Jump to main content
Jump to site search

All chapters
Previous chapter Next chapter

CHAPTER 9

Iron Metabolism in Parkinson’s Disease

In the central nervous system, iron is involved in many biologically important processes such as oxygen transport and storage, electron transport, energy metabolism, and antioxidant and DNA synthesis. Parkinson’s disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Extensive research has reported that iron is heavily accumulated in the dopaminergic neurons in substantia nigra (SN) of PD patients. Changes in the expression of key iron transporters have also been observed in PD patients. Excessive iron accumulation can induce neuronal damage through reactive oxygen species production, which can cause oxidative stress increased membrane lipid peroxidation, DNA damage and protein oxidation and misfolding. This chapter provides a review about brain iron metabolism in PD, the role of iron transporters expression and function on brain iron homeostasis and distribution of intracellular iron. This knowledge will be of benefit to novel therapeutic targets for PD.

Print publication date: 25 Jul 2017
Copyright year: 2017
Print ISBN: 978-1-78262-188-1
PDF eISBN: 978-1-78262-288-8
ePub eISBN: 978-1-78801-191-4
From the book series:
Issues in Toxicology