 for all 3D 

nanostructures. The lowest and highest hole diameters for the 3D nanostructures were 131 nm 

and 192 nm, respectively. The periodicities were selected such that the main transmission 

resonances were located between 400 nm and 850 nm to match the spectral range of the 

characterization setup. The area of each array was about 25 µm2 and each array was repeated in a 

2D grid of 7 by 7 with 10-µm spacing between adjacent arrays to minimize surface plasmon 

crosstalk [22]. Figure 1 (b) displays an SEM image of a NHA-NCA structure with 500-nm 

periodicity, a 230-nm-thick gold film, 150-nm-tall gold nanocones, and a 250-nm-deep cavity. 

The SEM images revealed that each nanocone was right circular in geometry and had a truncated 

apex. The base diameter of each nanocone was similar to the nanohole diameter measured prior 

to deposition of the 150-nm-thick layer of gold. The diameter of the truncated apex of each 

nanocone was approximately half of the diameter of the base. The diameter of the truncated 

nanocone apex was dependent on the gold deposition rate (data not shown). The diameter of each 

nanohole at the top and the bottom surfaces of the gold film were similar in diameter to the base 

of each gold nanocone. In addition, the nanohole diameter decreased from both the top and the 

bottom surfaces to the middle of the gold film. 
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Figure 1. a) Schematic of a NHA in a gold film with a large cavity etched into the Pyrex substrate (top panel). A 
schematic of a NHA in a gold film with an underlying gold NCA, where each nanocone was axially aligned with the 
hole above and was formed by deposition of gold through the NHA from the top surface (bottom panel). b) SEM 
image of a NHA in a 230-nm-thick gold film and a 150-nm-tall gold NCA with 500-nm periodicity. The cavity 
depth was 250 nm. The largest and smallest diameters of the holes and cones were 175 nm and 90 nm, respectively.  

We employed Finite Difference Time Domain (FDTD) simulations (Lumerical Inc., Vancouver, 

Canada) to compute the optical transmission properties of the NHA-NCA structures. In the 

simulation model, we used an incident plain wave propagating in the direction normal to the 

sandwich structure. Periodic and perfectly matched layer boundary conditions were used in xy 

directions and at the z boundaries, respectively. The minimum mesh size was three nanometers. 

Figure 2 (a) displays optical transmission spectra of NHA-NCA structures with 500-nm 

periodicity for a range of nanohole and nanocone diameters. The gold NCA had two main LSP 

absorption resonances, at 678 nm and 847 nm, related to the truncated apex and the base, 

respectively as seen from the electric field distribution for each absorption peak (Figure 2 (b)). 

The highest electric field intensity (hot spot) was found at the perimeter of the truncated apex of 

the nanocone, which had a dipolar mode due to the excitation of LSP. The dipolar mode stems 
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from strong electric field distributions (hot spots) on the two opposite sides of the nanocone 

perimeter (data not shown). Based on previous work on similar structures [23,24], it has been 

shown that a strong electric field is confined to the tip of the nanocone. As a result, the 

absorption peak at 678 nm from the truncated surface of the gold nanocone was due to the 

vertical LSP excitations of the nanocone, which eventually resulted in the LSP absorption at the 

apex.  Moreover, the simulation intensity maps for wavelengths between 550 nm and 780 nm 

revealed the presence of a confined electric field at the apex of the nanocone. Nevertheless, 

amplitudes of energy confinement at the apex of the nanocone were not the same for different 

wavelengths. The variations in the localized electric field intensity at the apex of the nanocone 

were likely due to size-dependence of vertical LSP excitations of the nanocone as well as the 

wavelength-dependent absorption properties of gold.  

The simulated optical transmission of the NHA-NCA structure demonstrated the existence of 

two transmission resonance peaks that were related to the (-1, 0) and (1, 1) SP excitation modes. 

The electric field maps at both resonances showed pronounced LSP coupling between the apex 

of the nanocone and the bottom aperture of the nanohole as shown in Figure 2 (b) (right panel). 

The LSP coupling between the nanocone and nanohole was stronger for the (-1, 0) resonance 

than the (1, 1) resonance, which was due to the deeper SP decay length from the metal film into 

the dielectric at longer wavelengths [3]. In addition, LSP absorption was apparent above 800 nm 

due to the base of the nanocone. Furthermore, the NHA-NCA was responsible for SP-light 

coupling and an evanescent transfer of SP-light energy to the other side of the metal film. As a 

result, each of the (-1, 0) and the (1, 1) resonances had LSP and SPP characteristics. Also, due to 

inherent SPP properties of the resonances of the 3D nanostructure, both the (-1, 0) and the (1, 1) 

spectral resonance positions depended greatly on the spacing between the nanoholes. However, 
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we observed that the (-1, 0) resonance was further divided into two resonances when the 

periodicity was larger than 500 nm. The reason behind this phenomenon was the LSP interaction 

between nanohole and nanocone, which became dominant and generated two individual 

resonance peaks. 

 

Figure 2. a) Simulated optical transmission spectra of a 150-nm-thick gold NCA with periodicity of 500 nm. Each 
nanocone had an apex diameter of 87.5 nm and a base diameter of 175 nm. The substrate had a refractive index of n 
= 1.474 (Pyrex,  at λ = 587 nm) and the surrounding material had a refractive index of n = 1.330 (water, at λ= 587 
nm) (blue curve). Simulated optical transmission spectrum of a 230-nm-thick gold NHA membrane and a 150-nm-
thick gold NCA at the bottom of the 250-nm-deep cavity (green curve). The nanohole had a diameter of 90 nm (mid-
point in film) and a diameter of 175 nm (top and bottom of film). b) Electric field distribution of a nanocone at 
absorption wavelengths of 678 nm (top left) and 847 nm (bottom left). Electric field distribution of a combined 
nanohole and nanocone at transmission resonances located at 621 nm (top right panel) and 739 nm (bottom right 
panel). 

To measure the optical transmission of the 3D gold nanostructures, we employed an inverted 

microscope (TE300, Nikon, Japan) equipped with a photometer, monochromator, and 

photomultiplier-based detector (PTI, Birmingham, NJ). The incident illumination (Halogen 

lamp, 12 V, 100 W, Ushio Inc., Tokyo, Japan) was focused on to each 3D nanostructure array 

using the bright field condenser. The illumination angle was controlled to within ± 6° of normal 

Page 9 of 18 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

incidence. The transmitted light was collected with a 20x objective (NA = 0.45; model# 93150, 

Nikon). A region of interest was selected with the aperture controls on the photometer. For each 

spectral scan, the region of interest was chosen to allow the transmitted light from one set of 25 

identical 3D nanostructure arrays through to the monochromator and detector. This 

methodological step resulted in average transmission spectra representative of many arrays and 

served to enhance the signal-to-noise ratio. Transmission spectra of 3D arrays with 475-nm 

periodicity and 250-nm-cavity depth were measured when each liquid refractive index standard 

between 1.30 and 1.39 in increments of 0.03 was applied to the top surface (Figure 3 (a)). 

Because of capillary forces, the liquid filled the cavity. Similar to simulation results, the (-1, 0) 

and the (1, 1) transmission resonances were observed in the measured spectra. However, an 

additional weak transmission resonance was observed between the (1, 1) and (-1, 0) resonances 

and was likely related to the (0, ±1) SP excitation mode. The weak resonance was apparent in the 

measured spectra due to the wide range of incident illumination angles (±6°) compared to 

normally incident illumination used in the simulations. In a similar manner to the simulation 

results, the 3D nanostructure arrays with 525-nm and 550-nm periodicities revealed a double 

resonance near the expected position of the (-1, 0) resonance. The double resonance may have 

been related to a stronger LSP interaction between nanocone and nanohole at longer 

wavelengths, where the second resonance at longer wavelength was associated with the LSP 

interaction between each nanohole and nanocone.  

Using the transmission spectra from each set of 3D nanostructure arrays, estimates of resonance 

peak width and bulk sensitivity were determined. The bulk sensitivity was estimated from the 

slope of the line of best fit of the resonance position versus refractive index. For the 3D 

nanostructures with 475-nm periodicity, the measured (-1, 0) and (1, 1) resonance peak widths 
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(FWHM) were 40 nm and 56 nm, respectively. Also, the bulk sensitivities for the (-1, 0), the (1, 

1) and the (0, ±1) resonances were 440 nm/RIU, 280 nm/RIU and 460 nm/RIU, respectively. The 

FOM for the (-1, 0) and the (1, 1) resonances were 11 1/RIU and 5 1/RIU, respectively. The bulk 

sensitivities related to the (-1, 0) resonance of the 3D nanostructures are shown in Figure 3 (a) as 

a function of periodicity. As expected from earlier experimental and theoretical analysis (see 

Refs [13,14]), the bulk sensitivity of the 3D nanostructures increased with increasing periodicity. 

The maximum bulk sensitivity (593 nm/RIU) and FOM (12.90 1/RIU) was found for the 3D 

nanostructures with 550-nm periodicity. Therefore, for bulk SPR sensing, the 3D nanostructure 

had a larger than 2-fold higher bulk sensitivity and in excess of 3-fold greater FOM compared to 

reported results (see Refs. [12,16]) for conventional NHAs with low hole count.  

 

Figure 3. a) Optical transmission spectra of a NHA-NCA structure taken when one of four refractive index standards 
(1.30, 1.33, 1.36, and 1.39 at λ= 589 nm) was placed on top of the surface. The NHA and NCA periodicity was 475 
nm. The cavity beneath the NHA was 250-nm deep. The apex and base of each nanocone had diameters of 84 nm 
and 170 nm, respectively. The gold film was 230-nm thick. The height of each nanocone was 150 nm. b) Measured 
bulk sensitivity of the NHA-NCA structure as a function of NHA and NCA periodicity. Bulk sensitivity was 
estimated by the slope of the wavelength of the (-1, 0) resonance peak versus the refractive index of the medium 
above the top surface as shown in panel (a).  
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Functionalized 3D nanostructures were evaluated in SPR sensing of streptavidin in PBS buffer.  

The gold surfaces of the 3D nanostructures were functionalized with a binary mixture of an OH-

terminated and biotinylated thiol to offer biotin as recognition sites for streptavidin in the right 

amount and to allow streptavidin binding without steric hindrance (see schematic diagram in 

Figure 4 (a)). Functionalization was achieved by immersing each device into an anhydrous 

ethanol solution composed of 0.45-mM 11-mercaptoundecanol (Sigma-Aldrich, Ontario, 

Canada) and 0.05-mM biotinylated thiol (NanoScience Chemicals, Phoenix, AZ, USA) for 24 

hours to create a self-assembled monolayer (SAM) with biotin moieties. The device was then 

rinsed with ethanol and dried with nitrogen. Finally, the sample was placed in PBS buffer,  

streptavidin (Rockland Inc., PA, USA) was added. Measurements were performed within 5 

minutes. 

The (-1, 0) resonance peak shifts of each 3D nanostructure array in response to 2 nM, 20 nM, 

200 nM, 2000 nM, and 3500 nM streptavidin were measured and are shown in Figure 4 (b). In 

order to determine a precise (-1, 0) resonance position from each spectrum, we employed 

Gaussian curve fitting on the (-1, 0) resonance peak. All measurements were repeated in 

triplicate and the results are reported in Figure 4 (b) as mean ±1 standard deviation (SD). 

Furthermore, the detection confidence was calculated for each 3D nanostructure based on the 

mean value from triplicate PBS measurements (blue solid line in Figure 4 (b)) ± 3 times the 

average noise (blue dashed lines in Figure 4 (b)). The limit of detection (LOD) of a 3D 

nanostructure was the lowest detectable concentration of streptavidin where there was enough 

certainty (i.e. above detection confidence). Considering all devices, the (-1, 0) resonance peak 

red-shifted as the concentration of streptavidin increased. The largest spectral resonance shift 

was observed when the concentration was increased from 200 nM to 2000 nM. However, the 
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size of the resonance shift in response to streptavidin was not consistent across all devices. For 

example, the (-1, 0) resonance shift between PBS base line and 3500-nM streptavidin was largest 

for the 3D nanostructure with 375-nm periodicity. This effect may have been due to the smaller 

nanohole and nanocone dimensions for the 375-nm periodicity structure, which resulted in more 

significant changes in LSP coupling between nanocones and nanoholes due to the smaller size of 

nanohole and nanocone. However, 3D nanostructures with larger periodicities (i.e. 500 nm and 

525 nm) had larger (-1, 0) resonance shifts for the lowest concentrations of streptavidin. 

Moreover, the lowest concentration of streptavidin (2 nM) was only detectable with the 3D 

nanostructure with 525-nm periodicity, where the detection certainty of the LOD was calculated 

at 95% confidence interval [25]. This finding substantiates the observation of higher bulk-SPR 

sensing for devices with larger periodicities compared to devices with smaller periodicities (e.g. 

see Refs [13]).  

Previously, large conventional NHAs with 650-nm periodicity and 400-µm2 area were used to 

detect streptavidin binding by monitoring the spectral SPR shift [17]. The average resonance 

peak shift for high concentrations of streptavidin (20 µM) was found to be between 3.5 nm and 4 

nm. In another study, a multiplexed arrangement of NHAs, each with an area of approximately 

40 µm2 and providing a variety of resonance positions, were shown to improve the limit of 

streptavidin detection down to 25 nM with the use of a stable laser source and cooled CCD 

camera [10]. In comparison with these previous studies, our 3D nanostructure was capable of 

sensing a 10-fold lower streptavidin concentration (2 nM) without the use of a laser or a cooled 

CCD camera. Therefore, it is expected that the detection limit of streptavidin with our 3D 

nanostructure could be reduced below 2 nM by implementing a stable light source and a cooled 

detector. 
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Figure 4. a) Schematic of a nanohole and adjacent nanocone showing the functionalized surfaces. Streptavidin 
molecules bind to biotinylated thiol. b) The SPR response of functionalized NHA-NCA structures to streptavidin. 
Each panel represents the SPR peak position for 25 identical nanostructure arrays with a periodicity indicated in the 
top left corner versus the streptavidin concentration in solution. The red error bars represent ±1 standard deviation 
computed from three different measurements for each data point. The solid blue line represents the base line from 
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PBS measurements (mean value among triplicate PBS measurements) and the dashed blue lines represents ±3 times 
the standard deviation of the PBS measurements representative of the detection threshold. 

Based on the bulk sensitivity measures, the NHA-NCA structures offer improved performance 

compared to conventional NHAs. Improved performance is likely due to a combination of 

factors. First, the NHA-NCA structure benefits from dynamic surface plasmon matching 

between the top and bottom surfaces of the gold NHA membrane due to the presence of the 

cavity [14]. Second, the bottom surface of the NHA membrane has an ultra-smooth metal 

surface, which resulted from the polished surface of the Pyrex substrate (with roughness 

parameter, Ra <15Å) prior to etching. However, the top surface roughness of the NHA was about 

1.9 nm as reported previously in Ref [21]. Third, the highly localized electric field between the 

nanohole and the nanocone due to the LSP interactions enable high sensitivity of this region of 

the device to changes in refractive index of the intermediate dielectric materials. Fourth, there 

were no Ti adhesion layers in the NHA-NCA structure to reduce optical performance, which 

resulted in higher bulk sensitivity of the NHA-NCA structure as reported for  NHAs in previous 

studies [21,26]. One disadvantage of the NHA-NCA structure is the lower transmission 

efficiency at the resonances compared to the resonance transmission efficiency of a conventional 

NHA. According to experimental results, the resonance transmission efficiency for the NHA-

NCA was almost 42-fold lower than the NHA structure prior to forming a NCA. Lower 

transmission was a consequence of the optical absorption properties of the nanocone, a thicker 

NHA gold film, smaller nanohole size, and nanocone shadowing effects on each incident 

nanohole [20].  

In conclusion, a 3D nanostructure consisting of a metallic film with a NHA, a cavity beneath the 

NHA, and a NCA at the bottom of the cavity was designed, fabricated, and tested through 

simulations and experiments. Experimental measurements of the NHA-NCA structure revealed 
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transmission resonances due to LSP interactions between the nanocones and nanoholes and SPP 

interactions related to the NHA. A series of NHA-NCA structures were studied in bulk SPR 

sensing and found to have higher bulk sensitivity and FOM compared to conventional NHAs. 

Furthermore, NHA-NCA structures were employed for the detection of streptavidin. Compared 

to conventional NHA structures, one of the NHA-NCA structures was able to reliably detect 

streptavidin down to 2 nM, which exceeded the sensitivity of multiplexed detection methods (25 

nM) [10]. In future work, a multiplexed SPR sensor based on an array of NHA-NCA structures 

can be designed to improve the LOD for biomolecules over the integration method used to 

evaluate NHA-NCA structures described in this work.  
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