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Abstract 

In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to 

record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic 

objects with cultural heritage value in a non-invasive manner. Our previous work involved the 

recording of macroscopic distributions of chemical elements or crystal phases from painted works of 

art based on respectively macroscopic X-ray fluorescence or X-ray diffraction analysis. The use of 

infrared radiation instead of X-rays has the advantage that more specific information about the 

nature and distribution of the chemical compounds present can be gathered. This higher imaging 

specificity represents a clear advantage for the characterization of paintings and artists materials. It 

allows the distribution of metallo-organic compounds to be visualized and permits to distinguish 

between pigmented materials containing the same key metal. 

The prototype instrument allows to record hyperspectral datacubes by scanning the surface of the 

artefact in a contactless and sequential single-point measuring mode, while recording the spectrum 

of reflected infrared radiation. After the acquisition, spectra, line intensities of individual bands and 

chemical distribution maps can be extracted from the datacube to identify the compounds present 

and/or to highlight their spatial distribution. Not only is information gained on the surface of the 

investigated artefacts; also images of overpainted paint layers and if present, the underdrawing, may 

be revealed in this manner. A current major limitation is the long scanning times required to record 

these maps. 
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1 Introduction 

In the study of historical paintings and more specifically as a preparation for restoration activities of 

such artefacts, it usually is of great relevance to investigate which pigments are present and how 

these are distributed at or below the painting surface. A large number of analytical techniques have 

been developed that can be used for the identification of artists’ materials. However, many of these 

techniques require destructive sampling or some form of sample preparation. Therefore, such 

analyses are restricted to point measurements while the number of investigated locations is usually 

limited to a minimum. Moreover, in many cases, most of the analysed positions are chosen in the 

background areas or at the edges of the painting and not in the important pictorial regions in order 

to minimise any damage to the cultural heritage (CH) artefact being examined.  

 

During the last decades the continued development of non-destructive analytical techniques resulted 

in instruments with a higher performance and in the miniaturization of such devices. When bench 

top equipment is employed for works of art, the objects or samples to be analysed need to be moved 

to a (science or conservation) laboratory. Due to all the necessary precautions regarding e.g. 

transport, safety, climate control and insurance, this kind of transportation for objects of cultural 

heritage usually is a fairly costly and difficult undertaking. In case of artefacts that are not possible or 

very difficult to move, the increased mobility of analytical instruments has made it possible to 

analyse such objects in situ.1,2,3,4,5,6,7 Since this modus operandi barely requires manipulating the 

object to be analysed, conservators are more willing to give scientists access to works of art for in 

situ measurements.  

 

Some of these non-destructive in-situ methods, including X-ray fluorescence (XRF), X-ray diffraction 

(XRD), fibre optics reflectance spectroscopy (FORS) and Raman spectroscopy commonly are only 

used for spot analyses and, on average, require several minutes to record a spectrum from a single 

sample position. After the point analysis campaign, and on the basis of visual information and extra 

data such as knowledge about the artist’s painting technique, the obtained results may be 

extrapolated to the entire painting. However, making such extrapolations is error prone. Thus, 

hyperspectral analysis methods, where a spectral response is obtained from all points of the 

examined surface rather than from a limited number of (hopefully) representative spots are 

preferred; such methods have only become recently available.  An example of this class of analytical 

methods is Macroscopic X-Ray Fluorescence (MA-XRF).8 While it is possible to perform in situ imaging 

at decimetre to metre length scales by means of this method, the elemental distribution maps 

acquired lack the possibility to differentiate between pigments that consist of similar key elements 
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(to see, e.g., the difference between hematite, goethite and limonite) and to detect low z-elements 

that are characteristic of many organic pigments and dyes. 

 

Infrared-based analytical methods use radiation of energy comparable to that of the vibrational 

levels present in molecules. Therefore, these techniques are better suited than others for 

differentiating between (similar) chemical compounds. In addition, infrared measurements in 

reflection mode allow to perform analyses in a non-contact and a non-destructive manner.  

With the development of infrared reflectography,9 instrumental imaging of cultural heritage 

materials in the infrared region of the electromagnetic spectrum became possible. An IR-transparent 

lens can be used to capture radiation reflected by the object under study and refocus it on an IR-

sensitive camera. Initially vidicon imaging systems, sensitive for infrared light, were used for this 

purpose. Nowadays these are mostly replaced by focal plane arrays (FPA), sensitive in the same or 

adjacent spectral regions; these devices allow to directly record IR-intensity images.  

At first, only one or a few spectral bands could be used for imaging. Their spectral region was 

optimized in order to minimize the absorption of IR light by the overlying paint layers and thus to 

enhance the contrast between the underdrawing and the overlying painting. To obtain more than 

one spectral band with the same FPA, filters can be placed in front of the FPA. While the first 

generations made use of manually placed filters, liquid tuneable filters10 were employed in later 

generations. In case that only a few to a few tens of spectral bands are used, the term multispectral 

imaging is employed. The use of large spectral bands results in a good signal-to-noise contrast ratio in 

the obtained images, but yields only a limited spectral resolution. Thus, identification of the chemical 

compounds present, based solely on the recorded image data, is not possible. However, it may still 

be possible to differentiate between e.g., two adjacent pigment areas when their reflectance 

characteristics in the IR region are different.   

 

NIR imaging. 

Detectors for imaging in the NIR range of radiation may comprise arrays of thousands by thousands 

of individual detector elements. These detectors are often modified charged coupled devices (CCD)10, 

photo detectors or thermal detectors. Since it is more difficult to create detector arrays, sensitive 

towards the longer wavelengths of IR-light, with comparable lateral resolution and spectral response 

as those available for visible light, the FPAs used in IR camera systems mostly comprise only tens up 

to maximum a few hundreds of pixels in each dimension. In order to analyse macroscopic objects 

such as paintings with a sufficiently high lateral resolution, mosaic assemblies of smaller images are 

then recorded.  
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The use of lenses in combination with flat detectors such as FPAs introduces distortions in the 

resulting images. To avoid such problems, an alternative approach11,12 was developed, based on 

point-by-point rather than full-field scanning (or whisk-broom approach) of the object. This solution 

involves the use of fibre-optics for guiding the reflected IR radiation to the detectors. The moving 

head of the scanner contains only the main optical system, responsible for emitting the primary 

radiation and capturing the reflected radiation. The reflected radiation is focussed at the entrance of 

the optical fibres and guided towards the detectors present in the stationary part of the scanner. This 

approach makes the scanning setup lighter, enables the use of higher scanning speeds and avoids 

that vibrations are passed along from the moving scanner to the detectors.  

Every optical fibre directs radiation to a different interference filter/detector combination. In this 

instrument,  three Silicon (Si) and 12 Indium Gallium Arsenide (InGaAs) detectors are used for near 

infrared (NIR)-imaging. Resulting in a fast scanning capability with a maximum rate of 2 kHz at a 250 

μm step size, covering almost the whole NIR-band (800-2300 nm or 12 500–4350 cm-1). However, 

since this spectral range is only divided into a limited number of bands, data sets with only a limited 

spectral resolution are obtained.  

Recent instrumental evolution has resulted in imaging systems that can record data over an 

increased number of spectral bands; to differentiate these systems from the older multispectral 

systems they are called hyperspectral imaging systems. No exact boundary between the two imaging 

systems can be found in literature, but a general convention states that multispectral systems 

possess a number of bands that is distinctly lower than the number of steps used in the spatial 

dimension. At the other hand, in hyperspectral systems, the number of bands is of the same order as 

the number of spatial steps.13,14  

 

Improvements in the spectral resolution of multi- or hyperspectral NIR imaging systems can be 

realised via the use of a dispersive element such as a grating.15 The grating disperses the radiation 

depending on its wavelength and the intensity of the dispersed bundle of radiation is recorded by 

different rows of the array. The number of spectral bands in these systems is therefore determined 

by the number of elements in the FPA. The second dimension of the detector can still be used for the 

spatial domain and thus allows the acquisition of line scans, allowing faster scanning speed.  

 

MIR imaging. 

The previous cited imaging devices are all active in the near infrared (NIR) region, where overtone 

and combination bands of the functional groups of chemical compounds are present. This spectral 

region allows to differentiate to a certain degree between the compounds present in analysed 

objects, but lacks the specificity that can be obtained from mid infrared (MIR) spectral data. Until 
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recently,16 it was not possible to perform macroscopic non-destructive MIR imaging on macroscopic 

artefacts such as paintings. Rosi et al. recently employed a hyperspectral imaging system to record 

distribution images over a limited region of the MIR-range (900-1440 cm-1) with a spectral resolution 

of 4 cm-1. The system employed combines a 256 x 256 pixel FPA detector coupled to an 

interferometer, allowing to record in one measurement a complete hyperspectral data cube. The 

investigation of an area of 9 x 9 cm2 required a collection time of 80 s.  

 

In what follows, we describe a mobile point-by-point NIR-MIR (7500-375 cm-1) reflection mode 

scanning device for non-invasive and non-destructive hyperspectral imaging of macroscopic two 

dimensional objects such as paintings. Contrary to previously described systems, this scanning setup 

does not employ a (costly) FPA, but a single point detector incorporated in a compact and 

inexpensive FTIR spectrometer. Thus, FTIR data over the full spectral range are recorded at each 

position. The entire infrared spectrometer is part of the moving scanning head. This avoids the use of 

chalcogenide fibre optics that have a spectral cut-off at ca. 900 cm-1. 

2 Experimental 

2.1 MA-rFTIR setup.  

Local irradiation of the examined artifacts and spectrum acquisition were performed by means of a 

Bruker Alpha FTIR spectrometer, equipped with a frontal reflection module (20°/20° geometry) and a 

coaxial visual camera. The spectrometer incorporates a globar IR-source and a deuterated triglycine 

sulphate (DTGS) detector. Such a detector has a slower response time and is less sensitive than a 

mercury cadmium telluride (MCT) detector, but it has the advantage of operating at room 

temperature, making it more useful for in-situ measurements. In addition, DTGS-detectors have an 

increased spectral response towards the far infrared (FIR) region than most MCT-detectors. 

Spectra acquisition and storage is done with the Bruker OPUS 6.0 software package. The instrument 

is calibrated using a polystyrene film at room temperature on a weekly basis. Before every scan, the 

background is recorded during 15 minutes by placing a gold coated mirror in front of the reflection 

module. This background spectrum is then used to correct each spectrum for atmospheric 

absorptions during the scan.  

During most scans, the infrared spectra are recorded during an interval of ca. 10 seconds per point, 

where an individual spectrum is saved roughly every second, having a spectral resolution of 4 cm-1. 

When consecutive spectra in one point differ too much, the spectrometer’s control software 

automatically rejects the last spectrum, resulting in a lower number of spectra in such locations. This 

is often the case when the analysed surface is not smooth. 
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Since the actual measuring time is the most time consuming component in the total scan time, it is 

important to keep it as short as possible. The abovementioned spectrum acquisition time of ca. 10 s 

per point corresponds to a compromise between spectral quality and scanning speed. Longer 

measurement times per point result in an improved spectral quality, but the latter usually only 

results in a marginal improvement of the final image quality. In addition to the time devoted to 

spectrum acquisition, per recorded position, an additional 6 to 20 s are required for spectrum saving, 

and for moving to the next point. Thus, it generally does not make sense to use acquisition times per 

pixel that are shorter than ca. 10 s with this system. When a better spectral quality is required than 

what can be recorded during such an interval, spectra of adjacent or similar points can be combined 

a posteriori. 

 

 

Figure 1:  Photographs of the MA-FTIR scanning setup: a) side- and b) front view. 

In this scanning setup (Fig. 1), the FTIR spectrometer is mounted on a motorized scanning stage 

(Newport Corporation, Irvine, CA, USA). During the scan operation, the spectrometer is moved in the 

X (maximum travel range: 100 mm) and Y (250 mm range) directions by motorized stages, while the Z 

(100 mm range) stage allows to position the focal point of the scanner at the surface of the painting 

prior to the XY movement. This z-position is determined at the centre of the area to be analysed, as 

the distance where the reflected radiation is detected at the maximum intensity. The entire scanning 

operation, including stage movement and spectrometer triggering, is controlled by in-house written 

software. The processing of the individual spectra and the hyperspectral data treatment is performed 

with self-written routines using the data analysis software package IDL 8.2. The measured reflectance 

intensity (R) is a combination of both specular and diffuse reflectance components because the 

infrared radiation impinges on and reflects back from the surface under an angle of 20 degrees. 
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Because both components contribute to the spectra, neither the Kramers-Krönig nor the Kubelka-

Munk transformations can be applied to the spectra. Instead, the reflectance spectra are converted 

to pseudo-absorbance (A’) form using the relation              . Unless otherwise noted, all data 

in this paper are in pseudo-absorbance form.  

 

The beam size at the spectrometers focal point was determined by performing a line scan 

measurement across a sharp edge between two sample areas made up of calcite (CaCO3) and 

Prussian blue (Fe4[Fe(CN)6]4). After the scan, an error function was fitted to the sigmoidal shape 

obtained by plotting the band intensity of the cyanide group (1900-2120 cm-1) against the lateral 

coordinate. The full width at half maximum of this function was taken as a measure of the effective 

size of the IR-beam in the scan direction: values of 1.80 mm (horizontal) x 2.10 mm (vertical) were 

obtained. The increased beam size in the vertical plane results from the reflection geometry since the 

IR beam impinges on the analysed surface at an angle. Even though these dimensions were found, 

smaller details could be visualised, this probably due to the fact that the beams intensity is not 

equally distributed over the irradiated spot. As a result, smaller step sizes than the beams dimensions 

are being used in the imaging experiments. 

 

In Table 1, an overview of the scan parameters employed to investigate the 3 paintings described 

below is provided. The two first paintings were scanned using a slower motor speed, resulting in 

longer dwell times. 

 

Table 1. Scan parameters employed during MA-FTIR examinations of three paintings 

Painting Step size (H x V) 
(mm2) 

Area examined 
(cm2) 

Dwell time/pixel 
(s) 

Spectral range 
(cm-1) 

Replica   1 x 1 5.5 x 8.0 29 375 - 4000 

Antillean painting 1 x 1 7.6 x 7.6 29 375 - 4000 

Russian Icon 1 x 1 10.2 x 17.2 18 375 - 7500 

 

2.2. Processing of FTIR hyperspectral data 

After each scan, the series of reflectance infrared spectra are arranged into a three dimensional data 

cube and converted to pseudo-absorbance values. 

 

Next to the local chemical composition, the recorded reflectance intensity is a function of the local 

physical parameters of the irradiated area such as grain size and surface roughness. These last two 

parameters primarily result in an intensity modulation of the total reflection FTIR spectrum, and less 
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in a change of the spectral features that are recorded. To maximise the chemical contrast in the 

distribution images, the integrated intensity of the peaks in the pseudo-absorbance spectra is 

calculated followed by the subtraction of the background relative to a baseline running through the 

integration limits. As a result, also negative intensities can be obtained. This is typically for bands 

inverted by the reststrahlen-effect, usually observed for antisymmetric stretching of silicate, sulphate 

and carbonate pigments. When these bands are used for imaging, the distribution image will be 

reversed so that the most intense pixels correspond with the most negative intensity. A typical 

feature of reflectance infrared spectra is that they may show derivative shaped features when the 

absorption index of the irradiated material is small (see Fig. 3a-c). The centre of these features is 

situated near the wavenumber where the maximum of the corresponding band would be in a 

transmission FTIR spectrum. When referring to these bands, the centre wavenumber is used, but the 

integration limits used for creating the chemical distribution images are shifted towards higher 

wavenumbers with respect to those appropriate for transmission FTIR imaging. By subtracting the A’ 

baseline value, the reflectance intensity modulation due to surface artefacts is largely eliminated. 

This procedure is performed on all pixels, resulting in two dimensional distributions of the baseline-

subtracted pseudo absorbance values, one map for each spectral feature of interest, reflect the 

distribution of (a class of) chemical compound(s) in the area examined.  

To identify the compounds present, spectra from similar points can be combined into one averaged 

spectrum of high signal-to-noise ratio. Since published spectra in literature usually are (converted 

into) transmission spectra, the averaged pseudo absorption spectra are mostly compared with 

transmission databases17,18 even though they do not show exactly the same features. Only a few 

papers identify and assign a collection of pigments in pseudo-absorbance mode without any 

additional data manipulation.19,20  

 

2.3 Comparative measurements.  

Some of the artefacts discussed below were also examined using other macroscopic scanning 

methods in order to compare characteristics such as the lateral resolution and the chemical 

specificity of the resulting distributions. To record MA-XRF images, a self-built scanner was used8, 

comprised of a Mo anode X-ray tube, running at 50 kV and 1.0 mA, equipped with a dedicated 

polycapillary lens, as primary radiation source and four Vortex EX detectors, mounted under different 

angles relative to the primary excitation beam, to detect the XRF signals emitted by the analysed 

painting. The resulting XRF-spectra were analysed with PYMCA21 and converted to elemental 

distribution maps, using in house written software.  
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Macroscopic X-Ray Diffraction scanning (MA-XRD) measurements were performed during experiment 

EC-764 at ID15B beamline of the European Synchrotron Facility (ESRF) in Grenoble, France. A high 

energy 87.08 keV, 300 x 300 μm primary beam was used during an exposure time of 0.5 seconds per 

point. Step sizes of 0.8 mm and 0.4 mm were employed. The obtained series of 2D XRD-patterns 

were analysed and converted to species-specific maps using the XRDUA software package.22 

 

2.4 Examined artefacts.  

To determine the capabilities and limitations of the MA-rFTIR scanner, a series of painted artefacts of 

various nature was investigated. The first artefact consisted of a replica (8 x 5 cm) of a vegetal 

pattern present in a decorative border of a 15th century breviary;23 the replica was prepared using 

modern and well-documented oil paint materials (see Fig. 2a). Chemical distribution maps were 

recorded by means of the MA-rFTIR and MA-XRD systems. A second artefact, a relatively simple 20th 

century panel painting (8 x 8 cm in size, see Fig. 4a), was analysed by means of MA-rFTIR and MA-

XRF, allowing for a comparison between the chemical and elemental distribution maps resulting from 

both methods. The third artefact was a painting with more complex paint stratigraphy, i.e., a 19th 

century icon (14 x 18 cm in size, see Fig. 6a). The MA-rFTIR distributions recorded from this painting 

were compared with those obtained by IRR, MA-XRF and MA-XRD.  
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3 Results and discussion 

3.1 Analysis of a replica painting 

In the painted replica shown in Fig. 2, three different iron-based pigments were employed: hematite 

(Fe2O3, dark red), goethite (α-FeOOH, ochre) and Prussian blue (Fe4[Fe(CN)6]4, dark blue). Besides 

these iron containing pigments, zinc white (ZnO) was used for the preparation layer, vermillion (HgS) 

for the brighter red in the fruits and viridian green (Cr2O3
.2H2O) in the green foliage.  

 

 

Figure 2: a) Visual image of the replica; upper row: MA-rFTIR chemical distribution images of b) goethite (845-915 cm
-1

), c) 

Calcite (871-890 cm
-1

), d) Prussian blue (2083-2161 cm
-1

), e) Viridian green (1055-1093 cm
-1

), f) Organic binder (2820-2990); 

lower row: MA-XRD results of g) goethite, h) hematite, i) Prussian blue, j) Viridian green, k) Vermillion. Lighter tones 

indicate higher levels of net pseudo absorbance or diffraction intensity. 

In Fig. 2, a photograph of the replica and a number of FTIR images (upper row) are shown. Per FTIR 

image, the wavenumber region used for the net intensity integration is indicated. For comparison, a 

number of distribution images obtained by MA-XRD (lower row) are included as well. Fig. 3 shows 

the spectra corresponding to the high intensity areas in the MA-rFTIR distribution maps. To obtain 

these spectra, an average of 16 spectra, belonging to pixels in the high intensity parts of the 

corresponding areas, was calculated. 

 

A feature that allows to differentiate goethite from hematite is due to the presence of an –OH group 

in goethite. This bond results in intense bands (γ-OH: 795 and δ-OH: 892 cm-1, marked by “*” in Fig. 

3a) that are observed with the mineral goethite. The inverted δ-OH band of goethite (“GO” in Fig. 3) 

is used for visualising the goethite distribution. Since this is an inverted band, the resulting intensities 

were inverted in order to correlate the brightest pixels with the most intense (inverted) bands. This 

resulting distribution (Fig. 2b) shows a strong correlation with the ochre background colour and, 
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albeit only in the qualitative sense, with the MA-XRD distribution of goethite shown in Fig. 2g. (The 

difference between Figs. 2b and 2g reflects the sampling depth of both methods.) This spectral 

region is an example of the instrument’s ability to discern between products with (partial) 

overlapping bands. As visible in Fig. 3a, the δ-OH bending band of goethite (“GO” in Fig 3a) overlaps 

with the  ν2-CO3
2- bending mode of calcite (“CA” in Fig 3b), however this does not result in interfering 

distribution maps between these compounds (Figs. 2b and 2c). 

 

It should be noted that the oxide-related bands of hematite (nominally at 458 and 545 cm-1) and of 

goethite (at 458 and 566 cm-1) are situated close to each other. Furthermore, the exact position of 

the bands is prone to shifts in wavenumber due to the pigment’s grain size and shape.24 This explains 

why the exact wavenumber of these oxide bands is cited in literature to be in a range a few tens of 

wavenumbers wide. Due to the partial mutual overlap between the two minerals, these bands are 

not well suited for the chemical imaging in this painting. Moreover, some of the Cr-O bending bands 

of viridian green (marked by “¤” in fig. 3d), of which the distribution is shown in Figs. 2e and 2j 

overlap with those of hematite and goethite. The viridian green distribution (Fig. 2e) was obtained by 

using the Cr=O stretching band (“VG”) and shows a good correlation with the corresponding MA-XRD 

distribution in Fig. 2j. 

 

 

Figure 3: averaged spectra of highlighted zones in Fig. 2; a) goethite, b) calcite/hematite, c) Prussian blue, d) viridian green 

and e) vermillion 
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Another way of distinguishing the pigment hematite from goethite in this particular case, is to make 

use of the fact that only hematite has been mixed with calcite (CaCO3), resulting in strong carbonate 

signals at 713, 875, 1430 cm-1 and the combination bands19 ν1 + ν4 at 1795 cm-1 and ν1 + ν3 at 2518 

cm-1, marked by “‡” in Fig. 3b. Accordingly, in the distribution of Fig. 2c, to which calcite contributes, 

the same highlights as visible in the MA-XRD distribution of hematite (Fig. 2h) can be observed. 

 

Prussian blue is chemically and structurally very different from the previous two iron containing 

pigments, resulting in an IR spectrum that is fairly specific and is characterized by ν(CN) at 2097,  

ν(FeC) at 605 and δ(FeCN) bands at 494 cm-1 (see “°” in Fig. 3c.) The most intense band, as can be 

seen in Fig. 3c near 2100 cm-1, corresponding to the cyanide group, can be used for chemical imaging 

(band “PB” in Fig. 3), as shown in Fig. 2d, since there is no danger of interference with signals of 

other pigments present. An equivalent distribution as that obtainable with MA-XRD (Fig. 2i) is 

obtained. 

 

Vermillion itself could not be identified using MA-rFTIR since it has its characteristic bands in the FIR-

range due to the heavy atomic mass of mercury, but the presence of this compound appears to have 

an influence on the shape of the observed MIR spectra in the areas where it is present. As a result, 

the distribution in Fig. 2f, reflecting the intensity of the C-H stretch vibration corresponding to the 

organic binder of the pigment (band “OB” in Fig. 3) strongly correlates with the MA-XRD distribution 

of vermillion in Fig. 2k. In the area with high intensity, some mixture of calcite and hematite is also 

present. As a result, the major calcite related bands are visible in the averaged “vermillion” spectrum 

shown in Fig. 3e, marked by “‡”. 

 

In general,  finer details can be discerned in the MA-XRD images, since a smaller spot size (0.3 x 0.3 

mm2) was used in the synchrotron based MA-XRD experiment than with the MA-rFTIR scanner. 

Nevertheless, from Fig. 2 it can be concluded that a species-specific distribution images of good 

image quality and in which most of the details of the painted representation are visible, can be 

recorded with the mobile MA-rFTIR scanner. Note that when comparing the different spectra in Fig. 

3, the two OH-bending bands of goethite (795 and 892 cm-1), seem to appear in most of the averaged 

spectra. This is a result of the fact that the spot size of the IR-beam is larger than the examined 

features; this does not seem to disturb the resulting distribution map overly much, however. 
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3.2. Analysis of an Antillean painting 

As second case study, we consider a small (8 x 8 cm) 20th century, unvarnished Antillean panel 

painting shown in Fig. 4a. It consists of a number of coloured areas of appropriate size to be imaged 

by the scanner; in addition, its stratigraphy is fairly simple, in most cases consisting of only one paint 

layer applied on a calcite ground. As a result, the (ν1 + ν3) combination band of calcite (shown in Fig. 

5) is visible in all recorded FTIR spectra.  

 

 

Figure 4: a) Visual image of the Antillean painting; MA-rFTIR chemical distribution images: b) barium sulphate (1148-1200 

cm
-1

), c) chrome yellow (770-895 cm
-1

), d) phthalocyanine blue (729-740 cm
-1

) and e) phthalocyanine green (747-762 cm
-1

); 

elemental distribution maps of f) cadmium, g) chromium, h) copper and i) chlorine. Lighter tones indicate higher levels of 

net pseudo absorbance or X-ray fluorescence intensity. 

Red and orange areas: MA-XRF analysis of this painting (see Fig. 4, lower row) reveals the presence of 

the elements cadmium, selenium, sulphur and barium (last three distributions are not shown in this 

article) in the red and orange regions, strongly suggesting that the pigment employed here is 

cadmium lithopone (CdSe + BaSO4). Cadmium-based pigments have, due to the heavy atomic mass of 

cadmium, their fundamental bands in the far-IR (FIR) region and therefore cannot be detected with 

the MIR setup. However, these pigments are often adulterated with the less expensive barium 

sulphate (BaSO4). The sulphate ions present in this filler are well visible in the MIR-range (ν4-SO4
2- at 

612 and 640 cm-1, ν1-SO4
2- at 983 cm-1 and ν3-SO4

2- at 1079, 1126 and 1202 cm-1). 19,25 These 

vibrational bands confirm the presence of barium sulphate and thus cadmium lithopone in the 

orange areas. The map in Fig. 4b (1148-1200 cm-1) shows the distribution of the sulphate ion via its 

inverted antisymmetric stretching vibration mode (ν3-SO4
2-) which is strongly correlated to the Cd 

MA-XRF maps of Fig. 4f. Yellow areas: Based on the MA-XRF-data, the main yellow pigment present 

in this painting contains the elements lead and chromium and in the FTIR spectra it is identified by its 

chromate- (ν4-CrO4
2- at 888 cm-1) and sulphate- (ν4-SO4

2- at 604 and 630 cm-1) ion bands as chrome 

yellow (PbCr1-xSxO4), a pigment that is in use since the 19th century. The map in Fig. 4c is based on the 
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CrO4
2- inverted asymmetric stretch (770-895 cm-1) and shows a good correlation with the chromium 

XRF image (Fig. 4g). Even though the fact that both barium sulphate and chrome yellow comprise 

sulphate groups in their molecules, no hindering interferences between these distributions occurred. 

The presence of heavier lead instead of barium resulted in a shift towards lower wavenumbers for 

sulphate bending and stretching bands for the chrome yellow pigment. Besides this shift, the 

sulphate bands in chrome yellow are of lesser intensity and broadened in comparison to those of 

barium sulphate. The combination of these effects resulted in interference-free distribution images. 

Blue and green areas: The blue and green pigments present in this painting could be identified as 

phthalocyanine-based pigments. Since this group of pigments was only discovered in the 1930s, their 

presence confirms the presumed 20th century origin of the painting. The absence of the N-H bending 

band at 1003 cm-1 (Fig. 5g), suggests that the phthalocyanine molecules are present as organo-

metalocomplexes. Together with presence the metal-ligand vibration at 898 cm-1, typical for copper, 

these pigments are identified as copper-phthalocyanine. This identification is confirmed by the of 

copper distribution image, obtained by MA-XRF (see Fig. 4h).  

 

 Figure 5: Pseudo-absorption converted reflectance spectra of the phthalocyanine pigments a) PB15 and b) PG7; “Cu-Pc” 

marks the band assigned to the copper-phthalocyanine vibration; “PB15” marks the band used for imaging the blue 

pigment, while “PG7” marks the band used for the green pigment; “CaCO3” marks the most intense calcite band and 

“Binder” those due to the binding medium. 

P
G

7
 C
u

-P
c 

Page 14 of 21Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



15 

 

The phthalocyanine-blue (PB15) distribution (Fig. 4d) can be visualized by means of its C-H out-of-

plane bending mode at 729-740 cm-1 (see  Fig. 5a). Phthalocyanine green (PG7) is a partially 

chlorinated version of PB15. This substitution results in a shift of the C-H out-of-plane bending mode 

band towards higher wavenumbers, in this case to 747-762 cm-1 (see “Fig. 5b). Therefore these 

modes can be used for imaging the distribution of PG7 (Fig. 4e) as well as that of PB15 (Fig. 4d). As a 

comparison, the copper and chlorine XRF-maps are given in Fig. 4h and Fig. 4i. Since copper is 

present in both PB15 and PG7, the MA-XRF copper map resembles the sum distribution of both these 

pigments. It is possible, however, to distinguish between these two pigments in the MA-XRF data by 

considering the chlorine distribution (Fig. 4i) since the latter element is only present in PG7. The 

species-specific MA-rFTIR maps, however, allow to visualize the distribution of these two highly 

similar pigments in a more straightforward and reliable manner. 

  

3.2. Analysis of  a 19th century Saint Nicholas Icon 

As a third case study with a more complex stratigraphy, MA-rFTIR images from a 19th century Russian 

house icon depicting Saint Nicholas of Myra, painted on a wooden panel (14 x 18 cm) were recorded. 

This artefact, visible in Fig. 6a, has been subjected to different non-destructive imaging methods.  

 

Figure 6: a) Visual photograph of the Saint Nicholas’ icon; the arrow indicates the blue sleeve of the saint; b) corresponding 

IRR image; c) Total MA-rFTIR reflectance image in the spectral range corresponding to the IRR image; d) underdrawing (MA-

rFTIR); e) decorative bands on the stole (MA-rFTIR); f) Zn distribution (MA-XRF); g) assymetric carboxylate stretching mode 
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of zinc soap (MA-rFTIR); h) Ultramarine (MA-XRD) and  i) Ultramarine (MA-rFTIR distribution, Al,Si-O bending mode). Lighter 

tones indicate higher levels of net pseudo absorbance or diffraction intensity. 

The visualization of hidden underdrawings in paintings is traditionally performed via IRR imaging, as 

illustrated in Fig. 6b. This reflectogram was obtained with a SIRIS camera system,26 sensitive in the 

NIR-range (900-1700 nm or 11 111-5882 cm-1). Since there is a spectral overlap (1333-1700 nm or 

7500-5882 cm-1) between the SIRIS camera system and the MA-rFTIR scanner, similar results can be 

obtained with the latter setup when the recorded FTIR spectra are treated in a similar manner as 

done by the SIRIS camera software: the reflectance spectra are used in total reflection mode, no 

baseline subtraction is performed and the total reflectance intensity is summed within a wide 

spectral range (7500–5882 cm-1 in this case). The result is shown in Fig. 6c; comparison with the IRR 

image of Fig. 6b shows that even at a lower lateral resolution, the MA-rFTIR result shows most of the 

details present in the IRR. Since a wide spectral band is used for such imaging techniques, more 

components than solely the underdrawing may contribute to the resulting images. An advantage of 

the MA-rFTIR scanner is that simultaneously to using the wide NIR range, several narrower spectral 

ranges in the MIR part of the spectrum can be used for the imaging of specific compounds, and that 

these spectral ranges do not need to be specified prior to the measurements (as is the case when 

filters are employed in NIR-imaging setups). Narrowing a spectral range for imaging purposes has the 

advantage that this allows scientists to separate the different contributions to wideband images. For 

example, a detailed examination of the light green decorative lines and crosses on the stole of the 

Saint that are visible in the IRR image shows that these are likely features that were added in the 

final phase of the painting and do not correspond to any carbon-based drawing made in the initial 

phases. When considering more narrow spectral bandwidths in the NIR, the chemical distribution 

image of Fig. 6e (5358-6134 cm-1) can be obtained that only shows the details of the stole, while the 

carbon-based underdrawing (without stole details) is present in another non-overlapping spectral 

range (4325-4775 cm-1, Fig. 6d; note that in order to obtain the maps 6d and 6e, the intensity of the 

reflection spectra was employed without the usual conversion to pseudo-absorbance form). The NIR-

band to which these spectral ranges belong, is known for the presence of combination and overtone 

bands of the fundamental MIR bands. Recently, these bands have successfully been used for 

mapping paint binders in Early Renaissance paintings27. Even though this paper shows the possible 

use of those bands, they were not used as such for this experiment. The narrower NIR bands were 

solely used for their ability to differentiate between the underdrawing and the overpainted detail.  

The distribution of Zinc white (ZnO), present in the grey background, the beard of the figure and the 

decorations of the stole can be obtained via the intense (and perturbed) reflection FTIR band around 

500 cm-1; in transmission spectra this band is present as a broad spectral feature between 400 and 

Page 16 of 21Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



17 

 

500 cm-1. Because multiple metal-oxide bands belonging to different metals are present close to each 

other in this spectral region, distribution images with good contrast are difficult to obtain based on 

the Zn-O stretching mode. A better result can be obtained by using the asymmetric COO- -stretching 

mode, as shown in Fig. 6g (1537-1560 cm-1). This band is shifted in the spectrum due to the 

saponification of the binding medium under the influence of zinc ions28. When comparing the 

distribution of the element zinc (Fig. 6f) with the distribution of the zinc soap (Fig. 6g), one can see 

that the intensity of the zinc soap is lower in the grey background area than what would be expected 

based on the intensity in the MA-XRF Zn distribution image. This may be due to the fact that the zinc 

oxide in the stole decoration is not present in the form of pure zinc white, but as cobalt green 

(CoO.ZnO) mixed with chromium oxide (Cr2O3). This is consistent with the correlated presence of zinc, 

cobalt and chrome in the blue-green decorative stripes and crosses of the stole as revealed by MA-

XRF (resulting Co and Cr elemental distributions are not shown in Fig. 6). The data suggests that the 

different chemical environments of the zinc ions in the blue-green and grey areas of the painting 

have resulted in a different spectral response and possibly in different degrees of saponification of 

the binding medium. 

 

One of the limitations of MA-XRF is that it is insensitive to low-Z elements. These elements have low 

energetic XRF-signals that are absorbed by the ambient air; consequently, generally it is not possible 

to visualize any elements lighter than potassium. This absorption can be avoided by working under 

vacuum or (more realistically) by replacing the ambient air by a helium flow; however, the latter 

method may induce stress into the painting, which can result in damage. Because of their lower 

atomic mass, chemical bonds between low Z-elements and oxygen have their fundamental bands in 

the MIR range of the electromagnetic spectrum, making MA-rFTIR a possible complementary 

technique to MA-XRF. The pigment ultramarine (Na8-10Al6Si6O24S2-4) is well suited to demonstrate this 

complementarity since this inorganic pigment consists only of low Z-elements and thus is hard to 

detect by means of MA-XRF. Fig. 6i demonstrates that by using the pseudo absorbance in the 465-

525 cm-1 range (Al, Si-O bending mode29), MA-rFTIR allows to create a clear map (Fig. 6i) of the 

distribution of this pigment. The presence of artificial ultramarine is consistent with the 19th century 

origin of the icon. This pigment is chemically identical to the expensive medieval ultramarine pigment 

which was obtained from the semi-precious stone lapis lazuli, at that time exclusively mined in the 

Afghan mountains. In Fig. 6i and Fig. 6h, the ultramarine distributions obtained by MA-rFTIR and MA-

XRD are compared. Both distributions show that only the blue part of the gospel book was painted 

with this pigment; the Saint’s sleeve (see arrow in fig. 6) even though being painted in a similar blue, 

is not highlighted in these distributions, since it was rendered using Prussian blue. 
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4. Conclusion 

By means of the prototype MA-rFTIR scanner that is described in this paper, we demonstrate that the 

scanning reflectance Fourier transformed mid infrared technique is useful is for in situ non-

destructive chemical imaging of planar cultural heritage artifacts. Since this device scans the object 

point-by-point, while recording full spectra over an extended MIR-range (7500-375 cm-1) at each 

position, it is possible to identify the compounds present and visualize their distribution based on 

their MIR fingerprint features.  

When compared to MA-XRF elemental distributions, the obtained chemical distributions show a 

good correlation with the elemental maps when the chemical element in question is only present in 

one pigment. MA-rFTIR can deliver complementary information for pigments that cannot be 

detected or identified in a unique manner by means of MA-XRF. When differentiating between 

multiple pigments that contain the same characteristic elements, the chemical distribution maps 

obtained by MA-rFTIR show good agreement with those obtained by MA-XRD. 

By analysing different works of art of increasing complexity in terms of paint stratigraphy and  

pigment variety, the possibilities and some of the drawbacks of MA-rFTIR could be inventoried:  

the investigation of a replica of a vegetal decoration was useful to demonstrate the ability of the 

method to differentiate between various iron-containing pigments. Since these pigments are 

available in different colours, distinguishing between these pigments can help to understand the 

artist’s techniques and to restore altered paintings back to their original status. The analysis of an 

Antillean panel painting highlighted the ability of MA-rFTIR to imagine the distribution of different 

phthalocyanine pigments. This is important since many pigments developed during the last century 

are organic. Moreover, some organic dyes such as lakes are in use since antiquity and are hard to 

identify by non-destructive methods. The analysis of a 19th century Russian icon allows to 

demonstrate the capability of the instrument to visualize overpainted underdrawings and to record 

the distribution of pigments based on light Z-elements such as ultramarine.  

Based on these first results, future analysis campaigns on old masterpieces should be undertaken to 

obtain a better understanding of the chemical imaging of pigments and overpaintings. 

  

A major important limitation of the prototype MA-rFTIR instrument described above, is the time 

required to record a hyperspectral data set. However, many possibilities are available to improve this 

aspect, including the use of a more powerful source of MIR radiation and of larger beam focusing 

and/or collection optics for the reflected radiation. 

Another limiting factor in this process is the fact that the majority of historic paintings is covered by a 

varnish layer to protect and saturate the underlying painting. Such layers absorb most of the MIR 
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radiation and as a result strongly disturb the results. Fortunately not all paintings are covered by a 

varnish layer and from many paintings under restoration, the varnish is removed in the preliminary 

phases of the treatment. Similar to other forms of mobile FTIR, MA-rFTIR could then be used in 

optimal conditions once or several times during a restoration campaign. Beside these unvarnished 

paintings, it is also relevant to investigate in greater detail the possibilities and limits of MA-rFTIR 

investigations of thinly varnished paintings; experience has shown that, in a number of such cases, by 

means of portable FTIR devices such as the Bruker Alpha, meaningful spectral features can still be 

recorded. 

Acknowledgements 
The author would like to thank Dr. Geert Van Der Snickt for painting the replica of the 15th century 

breviary and Prof. Joris Dik of TU Delft for many discussions on macroscopic imaging of works of art, 

Dr. Arie Wallert of the Rijksmuseum Amsterdam is acknowledged for the recording of the infrared 

reflectography and the X-ray radiography of the 19th century Russian Icon. We acknowledge the 

European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we 

would like to thank Dr. Veijo Honkimäki for assistance in using beamline ID15B. 

References 
 

1 C. Miliani, F. Rosi, B. G. Brunetti, A. Sgamellotti, Acc. Chem. Res., 2010, 43, 728-738 

2 C. Miliani, F. Rosi, I. Borghia, P. Benedetti, B. G. Brunetti, A. Sgamellotti, Appl. Spectrosc., 2007, 61, 293-299 

3 L. De Viguerie, P. Walter, E. Laval, B. Mottin, V. A. Solé, Angew. Chem. Int. Ed., 2010, 49, 6125-6128 

4 A. Romani, C. Clementi, C. Miliani, G. Favaro, Acc. Chem. Res., 2010, 43, 837-846 

5 G. Chiari, Nature, 2008, 453, 159 

6 F. Rosi, C. Miliani, C. Clementi, K. Kahrim, F. Presciutti, M. Vagnini, V. Manuali, A,. Daveri, L. Cartechnini, B. G. 

Brunetti, A, Sgamellotti, Appl. Phys. A: Mater. Sci. Process., 2010, 100, 613-624 

7 F. Rosi, V. Manuali, T. Grygar, P.Bezdicka, B. G. Brunetti, A. Sgamellotti, L. Burgio, C. Seccaroni, C. Miliani, J. Raman 

Spectrosc., 2011, 42, 407-414 

8 M. Alfeld, K. Janssens, J. Dik, W. de Nolf, G. van der Snickt, J. Anal. At. Spectrom., 2011, 26, 899-909 

9 J. R. J. Van Asperen de Boer, Applied Optics, 1968, 7, 1711-1714 

10 J. R. Mansfield, M. Attas, C. Majzels, E., Cloutis, C. Collins, H. H. Mantsch, Vib. Spectrosc., 2002, 28, 59-66 

11 C. Bonifazzi, P. Carcagni, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, D. Bencini, J. 

Opt. A: Pure Appl. Opt, 2008, 10  

12 C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res., 2010, 43, 847-856 

13 C. Fisher, I. Kakoulli, Reviews in conservation, 2006, 7, 3-16 

14 H. Liang, Appl. Phys. A: Mater. Sci. Process., 2011 , 106, 309-323 

15 J. K. Delaney, J. G. Ziebel, M. Thoury, R. Litteton, K. M. Morales, M. Palmer, E. Rene de la Rie, Proc. of SPIE, 2009, 

7391,  

16 F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B. G. Brunetti, A. Sgamellotti, Angew. Chem. Int. Ed., 2013, 52, 1-5 

17 S. Vahur, A. Teearu, I. Leito, Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1061-1072 

18 K. Castro, M, Perez, M. D. Rodrieguez-Laso, J. M. Madariaga, Anal. Chem., 2003, 75, 214-221 

29 C. Miliani, F. Rosi, A. Daveri, B.G. Brunetti, Appl. Phys. A: Mater. Sci. Process., 2012, 106, 295-307 

20 D. Buti, F. Rosi, B. G. Brunetti, C. Miliani, Anal. Bioanal. Chem., 2013, 405, 2699-2711 

21 V. A. Sole, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Spectrochimica Acta B, 2007, 62, 63-68 

22 W. De Nolf, K. Janssens, Interface Anal., 2010, 42, 411-418 

23 G. Van Der Snickt, W. De Nolf, B. Vekemans and K. Janssens, Appl. Phys. A: Mater. Sci. Process., 2008, 92, 59-68.  

Page 19 of 21 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



20 

 

24 J. L. Rendon, C. J. Serna, Clay Miner., 1981, 16, 375-381 

25 V. Ramaswamy, R. M. Vimalathithan, V. Ponnusamy, Adv. Mat. Lett., 2012, 3, 29-33 

26 D. Saunders, R. Billinge, J. Cupitt, N. Atkinson, H. Liang, Stud. Conserv., 2006, 51, 277-290 

27 K. A. Dooley, S. Lomax, J. G. Zeibel, C. Miliani, P. Ricciardi, A. Hoenigswald, M. Loew, J. K. Delaney, Analyst, 2013, 

138, 4838-4848  

28 L. Robinet, M. Corbeil, Studies in Conservation, 2003, 48, 23-40 

29 C. Miliani, A. Daveri, B. G. Bruinetti, A. Sgamellotti, Chemical Physics Letters, 2008, 466, 148-151 

 

Page 20 of 21Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



Graphical Abstract 

 

Macroscopic Fourier Transformed Infrared scanning in reflection mode (MA-rFTIR), a new tool for the  

chemical imaging of cultural heritage artefacts in the extended mid-infrared range (7500-375 cm
-1

). 
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