Jump to main content
Jump to site search

All chapters
Previous chapter Next chapter



Chromium is ubiquitous in the environment as Cr(III) and Cr(VI) oxidation states, which interconvert under environmentally and biologically relevant conditions (although Cr(III) usually predominates). While Cr(VI) is an established human carcinogen and a major occupational and environmental hazard, Cr(III) has long been regarded as an essential human micronutrient, although recent literature has cast serious doubts on the validity of this postulate. Despite five decades of research, no functional Cr-containing enzymes or cofactors have been characterized conclusively, and several hypotheses on their possible structures have been refuted. Gastrointestinal absorption pathways for both Cr(III) and Cr(VI) are apparent and whole-blood speciation can involve Cr(VI) uptake and reduction by red blood cells, as well as Cr(III) binding to both proteins and low-molecular-mass ligands in the plasma. DNA-damaging effects of Cr(VI) and anti-diabetic activities of Cr(III) are likely to arise from common mechanistic pathways that involve reactive Cr(VI/V/IV) intermediates and kinetically inert Cr(III)-protein and Cr(III)-DNA adducts. Both Cr(III) and Cr(VI) are toxic to plants and microorganisms, particularly Cr(VI) due to its higher bioavailability and redox chemistry. Some bacteria reduce Cr(VI) to Cr(III) without the formation of toxic Cr(V) intermediates and these bacteria are being considered for use in the bioremediation of Cr(VI)-polluted environments.

Publication details

Print publication date
28 Jul 2014
Copyright year
Print ISBN
ePub eISBN
From the book series: