Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


All chapters
Previous chapter Next chapter

11

Metallothionein-3, Zinc, and Copper in the Central Nervous System

Metallothionein-3 (MT-3), also known as the neuronal growth inhibitory factor, has been discovered by Uchida and coworkers in 1991 in their search for a cellular component responsible for antagonizing aberrant neuritic sprouting and increased survival of cultured neurons stimulated by Alzheimer's disease (AD) brain extract. Since this initial discovery further studies showed that MT-3 possesses peculiar structural and functional properties not shared by other members of the mammalian MT family. Several lines of evidence suggest that the metal-binding protein MT-3 plays a vital role in zinc and copper homeostasis in the brain. Although far from being understood, the unusual structural properties of MT-3 are responsible for its neuronal growth inhibitory activity, involvement in trafficking of zinc vesicles in the central nervous system, protection against copper-mediated toxicity in AD and in controlling abnormal metal-protein interactions in other neurodegenerative disorders.

Publication details


Print publication date
19 Jan 2009
Copyright year
2009
Print ISBN
978-1-84755-899-2
PDF eISBN
978-1-84755-953-1
From the book series:
Metal Ions in Life Sciences