All chapters


From Drug Dosage Forms to Intelligent Drug-delivery Systems: a Change of Paradigm

The design of new drug-delivery systems (DDSs) able to regulate the moment and the rate at which the release should take place, and even to target the drug to specific tissues and cell compartments, has opened novel perspectives to improve the efficacy and safety of the therapeutic treatments. Ideally, the drug should only have access to its site of action and the release should follow the evolution of the disease or of certain biorhythms. The advances in the DDSs field are possible because of a better knowledge of the physiological functions and barriers to the drug access to the action site, but also due to the possibility of having “active” excipients that provide novel features. The joint work in a wide range of disciplines, comprising materials science, biomedical engineering and pharmaceutical technology, prompts the design and development of materials (lipids, polymers, hybrids) that can act as sensors of physiological parameters or external variables, and as actuators able to trigger or tune the release process. Such smart excipients lead to an advanced generation of DDSs designed as intelligent or stimuli-responsive. This chapter provides an overview of how the progress in DDSs is intimately linked to the evolution of the excipients, understood as a specific category of biomaterials. The phase transitions, the stimuli that can trigger them and the mechanisms behind the performance of the intelligent DDSs are analyzed as a whole, to serve as an introduction to the topics that are comprehensively discussed in the subsequent chapters of the book. A look to the future is also provided.

Publication details

Print publication date
17 Apr 2013
Copyright year
Print ISBN

From the book series:
Smart Materials Series