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Environmental significance

Mechanistic insights into the base-catalyzed
hydrolysis of PCDDs via QSAR and DFT approaches

*

Kun Xie ™ and Haigin Zhang

Polychlorinated dibenzo-p-dioxins (PCDDs) are persistent organic pollutants that pose considerable threats
to ecological and human health owing to their high toxicity potential. Understanding the mechanisms for
underlying the base-catalyzed hydrolysis of PCDDs in aquatic environments is essential for assessing
their environmental behaviour and ecological risks. Herein, we combined quantitative structure—activity
relationship (QSAR) models with density functional theory calculations to analyse the base-catalyzed
hydrolysis mechanisms of PCDDs. Among the four developed QSAR models, the single-parameter QSAR
model based on the lowest unoccupied molecular orbital energy (E ymo) demonstrated the best
performance, achieving a coefficient of determination of 0.89 and a root mean square error of 0.49,
indicating superior overall performance. Results indicate that the second-order rate constants for base-
catalyzed hydrolysis (kon) of PCDDs are primarily influenced by E ymo. molecular polarizability (),
molecular volume (V,,,), degree of chlorination (N¢)), and chlorine position. Specifically, increases in the
a and V,, values of PCDDs lead to higher log ko values, while an increase in the E ymo value results in
a lower log ko value. This study investigates the relationship between the molecular structure and the
rate of base-catalyzed hydrolysis of PCDDs, providing valuable insight into their environmental fate.
Furthermore, this research offers a novel theoretical perspective on the base-catalyzed hydrolysis of
PCDDs, which will aid in regulatory assessments and risk management.

Polychlorinated dibenzo-p-dioxins (PCDDs) are highly toxic and persistent pollutants widely detected in aquatic environments, yet their degradation behaviour
under alkaline conditions remains poorly understood. Understanding their base-catalyzed hydrolysis is crucial for predicting environmental fate and guiding
remediation strategies. This study reveals how key molecular descriptors—particularly Eyywmo, polarizability, and molecular volume—influence hydrolysis rates.
Integration of QSAR modelling and quantum chemical analysis provides a predictive framework for assessing PCDDs degradability. These findings enhance

mechanistic understanding of PCDDs reactivity and support environmental risk assessments and regulatory management of persistent organic pollutants.

1 Introduction

Owing to their high bioaccumulation potential, lipophilicity,
low water solubility, and semi-volatility, PCDDs do not readily

Polychlorinated dibenzo-p-dioxins (PCDDs) are a class of highly
toxic organic compounds, known as persistent organic pollut-
ants.! Their structures are bridged by two benzene rings con-
nected by two oxygen atoms, with each benzene ring potentially
substituted by 1 to 4 chlorine atoms (Fig. S1). Toxic PCDD
congeners are distinguished by the presence of chlorine atoms
at the 2, 3, 7, and 8 positions, with 2,3,7,8-T,CDD being the
most toxic.> These compounds primarily exert their toxicity by
binding to the aryl hydrocarbon receptor (AhR) in cells, influ-
encing gene expression and disrupting cellular functions,
which can lead to various toxic responses.** PCDDs are typically
byproducts of industrial processes, including incineration
processes,’ chemical manufacturing,® and metal production.”
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degrade in the environment.*® As a result, these compounds
can persist in soil, water, and organisms for extended periods,
and have also been detected in dairy products, meat, and other
foods consumed by humans," posing a potential threat to
ecosystems and human health. Therefore, understanding the
environmental behaviour of PCDDs is essential for assessing
their persistence and potential ecological risks.

Organic compound hydrolysis is a crucial chemical process
in the environment."” Our recent research has identified base-
catalyzed hydrolysis as the primary degradation pathway of
PCDDs in aquatic environments. Initial findings suggest that
the reactivity of PCDDs hydrolysis is influenced by position and
quantity of chlorine atoms on PCDD congeners.”® Given that
PCDDs have been detected in aquatic environments at
concentrations as low as picograms per litre,"**
amounts raise concerns regarding their persistence and
potential ecological impacts. However, the relationship between
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the rate of base-catalyzed hydrolysis and the specific molecular
structures of PCDDs remains unclear, necessitating further
investigation. Due to the time-consuming and labour-intensive
nature of experimentally determining this relationship, it is
impractical to examine each PCDD congener individually.
Therefore, the development of a high-throughput model to
evaluate the hydrolysis mechanisms of various PCDDs is
essential.

Quantitative structure-activity relationship (QSAR) models
have primarily been utilised to investigate the toxicity,'® AhR
binding affinity,"”” bioconcentration and biodegradability of
PCDDs."®* The robust scientific foundation of QSAR technology
is predicated on the principle that similar chemical structures
are likely to exhibit analogous chemical behaviours.>®** Conse-
quently, QSAR technology can beapplied to examine the rela-
tionship between the molecular structure and the base-
catalyzed hydrolysis rate of PCDDs, as well as to analyse the
mechanisms underlying their base-catalyzed hydrolysis.
However, to date, no QSAR model for the base-catalyzed
hydrolysis of PCDDs has been reported to date.

Herein, based on the second-order rate constants for base-
catalyzed hydrolysis (kon) of 75 PCDDs, calculated using
quantum chemical methods, we utilised multiple linear
regression (MLR) to develop four QSAR models. These models
aim to explore the mechanisms underlying the base-catalyzed
hydrolysis of PCDDs. Developed in accordance with the guide-
lines of the Organization for Economic Co-operation and
Development (OECD),*® and these models serve as a valuable
tool for assessing the environmental persistence of organic
chemicals.

2 Computational details
2.1 Data collection

The ko values for 75 PCDDs were derived from our previous
DFT/TST calculations under aqueous standard conditions
(298.15 K and 1 M), and their reliability has been demon-
strated.” In accordance with OECD guidelines (OECD, 2007),
the dataset was divided into a training set consisting of 60
compounds and a validation set comprising 15 compounds,
maintaining a 4 : 1 ratio. For analytical purposes, the data were
logarithmically transformed (logkon) and standardised to
uniform units of mol™" L h™". The log koy values vary from
a minimum of —4.28 mol™* L h™" (2-M;CDD) to a maximum of
3.39 mol 'L h™'(1,2,3,4,6,7,8,9-O5CDD).

2.2 Calculation of molecular descriptors

Three molecular descriptors were considered for model devel-
opment, including constitutional, geometric, and quantum
chemical descriptors, which have been widely applied in QSAR
studies to describe molecular size, electronic structure, and
reactivity.®*>** Among the constitutional descriptors,* the total
number of chlorine atoms (N¢j), the number of chlorine atoms
at the Cgz position (Ng), and the number of pairs of meta-
position chlorine atoms (N,,) were examined. The selected
geometric and quantum chemical descriptors, including
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molecular volume (V,,), energy of the highest occupied molec-
ular orbital (Exomo), energy of the lowest unoccupied molecular
orbital (ELumo), molecular polarizability («) and the most posi-
tive partial charge on a hydrogen atom (gH") etc., were calcu-
lated using the Gaussian 16 software package,* at the M062X/
6—31 + G(d,p)/SMD level. This method was selected based on its
proven efficacy in investigating hydrolysis mechanisms and
kinetics."?® For descriptors not available in the output file of
Gaussian 16, the wave function file input feature of Multiwfn
software was employed for computation and output.”” The
meanings of the molecular descriptors involved in models
development are provided in Table S1.

2.3 Development and evaluation of models

MLR is a conventional statistical method used in the develop-
ment of QSAR models.”® In this study, stepwise MLR analysis
was employed for variable selection and model development
using SPSS software (version 26.0). The goodness-of-fit of the
models was evaluated using statistical parameters such as the
adjusted determination coefficient (Raq;”) and the root mean
square error (RMSE). Internal validation techniques, including
leave-one-out cross-validation (Qroo?), and external explained
variance (Qe’) were employed to evaluate the predictive ability
of the models. Additional details regarding model validation are
provided in the Supplementary Material. The Q0> value was
calculated as follows:

n 2
Zl (J’; - )7(4>>
Oroo” =1-"*

N2
2 (J’i - y(4)>

where y; is the calculated log koy value for the i-th data point,
Y—ais the predicted log kop value for the i-th data point when
the model is trained without this point, and y_»is the mean
calculated log ko value of the remaining n — 1 data points,
excluding the i-th data point.

(1)

IM=|1

2.4 Applicability domain of the models

To clarify the scope and limitations of the models, the appli-
cability domain (AD) was characterised using a Williams plot
derived from standardised residuals (6) and leverage values
(k). Plotting was performed using OriginPro software (version
26.0). PCDDs were considered outliers if || > 3. Additionally,
predictions for PCDDs with high leverage values (i > h*, where
h* is the warning leverage) were deemed unreliable. The 6, A,
and h* values were calculated using the following equations:

Yi—Ji 2)

\/i<yfyi>2/<nol>

i=1

o=

where y; and y;represent the calculated and predicted values for
the i-th data point, respectively; n is the number of data points
and D is the number of descriptors.

hi=x"(X"X) ', (3)
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where x; is the descriptor value of the i-th data point; X is the
descriptor matrix of the data points; and x;” and X" are the
transposes of x; and X, respectively.

h* = 3(D + 1)n (4)

where n is the number of data points in the training set, and D
has the same meaning as above.

3 Results and discussion
3.1 Development and validation of the QSAR models

First, forward stepwise regression was performed to screen the
15 molecular descriptors of three different types. Then MLR
analysis was performed using log ko as the dependent variable
and the selected molecular structural parameters as predictor
variables, resulting in four QSAR models, as shown in Table 1.

A single-parameter QSAR model (1) with E;ymo was devel-
oped to investigate the relationship between ko and molecular
structure of PCDDs. The values of the descriptors used in the
QSAR model (1), along with the calculated and predicted ko
values, were listed in Table S2. High R,q;” and Qro0” values of
the training set indicated the goodness-of-fit and robustness of
the model (1). The linear regression results of predicted versus
calculated values for model (1) as well as the Williams plot
representing the AD, are shown in Fig. 1. The data points from
both the training and validation sets are evenly distributed on
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both sides of the reference line y = x, indicating that model (1)
fit both datasets well. The AD analysis, shown in Fig. 1B,
demonstrated the lack of outliers in the validation set, z < A%,
and || < 3.

As shown in Table 1, QSAR model (2) was developed to
explore the relationship between ko and «. The relevant data
are presented in Table S3. The R,q;” and Qro0” values of this
QSAR model were 0.83 and 0.82, respectively, indicating high
goodness-of-fit and good robustness of model (2). The differ-
ences (0.01) between the R* and Qpo0> values was <0.3, indi-
cating no over-fitting of model (2).** Moreover, this model
demonstrated acceptable predictability, with Q> = 0.88 and
RMSE. = 0.55. The results of the linear fit of the model
predictions compared to the calculated values and the Williams
plot characterizing AD are presented in Fig. S2. The results of
the AD characterization revealed |6| <3 and & < A*(0.1), indi-
cating that all PCDDs were within the AD.

Among geometric descriptors, V;, is generally used to
develop QSAR models for the physicochemical properties of
PCDDs,*?*! suggesting that V;,, could provide a convenient first
estimator of koy values for PCDDs. According to Table S4, QSAR
model (3) demonstrated strong predictive capabilities within
the training and external validation sets. The close Radj2 =0.82
and Qoo” = 0.81 values for the training set, along with high
Qexi> = 0.91 values and lower RMSE., = 0.48 values for the
validation set, suggested that model (3) was well-fitted, robust,

Table 1 Quantitative structure—activity relationships between logkon and molecular descriptors for PCDDs

No. Equation Ragi™® RMSE,,” Qroo™ Rex™® RMSE,y © Qext”
1 log kou = —10.15E ymo — 4.01 0.89 0.63 0.88 0.92 0.49 0.89
2 log kou = 0.077a — 20.75 0.83 0.78 0.82 0.89 0.55 0.88
3 log kou = 0.114V,,, — 17.61 0.82 0.79 0.81 0.92 0.48 0.91
4 log kon = 1.32 N¢j — 0.48 Ng + 0.37 Ny, — 0.87 0.69 0.86 0.89 0.56 0.77

4.92

“ Adjusted determination coefficient. ° The root mean square error on the training set. ¢ Leave-one-out. ¢ External determination coefficient. ® The
root mean square error on the validation set./ External explained variance.
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(A) Plot of calculated vs. predicted log ko values of PCDDs for model (1); (B) Williams plot indicating the applicability domain of model (1).

The vertical dotted line represents the warning leverage value (h* = 0.1).
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Table 2 Significant p, t-test and VIF values of the descriptors involved
in model (4)

Descriptor t VIF P

Na 10.722 3.697 <0.001
Ng —3.952 2.158 <0.001
N 2.155 2.531 <0.04

“ ¢ represents the statistics obtained by the t-test. ” P represents the
significance level of the #-test.

and had good external predictive ability. Fig. S3A demonstrates
the correlation between predicted and calculated values for
model (3), indicating the model's good predictive performance.
The AD characterization (Fig. S3B) revealed that all PCDDs were
within the AD, with no outliers. In the validation sets, there is
a ‘good high leverage’ point (1,2,3,4,6,7,8,9-O3CDD) with
a higher than the warning 4 value of 0.1 and |§| < 3, implying
that the model (3) possesses some degree of extrapolating
ability.>>**

PCDD congeners with the same number of chlorine atoms
can display significantly different chemical and physical prop-
erties depending on the positions of the chlorine atoms
attached to the parent structure.® Therefore, different degrees of
chlorination and chlorine atoms position is essential in
understanding these differences. Three molecular descriptors
(Nc1, Ng, and Ny,) were included in the QSAR model (4), which
demonstrated good fitting, robustness, and predictive capa-
bility. N was the most significant descriptor that negatively
contributed to logkon (¢ = 10.722, P < 0.001). The variance
inflation factor (VIF) values for each descriptor were less than 5,
indicating the absence of multicollinearity between the
descriptors. The p-values for all descriptors less than 0.05,
demonstrating statistically significant contributions to the
predictive power of model (4). The fitting results between the
predicted and calculated values of the model (4) were good, as
shown in Table S5 and Fig. S4A. Additionally, Fig. S4B, illus-
trates the AD characterisation of model (4), revealing |d| < 3,
which indicates no outliers (Table 2).

A comparison of the four models indicated that model (1),
which ustilised Epymo as a descriptor, demonstrated the best
overall performance with the highest R,q;” (0.89) and Qex” (0.89)
values and lowest RMSE.,, (0.49) value. This finding suggests
that electronic properties, specifically Eyumo, play a crucial role
in the base-catalyzed hydrolysis mechanism of PCDDs. In
practical applications, the choice of model should balance
complexity, accuracy, and generalizability.**** Therefore, model
(1) serves as a robust and reliable tool for the mechanism
analysis of PCDDs, which is essential for understanding their
environmental behaviour and potential impact.

3.2 Mechanism interpretation

Electrophilicity is related to the E;ymo of an electrophile, where
the LUMO represents the innermost orbital with available
positions to accept electrons.*?¢ A lower Ejuymo value implies
that a molecule is more inclined to accept electrons,*”**
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View Article Online

Paper

meaning that PCDDs act as electrophiles, while OH™ ions serve
as nucleophiles during the base-catalyzed hydrolysis of PCDDs.
PCDDs primarily undergo hydrolysis via two pathways: dioxin
ring-opening and hydrolytic dichlorination.”® In the ring-
opening pathway, the electrophilic C-O bond, particularly in
PCDDs with lower E;ymo values, is more susceptible to nucle-
ophilic attack by OH ™, resulting in the cleavage of the dioxin
ring and the formation of open-ring products (chlorinated
hydroxydiphenyl ethers). In the hydrolytic dechlorination
pathway, lower Ej o values enhance the electrophilicity of C-
Cl bonds, facilitating the substitution of chlorine atoms with
hydroxyl groups to yield hydroxylated PCDDs.

Molecular polarizability is defined as the ratio of the induced
dipole moment to the electric field that produces this dipole
moment.** Molecules with high polarizability possess electrons
that can move relatively easily compared to those with low
polarizability.*® Consequently, increased molecular polariz-
ability enhances the likelihood of spatial electron distribution
changes, which in turn increases reactivity towards nucleo-
philes or electrophiles.*** In base-catalyzed hydrolysis reac-
tions, the electron clouds in PCDDs with higher « can move
more easily. This phenomenon may contribute to a reduction in
the stability of reactive sites, thereby decreasing the Gibbs free
energies (AG*) of reaction required for bond cleavage and ulti-
mately enhancing the koy. For instance, 1,2-D,CDD exhibits
a polarizability of 233.387 a.u. and a AG* of 104.599 k] mol %,
while 1,2,6-T;CDD has a polarizability of 248.523 a.u. and a AG*
of 89.92 kJ mol ™ *. Thus, log ko is positively correlated with .

According to the molecular structure of PCDDs presented in
Fig. S1, V,,, was positively correlated with the number of chlorine
atoms in PCDD congeners (V;; = 10.559N¢ + 109.414, R* =
0.983). Therefore, a higher V,, value indicated a greater number
of chlorine atoms, as the V,, value of PCDD congeners depends
solely on the number of chlorine atoms.*® Due to their strong
electronegativity, the electron density at the reaction site will
decrease with an increasing number of chlorine atoms, result-
ing in a faster attack by OH ~ ions.**** Consequently, an increase
in the V., value is associated with an increase in the koy value
for PCDDs.

The QSAR model (4) in Table 1 demonstrated the effects of
different degrees of chlorination and chlorine positions on the
base-catalyzed hydrolysis rate of PCDDs. For examples, the
electrostatic potential (ESP) distributions on the molecular
surfaces of 2,7-D,CDD, 1,2,3,4-T,CDD, 1,2,3,6-T,CDD,
1,2,3,7,8,9-H,CDD, 1,2,4,6,8,9-H,CDD and 1,2,3,4,6,7,8,9-
OgCDD were calculated to evaluate the relationship between
constitutional descriptors (N¢j, Ng and Ny,) and ko of PCDDs.
The results are presented in Fig. 2, with the blue regions indi-
cating positive ESP (low electronic density), which OH™ ions
generally prefer to attack. According to Fig. 2, positive ESP
values of PCDDs were primarily distributed at the C,, position,
increasing with the number of chlorine atoms. This finding
aligned with the positive correlation between log kox and N¢; in
model (4), where a greater number of chlorine atoms enhanced
the koy value. For the PCDD congeners with the same N¢; and
Ny, values, such as 1,2,3,7,8,9-H,CDD and 1,2,4,6,8,9-H,CDD,
the former with a higher Ng value exhibited a greater positive

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Electrostatic potential (ESP) distribution of PCDDs calculated at the MO62X/6—31+ G(d,p)/SMD level.

ESP than the latter with a lower Ng value. For PCDD congeners
with the same N¢; and Ng values, those with higher Ny, values
had a lower positive ESP, as seen with 1,2,3,4-T,CDD and
1,2,3,6-T,CDD. This finding indicated that variations in the
number of Cg position and paired meta-position chlorine atoms
significantly affected the electron distribution of PCDDs with
the same N values, leading to notable changes in their
hydrolysis rates. Therefore, the size of the blue region was
closely related to the number and position of chlorine atoms in
PCDDs. This observation supported the relationship described
in the model and explained the effects of the number of chlo-
rine atoms, Cgz position chlorine atoms and paired meta-
position chlorine atoms on the base-catalyzed hydrolysis rate
of PCDDs.

4 Model comparison

This study is the first to develop models for evaluating the
hydrolysis reaction of PCDDs, addressing a gap in the literature,
as no previous models have been reported in this area. To assess
the accuracy and interpretability of these models, they were
compared with two types of QSAR models: one for predicting
the reaction of PCDDs with hydroxyl radicals and another for
predicting the base-catalyzed hydrolysis rate of various organic
compounds.

Previous researchers have developed QSAR models that
investigate how structural and quantum chemical descriptors
influence the reactivity of PCDDs with hydroxyl radicals. Yan
et al. utilised partial least squares (PLS) regression to develop
polyparameter linea free energy models that concentrate on the
rate constants for gas-phase reactions of hydroxyl radicals with
PCDDs and dibenzofurans (PCDD/Fs).** Their findings indi-
cated that electron-donating capacity, represented by descrip-
tors such as Eyomo and gH', was the primary factor affecting
reaction rates. Likewise, Qi et al. employed MLR and found that
Enowmo significantly influenced the reaction rate constant, while
Nc) played a critical role, independent of chlorine positions.*®
Luo et al. uesd MLR and reported that the position of chlori-
nation on PCDDs is a key determinant in the kinetics of
hydroxyl radical oxidation kinetics.*” Furthermore, Chen et al.
developed a model using PLS regression with structural
descriptors to predict the photolysis rate constants of PCDD/Fs
on cherry leaf wax layers.*® They discovered that PCDD/Fs with
higher N¢; and « values, along with lower Ejymo, exhibited
faster photodegradation, which aligns with our hydrolysis
model findings and highlights the significance of these
descriptors in predicting the reactivity and environmental
persistence of PCDDs. Therefore, our models build upon these
findings, further emphasising the critical role of key descriptors
such as N¢j and « values in the hydrolysis reaction.

Table 3 Comparison of different MLR models for aqueous ko values

Training set

Validation set

Model nan Raclj2 RMSEtra QL\’)O2 Rextz RMSEext Qext2
Bernhard et al. (1995) 6 1 0.838 . . . — =
Wang et al. (2018) 40 8 0.822 1.472 — — — —
Xu et al. (2019) 23 3 0.865 0.389 0.801 0.925 0.311 0.840
Xu et al. (2019) 5 1 0.975 0.276 0.914 — — —
Xu et al. (2021) 24 3 0.842 — 0.729 0.919 — 0.843

“ n represents the number of chemicals in the data set. ” p represents the total number of predictor variables.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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As illustrated in Table 3, we conducted a comparison of the
models developed in this study with QSAR models created
through MLR for hydrolysis rates of various organic
compounds.**~* All models were built using rigorous statistical
algorithms and well-defined descriptors, consistent with our
findings in Model (1). Berger et al. observed that the acid-
catalyzed hydrolysis rate constants of sulfonylureas decreased
significantly with increasing Eyymo values.*® Similarly, Xu et al.
reported that phthalate esters with higher « values displayed
a significant increase in the ko of one side chain, corroborating
with the findings of our model (2).** Compared to these models,
the current model offers more accessible descriptors, enhanced
clarity and a larger dataset of 75 samples, thereby improving
reliability and mitigating the risk of overfitting. This provides
a simpler and more interpretable alternative to more complex
models. Consequently, our model presents a more robust and
interpretable framework for assessing the hydrolysis mecha-
nism of PCDDs, utilising key descriptors while ensuring high
predictive accuracy and simplicity. This makes it a valuable tool
for evaluating the environmental persistence of PCDDs under
base-catalyzed conditions.

5 Conclusion

As of 2025, the Chemical Abstracts Service Registry encom-
passes over 290 million unique chemical substances (Chemical
Abstracts Service, 2025).%® This extensive database relies exclu-
sively on experimental measurements for risk assessment,
underscoring the necessity for alternative approaches, such as
QSAR models, to effectively evaluate the risks associated with
both existing and newly identified chemicals. In this study, four
QSAR models were developed for 75 PCDDs utilising molecular
descriptors with the Gaussian 16 software package. Statistical
diagnostics confirmed the quality of these models, while both
internal and external validation demonstrated their robustness
and predictive capability. The QSAR models derived from
quantum chemical (Eyymo and «), geometric (V,,), and consti-
tutional (N¢j, Ng, and Ny,) descriptors exhibited a strong corre-
lation with kon and effectively portrayed the base-catalyzed
hydrolysis of PCDDs. The developed models facilitate the
exploration of the mechanisms responsible for the base-
catalyzed hydrolysis of PCDDs. Additionally, these models
provide molecular descriptors that can be utilised in the
development of future machine learning and artificial intelli-
gence models for the hydrolysis of aromatic heterocyclic
compounds.
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