Skip to Main Content
Skip Nav Destination

The 3.0–3.1 Å X-ray structures of the cytochrome b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus and from the green alga Chlamydomonas reinhardtii are very similar. Eight natural prosthetic groups, four hemes, one [2Fe-2S] cluster, one Chl, one β-carotene, and one n-side plastoquinone are embedded in the eight polypeptide subunits of the complex, four large (18–33 kDa) and four small (∼4 kDa). The complex is organized as a dimer with a molecular weight of 217 kDa in M. laminosus. Other subunits such as ferredoxin: NADP+ reductase may bind transiently and more weakly to the n-side of the complex. Major features of the structure are: (i) a large inter-monomer lipophilic “quinone exchange cavity” that exchanges plastoquinone/quinol with the quinone pool in the lipid bilayer membrane; (ii) a labyrinthine pathway of plastoquinone movement between n- and p-electron exchange sites through the 11 × 12 Å portal at the roof of the cavity; (iii) three prosthetic groups with unknown function, a novel high-spin heme (cn) close to heme bn, a chlorophyll a, and a β-carotene; (iv) a proposed function of heme cn is in PS I-linked cyclic electron transport, although the presumed binding site of a “sometime” inhibitor of cyclic ET, antimycin A, is occluded by heme cn; (v) the single Chl a molecule in the monomer is characterized by a short (200 ps) fluorescence lifetime and large anisotropy of fluorescence; and (vi) transfer of energy from the Chl triplet state to the β-carotene occurs despite the 14 Å separation of the pigments – it is proposed that this transfer operates through an intraprotein, interpigment O2 channel.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal