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This review highlights the potential of bio-based composites comprising alginate, cellulose,
and Moringa oleifera as sustainable alternatives to conventional water treatment materials.
These biopolymers, derived from renewable resources, offer low toxicity, biodegradability, and
effective adsorption of toxic heavy metals from aqueous environments. Their application not
only mitigates environmental pollution but also reduces dependency on synthetic, non-
biodegradable materials that contribute to secondary waste generation. By valorising
agricultural by-products and natural resources, such composites support circular economy
principles and promote greener technologies for water purification, aligning with global efforts

to address environmental sustainability and resource conservation.
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Abstract

The escalating prevalence of heavy metal contamination in aquatic ecosystems, driven by
industrialisation, urbanisation, and population growth, has necessitated the development of
sustainable and efficient water purification technologies. This review critically evaluates recent
advances in developing and applying bio-based composites comprising sodium alginate,
cellulose, and Moringa oleifera (M. oleifera) to remove heavy metals from aqueous systems. The
review examines the physicochemical characteristics, adsorption mechanisms, and synergistic
properties of these biopolymers, emphasising the role of the active compounds in each. The
deduction from the comparative study of this review reveals cellulose-based composites
demonstrating the highest overall adsorption performance, with several systems exceeding 1000
mg/g across different heavy metals. Although alginate composites achieve the highest single
reported capacity, 1742 mg/g for Pb?*, their performance is more dependent on chemical or
nanoparticle functionalisation. M.oleifera biosorbents show moderate adsorption capacities, with
improvements mainly observed after chemical modification. Overall, cellulose composites exhibit

the most consistent and versatile adsorption behaviour among the three materials. This review
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identifies potential applications, highlights key research gaps, and outlines future directions for

advancing bio-based composite materials as viable solutions for sustainable water treatment.

Keywords: Bio-based composites, Sodium alginate, Cellulose fibres, Moringa oleifera, Heavy

metal removal

1 Introduction

The rapid growth of the global population has significantly increased industrial
activities, reducing the availability of clean water.'~® Water is one of the most
pressing environmental concerns, making obtaining safe and affordable clean
water increasingly challenging. Heavy metal contamination in water is also a
major concern, arising from both natural and human activities*®. Both industrial
processes and natural phenomena, such as the weathering of metal-rich rocks
and geothermal activities, contribute to heavy metal pollution in water bodies.
Drinking water is an invaluable resource for life, and ensuring access to water
and sanitation by 2030 is a key objective outlined by the United Nations
Sustainable Development Goals (UNSDGSs).1°

Water is an essential resource, and numerous statistics have been collected to

assess various aspects of its usage, availability, and quality. Several international

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

organisations actively gather and analyse water-related data, including the United
Nations Educational, Scientific and Cultural Organisation (UNESCO),!! the
United Nations Children's Fund (UNICEF), and many others.? According to data
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from 57 countries in 2015, approximately 84 litres of wastewater per capita were
generated, yet only 29 litres underwent treatment. By 2021, global household
wastewater production had reached 271 billion cubic meters, with treatment rates
improving to 55.5% based on data collected from 234 countries.'34
Furthermore, studies indicate that approximately 70% of the Earth's surface is
covered by water, of which only 2.5% consists of freshwater. A mere 1% of this
freshwater is readily accessible for human use.'® The current global population
of 7.6 billion people must share this limited resource. The United Nations projects
that by 2050, the global population will reach 9.8 billion, with approximately 4

billion people expected to experience water scarcity. This will exacerbate the

2
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existing crisis, as over two billion individuals already lack access to clean water.
To address this challenge, efficient water treatment strategies must be developed
to treat wastewater and natural water sources while ensuring sustainability

through renewable energy sources.1’-19

Various methods and materials have been proposed for tackling water
contamination, with a growing emphasis on biopolymer-based solutions.
Biopolymers, derived from natural sources such as cellulose, alginate (from
brown algae), and chitosan (from crustacean shells), have gained considerable
attention for water purification due to their biodegradability, eco-friendliness, and
high adsorption capacity for heavy metals 2°-?2, Their properties, such as high
adsorption capacity and eco-friendliness, make them suitable materials for water
purification applications and have been widely explored in recent studies. 23

Among these, cellulose is recognised as one of the most abundant
polysaccharides on earth, characterised by its high mechanical strength,
hydrophilicity, and ability to form stable composites.?4#?> Alginate, extracted
primarily from brown algae, is also rapidly gaining traction as a versatile
biopolymer in different fields due to its unique gel-forming capabilities and non-
toxic nature.?%2” The growing market for alginate reflects its increasing utilisation
in water treatment, where it serves as an efficient medium for adsorbing heavy
metal ions. Combining cellulose and alginate in composite forms presents a
promising approach for enhancing adsorption efficiency and mechanical
properties, making these biopolymers valuable for sustainable water treatment

applications.?124.28

In addition to biopolymers, M. oleifera has been extensively investigated as a
cost-effective, eco-friendly biosorbent for removing heavy metal ions from
water.?®-32 These seeds contain natural cationic proteins and bioactive
compounds that facilitate ion exchange and metal binding, improving water
purification efficiency 2. Studies have also demonstrated that M. oleifera seed
pods can effectively remove mixtures of metals in wastewater, achieving optimal

removal efficiency under specific conditions, such as a 60-minute contact time
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and a 1.0 gram sorbent dose.** The ability of M. oleifera to function as both a
coagulant and an adsorbent positions it as a dual-function material for water
treatment, enhancing its potential for integration with biopolymers like cellulose
and alginate to develop advanced composite materials aimed at heavy metal ion

contamination.27:3%

Although biopolymers and M. oleifera seed powders benefit water treatment, few
studies have examined their hybrid composites. This presents a significant
research gap in developing and characterising hybrid composites.®® Few studies
have been reported. Development of hybrid electrospun alginate-pulverised M.
oleifera composites was done by orisawayi et al. 3 In their studies, pulverised M.
oleifera at a minimum dose suspension was incorporated into Sodium alginate

fibre using the electrospinning techniques.

Another study reported the development of effective biosorbents made from
combining M. oleifera and alginate beads for uranium removal from aqueous
solutions. Orisawayi et al.?? further developed sodium alginate fibres through wet-
spinning. In contrast, more recent investigations have combined sodium alginate
with polyethyleneimine and M. oleifera leaves—seed beads for uranium

adsorption, including isotherm and kinetic analyses. % These composite systems

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

have demonstrated improved adsorption capacity and favourable structural

characteristics.
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complementary physicochemical and functional properties relevant to heavy-
metal removal. Alginate offers a biocompatible, carboxyl-rich matrix with strong
ion-binding capacity and efficient gel-forming behaviour, making it highly suitable
for capturing multivalent metal ions®*4!. Cellulose, the most abundant natural
polysaccharide, provides mechanical stability, a high surface area, and additional
hydroxyl groups that boost adsorption3%42-47, In contrast, M. oleifera seeds supply
bioactive, cationic proteins and coagulant molecules capable of binding and
aggregating dissolved metal ions344849  Although other biopolymers such as

pectin, starch, and chitosan have been widely studied, they do not collectively
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offer this combination of mechanical robustness, adsorption efficiency, natural

coagulation activity, and environmental sustainability®°-52,

Therefore, the novelty of this review arises from its focus on evaluating alginate,
cellulose, and M. oleifera as distinct materials for heavy-metal removal, combined
with an assessment of how their complementary traits could be strategically
melded to improve adsorptive performance. While many studies and reviews
have examined these materials separately or with other biopolymers, none have
explored their combined potential within a single analytical framework, offering a

new perspective for designing more effective and sustainable adsorbent systems.

The study first outlines heavy metal contamination as a significant environmental
concern, summarising key pollutants and regulatory limits set by the United
States Environmental Protection Agency (EPA), World Health Organisation
(WHO) and European Union (EU), including the origin or sources of the heavy
metals. It then evaluates the limitations of conventional treatment methods, such
as chemical precipitation, ion exchange, and membrane filtration, emphasising
the need for sustainable alternatives. The focus then shifts to biopolymers,
particularly sodium alginate and cellulose, exploring their adsorption
mechanisms, composite formulations, and integration with M. oleifera to enhance
performance. Fabrication techniques such as electrospinning and wet spinning
are also reviewed for their role in optimising material properties. Having
established the urgency of water pollution and the potential of biopolymer-based
solutions, it is crucial first to understand the nature, sources, and health
implications of the primary contaminants and heavy metals that threaten aquatic

systems.

2 Background on Heavy Metals

Heavy metal ions such as lead (Pb?*), cadmium (Cd?*), cobalt (Co?*), Nickel
(Ni2*), barium (Baz*), copper (Cu?*), chromium in both trivalent and hexavalent
states (Cr3* / Cr®"), zinc ( Zn?*), mercury (Hg?*), and arsenic in trivalent and

pentavalent forms (As3*, As®") constitute major contaminants in aquatic

5
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ecosystems. Their elevated toxicity and persistence in natural watersmake them
a significant environmental concern .55 There are several primary sources of
heavy metal ions. Figure 1 illustrates the different sources of environmental
pollution caused by heavy metals and the adverse effects of the metals on
pollution by heavy metal ions.5%%%5 Figure l1a shows the primary industrial
sources, such as the mining industries %7, textile industries,>5% thermal and
nuclear plants associated with the cement industry,®® the manufacturing and
conservation of wood, dye production,®* metal plating and those associated with
the steel manufacturing industries,®? energy and water cooling processes 0, the
production of photographic materials,®® the manufacturing of various corrosive

paints,®* and other industrial activities in the global oil and gas industries. 65-67

However, heavy metal contamination is not limited to industrial activities alone.
Figurelb Shows a broader perspective, incorporating additional sources such as
urban solid waste, wastewater effluents, e-waste, biosolids, fertilisers, pesticides,
corrosion, pharmaceutical products, and natural occurrences, including volcanic
eruptions. These diverse contamination sources contribute significantly to
environmental pollution, making the development of sustainable remediation

strategies imperative . Heavy metal ions are often described as metallic forms of

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

elements that are mostly denser than water and have a large atomic radius .%8
Heavy metal ions are dangerous and more prevalent, resulting from the persistent

half-life .57 The Common organic compounds found in most water bodies can

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

be degraded over time. Still, when polluted into water bodies, the heavy metals
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remain an environmental issue as most of them are difficult to decompose in the

water.

The United States Environmental Protection Agency (EPA) with Maximum
Contaminant Levels (MCLs),”>7? The World Health Organisation (WHO), and the
European Union (EU), with the Maximum permissible level’®74, have established
regulatory limits for these contaminants to protect water quality and public health
8875 | ead has been extensively studied as one of the metals causing
environmental pollution, resulting from its high level of toxicity and often

widespread presence .”677 Contamination from lead is common and is primarily

6
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due to its use in many plumbing infrastructures, resulting from the erosion of
natural deposits and its presence in most automobile batteries 8. The presence
of Lead, even at low blood concentrations of 1-2 ug/dL, lead exposure may lead
to severe health effects, including neurodevelopmental, cardiovascular, renal,
and reproductive issues, and in children, could show slight deficits in attention
span .”® The EPA MCL is 0.01 mg/L, with WHO and EU also maintaining a 0.01
mg/L limit.

In addition, metal ions such as cadmium are another frequently encountered
heavy metal pollutant because they are primarily released in most industrial
processes. The EPA MCL is 0.005 mg/L, while WHO and EU enforce limits of
0.003 mg®® Chromium is well-documented as an environmental contaminant and
primarily originates from most industrial activities and processes, such as
electroplating, textile manufacturing, and the stainless steel industry. In most
research, this metal has been highlighted as it's toxic and carcinogenic, therefore
causing concern. The EPA sets an MCL of 0.1 mg/L, whereas the WHO and the
EU impose stricter limits of 0.05 mg/L. &

Mercury is also a highly toxic heavy metal introduced into the environment
through various industrial activities, and processed are often contain mercury and
waste in water bodies and can cause challenges for aquatic ecosystems; reports
show that mercury can transform into methylmercury, known as a bioavailable
form, that is accumulated in marine bodies and therefore affecting the aquatics
organisms. This poses a serious Neurotoxin, as kidney damage bioaccumulates
in aquatic organisms and is a health threat to humans consuming contaminated
seafood. The EPA enforces an MCL of 0.002 mg/L, the WHO sets 0.006 mg/L,

while the EU has a more stringent limit of 0.001 mg/L. 8283

Arsenic, a naturally occurring metalloid, poses serious health risks. Arsenic can
cause severe health conditions in the skin, causing skin damage or problems with
the circulatory system, cancer, and cardiovascular diseases. "8 It is a significant

contaminant in the groundwater; due to its high toxicity, the EPA, WHO, and EU
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all impose a maximum limit of 0.01 mg/L, particularly in regions where mainly

agricultural activities have historically involved arsenic-based pesticides. 8284

Other metals, such as nickel, barium, copper, and zinc, pose significant
environmental and health risks due to their persistence in water bodies. These
metals also enter aquatic ecosystems through industrial discharge, mining, and
improper waste disposal, contaminating drinking water sources and affecting
marine life. Nickel exposure can lead to allergic reactions, respiratory issues, and
carcinogenic effects, disrupting aquatic microbial activity. Nickel is commonly
found in metal alloys, including mining waste and industrial effluents. Barium
contamination originates from the oil drilling, glass, and paint industries. Soluble
barium compounds pose health risks, causing hypertension, muscle weakness,

and neurological disorders. 84-86

Copper and zinc are essential metals but become toxic in excess, leaching from
plumbing, mining, and fertilisers. Copper bioaccumulates in fish and amphibians,
disrupting metabolism and causing liver, kidney, and neurological issues in
humans. Zinc pollution can lead to immune suppression, developmental
problems, and metabolic disorders, ultimately affecting fish growth and disrupting
the balance of phytoplankton. The presence of these metals in water demands

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

effective pollution control, water treatment, and stricter regulations to mitigate

their toxic effects on human health and ecosystems. 8789
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Table 1 provides a comparative overview of major heavy metal contaminants,

(cc)

their potential health risks, and their regulatory limits established by the EPA,
WHO, and EU. Figure 1c shows a retrieved study from a previous study retrieved
from the literature, which shows the adverse effects of commonly encountered
heavy metals on different human organs.®® Furthermore, these standards are
crucial for maintaining water safety, and exposure to heavy metals can have
severe biological consequences, affecting multiple human organs. This
illustration complements the regulatory data presented in Table 1 by emphasising

the physiological risks associated with prolonged exposure to heavy metals.
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The legally enforceable Maximum Contaminant Levels (MCLSs) ensure the safety
of drinking water. The World Health Organisation (WHO) provides guidelines,
values, and Maximum Permissible Levels (MPLs) based on health risk
assessments. The European Union (EU) sets strict regulatory limits on drinking

water quality that are mandatory for all EU member states.5%-72
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Table 1 Regulatory Standards, Health

Drinking Water (EPA, WHO, and EU)

Environmental Science: Advances

Effects, and Sources and in Industrial Origins of Heavy Metal Contaminants in

Heavy Potential Health Effects from Long- EPA (Drinking WHO Guideline EU Drinking Sources of Industrial Origins for
Metals Term Exposure Above the MCL Water MCL) Value (MPL) Water Standard Contaminants in the Heavy Metals
687174 (unless specified as short-term) (mg/L) (malL) (MPL) Drinking Water
68,71-74 71,72 e (mg/L) 68,71-74
73
Lead (Pb)  Neurodevelopmental effects, Action Level=0.010 0.01 0.01 Corrosion of Battery manufacturing,
cardiovascular, renal, and household plumbing Metal smelting and
reproductive issues, children could systems; erosion of refining, Paint and
show slight deficits in attention span natural deposits pigment industries,
Ammunition production,
Plumbing and soldering
waste
Electroplating industries,
Cadmium Kidney damage, gastrointestinal 0.005 0.003 0.005 Corrosion of Ni-Cd battery
(Cd) toxicity, carcinogenic effects galvanised  pipes; Blrggtlijcci?gt‘)iliz\e/r(s:,and
erosion of natural Mining and smelting
deposits; discharge operations, Pigment

10

from metal refineries;

manufacturing
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Cobalt
(Co)

L]

k=
Nickel (Ni)

Allergic  reactions,

cardiovascular

effects, and potential carcinogenicity

Respiratory  issues,

effects, microbial toxicity

carcinogenic

Environmental Science: Advances

Not Established

Not Established

Not Established

0.07

11

Not Established

0.02

runoff from waste

batteries and paints

Industrial  sources,

mining activities,

alloy production

Industrial
discharges; erosion
of natural deposits;
nickel plating and

battery industries

Battery  manufacturing
(especially Li-ion and
rechargeable batteries),
Superalloy and
aerospace component
production, Mining and
ore smelting of copper
and nickel, chemical
catalyst manufacturing,
Pigments, ceramics, and
glass colouring

industries, Electroplating

and metal finishing,
Cement  and steel
production waste

Electroplating and
surface finishing,
Stainless steel
manufacturing,  Mining

and refinery effluents,

Catalyst production.
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Barium
(Ba)

Copper
(Cu)

Chromium
(Cn)

Environmental Science: Advances

Hypertension or increase in blood 2
pressure , muscle weakness,

neurological disorders

Liver, kidney, neurological damage, Action Level=1.3

bioaccumulation in aquatic species

Carcinogenic, severe respiratory 0.1

effects, industrial exposure risk

0.7

2.0

0.05

12

Not established

2.0

0.05

Discharge of drilling

wastes;

discharge

from metal refineries;

erosion

of

deposits

Corrosion

natural

of

household plumbing

systems; erosion of

natural deposits

Discharge from steel

and

pulp

mills;

Oil and gas drilling
operations ( example:

barite-based drilling
muds), Paints, pigments,
and ceramics
manufacturing,

Glass and electronic
component production,
Metal refining and alloy
processing, Rubber and
plastic additives
industries, Fireworks and
pyrotechnics, Waste
from chemical
manufacturing
processes

Mining and smelting,

Electrical and electronics
industries, Metal pipe
corrosion, Pesticide

formulation

Leather tanning,
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Zinc (Zn) Immune suppression, developmental
issues, metabolic disorders

Mercury Neurotoxin, kidney damage,

(Ho) bioaccumulates in marine organisms

Arsenic Skin damage or problems with the

(As) circulatory system may have

increased the risk of getting cancer

0.002

0.010
01/23/06
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as

of

Not Established

0.006

0.01

13

Not Established

0.001

0.01

erosion of natural
deposits
Corrosion of
galvanised pipes;
industrial

discharges; erosion

of natural deposits

Erosion of natural
deposits; discharge
from refineries and
factories; runoff from
landfills and

croplands

Erosion of natural
deposits; runoff from

orchards, runoff from

Stainless steel and alloy
production,
Electroplating, Dye and

pigment industries,
Wood preservation
processes

Galvanisation industries,
Rubber and tyre
manufacturing, Pigment
and paint industries,

Brass alloy production
Chlor-alkali plants,

Thermometer and lamp

manufacturing,

Gold and silver mining,

Dental amalgam waste,

Chemical production
processes

Mining and ore
processing, Pesticide
and herbicide

manufacturing,
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glass and electronics

production wastes

Semiconductor

microelectronics

and

industries, and Coal

combustion effluents
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Figure 1 (a) and (b) are the different sources of environmental pollution caused
by heavy metals, and (c) the Adverse effects of commonly encountered heavy
metals on other human organs (All figures are adapted and (c) was modified with

permission, Licensed under Elsevier’s terms).50.55.56

Several treatment technologies have been developed to address this
environmental challenge due to heavy metal contamination, hazardous effects
and regulatory importance in water systems. The following section critically

examines these technologies. Water Treatment Technologies for Removing

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Heavy Metals.

3 Water Treatment Technologies for Removing Heavy Metals.

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

3.1 Chemical Precipitation

(cc)

Chemical precipitation has been used and described as an effective method for
removing heavy metals, primarily from wastewater. Chemical precipitation is
widely used in industrial wastewater treatment due to its simplicity, cost-
effectiveness, and established technology. °°°! This method uses chemical
reagents that react with most metal ions to form an insoluble precipitate % Studies
show that the primary precipitation mechanisms include hydroxide and sulphide
precipitation, which facilitate the removal of these metal ions during the process.
However, the main limitations of this method involve difficulties in removing mixed

metals due to pH levels that may be difficult to control when hydroxide
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precipitation is used 9. In addition, there is also a risk of secondary
contamination, particularly from sulphide precipitation, which can sometimes lead

to the formation of toxic hydrogen sulphide (H2S) gas, as reported .%°

3.2 lon Exchange

Another widely used method is ion exchange, which is often applied in water
purification technologies, as this method relies on ion exchange to remove metal
ions. During the process, ion exchange media include zeolite resins and synthetic
organic polymers %. These methods have been proven effective for eliminating
cations and anions from freshwater, ensuring high removal efficiency. However,
this method has several drawbacks, including the requirement for pretreatment
and chemical regeneration, which can lead to secondary pollution due to the
materials used. Therefore, ion exchange leaves some secondary pollution after
water treatment /. Studies suggest that this method is less effective for highly
concentrated mixed-metal wastewater, making it more suitable for applications

involving mixed heavy-metal solutions from aqueous solutions °7:%,

3.3 Membrane Separation

Membrane separation technologies are emerging methods employed for
pressure-driven processes such as ultrafiltration, nanofiltration, reverse osmosis,
concentration, and removing some heavy metal ions.®®1% This method is
advantageous due to its simple operation, low energy consumption, and absence
of significant phase changes, making it an environmentally friendly alternative.
However, challenges associated with this method include the high cost of
membrane materials and their susceptibility to fouling and degradation, which
may reduce the long-term efficiency of the process. 1°! Despite these limitations,
membrane separation remains a valuable technology for water treatment,

particularly in removing low-concentration contaminants or pollutants from water.
101,102
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3.4 Electrochemical Technologies

Electrochemical methods, including electrocoagulation, electrodeposition,
electrooxidation, and electrolocation, have been extensively explored for heavy
metal removal. These techniques involve the application of electrical currents to
induce coagulation, charge neutralisation, and precipitation of heavy metal ions
103, Electrochemical processes are known for their high removal efficiency, ease
of operation, and minimal sludge production, reducing the need for additional
conditioning treatments. However, their applicability is often limited by energy
consumption, electrode material degradation, and the potential formation of

secondary contaminants. 104105

3.5 Bioremediation

The bioremediation technique is another method that utilises biological processes
for water treatment. This approach includes microbial remediation and
phytoremediation, which involve using microorganisms or plants to degrade,
immobilise, or remove heavy metals from water bodies. 1% Studies have shown
that this method has been proven to be an environmentally sustainable method.
It is also cost-effective and has been successfully applied for the restoration of

the most polluted sites. However, bioremediation has significant limitations,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

including overdependence on low metal concentrations and long remediation

cycles, making it challenging to scale up the process for industrial applications.
107-109
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3.6 Adsorption

Over the decades, adsorption has emerged as one of the most efficient and
widely used methods for removing heavy metals from contaminated water. %> The
process has emerged as a promising alternative for water treatment. Adsorption
is the process in which ions, atoms, or molecules adhere to the surface of a solid
material. It differs from absorption, which involves the penetration of molecules
into the interior of a solid. 112111 Based on the forces governing this phenomenon,
adsorption is categorised as physisorption or chemisorption. 12 This method

relies on interfacial interactions between metal ions (adsorbate) and the materials
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used for their removal (adsorbent). Various media can be utilised to facilitate
contaminant removal through mechanisms such as pore filling, surface binding,
and chemical interactions. 13 Some of the materials reported for use include
activated carbon, carbon nanotubes, wood sawdust, alginate, cellulose, M.
oleifera, chitosan, polymeric hydrogels, lon-Exchange resins, and their
composites. As illustrated in Figure 2a, wastewater treatment methods are
categorised into electrochemical treatments, physicochemical processes, and
adsorption-based processes, highlighting their applications in contaminant

removal. 90.91

Figures 2(2b and 2c) provide a comparative overview of heavy metal removal
technologies, distinguishing between conventional methods, such as chemical
precipitation, ion exchange, and electrochemical processes, and advanced
techniques, including nanotechnology, membrane filtration, and photocatalysis.
The inset in Figure 2a further illustrates the physical and chemical adsorption
mechanisms of different adsorbate-adsorbent interactions, demonstrating their
effectiveness in pollutant removal. % Unfortunately, most reported methods or
techniques are associated with high costs, operational complications, low
efficiency, excessive chemical use, and secondary pollutants, which restrict their
applications. With the development of highly flexible, easy-to-operate, and
efficient adsorbent designs, adsorption has emerged as a promising alternative
for water treatment. Adsorption is highly advantageous due to its simplicity, cost-
effectiveness, high selectivity, and ability to treat dilute wastewater. The ability to
recycle adsorbents has been reported to minimise secondary pollution, making

adsorption a preferred choice for water treatment applications.
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Figure 2 (a) Water treatment of remediation methods, including electrochemical,
physicochemical, and adsorption-based processes (Modified with permission,
Licensed under Wiley’s terms) (b), (Modified with permission, Licensed under
Elsevier's terms) and (c) Heavy metal removal technologies, comparing
conventional and advanced techniques, (adapted with permission, Licensed

under ACS publication’s terms). 90.91.114
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While conventional technologies demonstrate varying degrees of effectiveness,
many are limited by high costs, secondary pollution, or low selectivity. These
limitations have spurred the exploration of sustainable alternatives, particularly

those derived from bio-based materials, as discussed in the next section.

4 Bio-Based Biodegradable Composites and Blends for Water Purification

4.1 Overview of Sustainable Biopolymer Composites

Biopolymers are naturally occurring polymers produced by living organisms.
Biological resources, including plants, animals, agricultural residues, and
microorganisms, are viable feedstocks for synthesising biopolymers. Figure 3
shows a typical classification and characteristics of biopolymers that have been
reported. 2° Among the primary sources derived from agriculture and plants are

corn stalks, maize, wheat, potatoes, and barley.
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Figure 3 Classification and properties of biopolymers (adapted with permission,

Licensed under Elsevier’s terms) 2°
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Biopolymers consist of monomeric units such as nucleotides, saccharides, or
amino acids that form nucleic acids, carbohydrates, and proteins.tt2-114
Biopolymers are known to be renewable and eco-friendly alternatives to most
synthetic polymers derived from fossil fuels.15-117118-120 Bjgpolymers have
gained significant attention due to their biodegradability and potential to address
environmental challenges.'?!-12¢ The Projections indicate that global plastic
production is expected to surpass 1,800 million metric tons annually by 2050. The
focus on biopolymers, primarily cellulose and alginate, for water treatment is well-
justified due to their abundant functional groups, which facilitate the efficient
adsorption of heavy metal ions and other pollutants. Over the decades, several
studies have highlighted the environmental issues associated with synthetic
polymers, emphasising the need for biodegradable alternatives. Kogje et al. 1?°
found that biopolymers derived from natural sources minimise plastic waste and
have higher biodegradability than standard plastics. Similarly, Emre et al. 1% also
demonstrated the potential of polysaccharide-based biopolymers to reduce
environmental pollution through improved adsorption. Researchers have
documented the efficiency of biopolymers such as cellulose, alginate, and

chitosan in adsorbing heavy metals from agueous solutions. 8283127.128

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Moreover, alginate has emerged as a promising biopolymer, which also contains
carboxyl groups that play a crucial role in the ion exchange process, making it an
effective adsorbent for heavy metals like cadmium, chromium, and other metal

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

ions. 129130 Seyeral studies have also demonstrated the effectiveness of

(cc)

cellulose—alginate hydrogels in contaminant removal. In particular, the hydrogels
have been shown to substantially enhance the adsorption efficiency of both dyes
and heavy metal ions, achieving up to approximately 85% removal of methylene
blue, which is associated with metal ions.'31132 The tensile strength and durability
of cellulose, combined with the gel-forming ability of alginate, ensure the
formation of stable and effective adsorbent composites. The environmental
sustainability and cost-effectiveness of cellulose and alginate instead of synthetic
polymers align with the increasing demand for eco-friendly water treatment

materials. The interaction between the hydroxyl groups in cellulose and the
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carboxyl groups in alginate enhances the ion-exchange interactions and
adsorption capacity of these hydrogels, making them practical for water
purification.'33134 Figure 4 presents a detailed Schematic representation of the
sources and structures of cellulose and alginate, along with their physical and
chemical modification methods to enhance their performance in water purification
applications. Additionally, it categorises the significant approaches for modifying
these biopolymers to improve their functionality. These modifications,
categorised into physical and chemical, encompass blending, ultrasonic
treatment, cross-linking, focusing on the use of crosslinking agents such as
Ethylenediaminetetraacetic Acid (EDTA), Gamma-Linolenic Acid (GLA), Ethylene
Glycol Monobutyl Ether (EGBE), Epichlorohydrin (ECH), and Polyethylene Glycol
(PEG), including grafting to enhance the material’s adsorption efficiency,
mechanical stability, and chemical resistance in water remediation applications.
These modification techniques are essential in tailoring cellulose-alginate

composites for optimised performance in environmental applications.
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Figure 4 Schematic representation of the sources and structures of cellulose and
alginate, along with their physical and chemical modification methods aimed at
enhancing their performance in water purification applications (modified with

permission, Licensed under Elsevier's terms) 2!
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The adsorption and regeneration mechanisms of biopolymeric composites are
very crucial. These have been extensively studied for their effectiveness in
removing heavy metals. Understanding these mechanisms is essential for
optimising their performance in water treatment applications. Figure 5 (a)
presents a reported adsorption mechanism illustrating the interaction of metal
ions (M%) with active functional groups in biopolymeric composites. The process
involves electrostatic attraction, ion exchange, and surface complexation,
facilitated by hydroxyl (-OH), carboxyl (-COO-), and amine (-NH,) groups.!3®
Adsorption efficiency is influenced by pH, where ion exchange dominates at lower
pH levels. At the same time, electrostatic and surface complexation mechanisms
become more prominent at higher pH values, as observed in several studies.
136,137 The adsorption performance of cellulose-alginate composites has been
well-documented, with removal efficiencies varying depending on the composite
structure, porosity, and availability of functional groups. Furthermore, Figure 5 b
highlights various regeneration strategies for restoring adsorption capacity.
These include chemical regeneration using eluents such as Sodium hydroxide
(NaOH), Hydrochloric acid HCI, Ethylenediaminetetraacetic Acid (EDTA), and
Sulfuric acid (H,SO,), as well as physical and biological treatments like oxidation,

ultrasound, and thermal degradation. Integrating effective regeneration methods

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

ensures the long-term usability of biopolymeric adsorbents, making them viable

options for sustainable water purification.
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Figure 5 Proposed adsorption mechanism of biopolymeric composites for heavy
metal removal, and (b) Regeneration methods and chemicals used for
biopolymeric composites during the adsorption-desorption process. (Adapted

with permission, Licensed under Elsevier’s terms) 2!

4.2 Sodium Alginate and Its Composites

4.2.1 Alginate Extraction and Structure

Alginates are biopolymers derived from natural sources, widely recognised for
their versatility and diverse applications across various fields.?”'138 The
abundance of algae in water bodies has been estimated, with the production of
industrial alginate amounting to approximately 30,000 tons, representing less
than 10% of biosynthesised alginate. Therefore, there is considerable potential
for alginate to be utilised in the design of sustainable composite materials.
Primarily, alginate is extracted from brown seaweed algae such as (Ascophyllum
spp., Laminaria spp., Macrocystis pyrifera, Sargassum spp, Alario, Ecklonia,
Eisenia, Nercocystis, Sargassum, Cystoseira, Fucus, and several others) .
Studies show that seaweed-derived alginate is the most commercially utilised
form, as bacterial alginate presents an alternative source with distinct advantages
for several applications. 40141 Typically, alginate extracted from brown algae is
treated with various chemicals at different synthesis stages. Briefly, the
production process of sodium alginate begins with the harvesting and drying of
seaweed, after which it undergoes mechanical processing to be converted into

algal powder.42 This powder will be treated with hydrochloric acid (HCI) to extract
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the alginic acid, which serves as the precursor for sodium alginate including
Sodium Carbonate (Na,CO3) as part of the extraction process. The extracted
alginic acid will be washed, filtered, and treated with sodium hydroxide (NaOH)
to form a sodium alginate (SA) solution.'*® The solution is then further treated
with HCI to enhance the purity and produce an alginic acid gel. The samples will
then be neutralised with alkali agents such as sodium hydroxide and/or sodium
carbonate, converting them into sodium alginate, a water-soluble polymer widely
used across various industries.'* The purification of the extracted alginate was
conducted through a chemically assisted process before filtration and drying.
Specifically, the crude alginate was subjected to sequential treatments using
calcium chloride (CacCl,), sodium chloride (NaCl), or further treated with ethanol
to remove residual impurities, enhance polymer purity, and improve the
physicochemical characteristics of the final biopolymer. The extraction process
of alginate is illustrated in Figure 6a, showing the key steps involved in alginate
preparation from raw seaweed sources and its subsequent transformation into
sodium alginate and its applications in the adsorption process, retrieved from the
literature. In contrast, other literature shown in Figure 6b explains the Industry

process of sodium alginate extraction via calcium precipitation.
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Figure 6 (a) Extraction and preparation of alginate from the raw sources and their
application toward heavy metal removal, (Adapted with permission, Licensed
under Elsevier's terms) and (b) Typical industrial process of sodium alginate
extraction via calcium precipitation (Creative Commons Attribution (CC BY 4.0)
from MDPI) 21142

Alginate has been invaluable because it is helpful in water purification
applications due to the presence of hydroxyl (-OH) and carboxyl (-COQO")
functional groups present in its polymer backbone.'*> SA can effectively interact
with heavy metal ions and other pollutants in aqueous environments. SA can also
undergo an adsorption mechanism that allows contaminants to bind to the
polymer surface, facilitating the removal of impurities and contributing to
environmental remediation efforts.1#® This property has positioned alginate as a

promising material in sustainable water treatment technologies.

Structurally, alginates are linear block copolymer polysaccharides composed of
two fundamental monomeric units: B-D-mannuronic acid (M-block) and a-L-
guluronic acid (G-block), the latter being the C-5 epimer of the former. 147 C-5
epimer of the former. *” These monomers are linked through B-(1-4) glycosidic
bonds, forming an unbranched, water-soluble polymer chain. Additionally,
alginate polymers can exhibit various sequential forms or arrangements of these
monomeric units, including homopolymer M- or G-blocks, alternating MG-blocks,

and more complex configurations such as GM-blocks and interspersed MG/GM
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sequences of varying lengths, with different interchangeable possibilities as
shown in Figure 7a, b and c, allowing for structural versatility and structurally
modified model describing the interactions between alginate G-blocks and
divalent cations, primarily Ca?* illustrates their strong affinity for metal ions and
other pollutants through ionic-displacement mechanisms. These interactions
facilitate efficient regeneration via simple filtration and contribute to the formation
of stable ionic gels, thereby making alginate-based systems excellent candidates
for water-pollution remediation.'4’ A distinctive property of alginates is their ability
to undergo reversible sol-gel transitions upon interaction with divalent and
trivalent metal ions. Calcium chloride (CaCl,) is commonly used to induce
gelation, particularly through interactions with the GG-block regions, facilitating
the formation of a rigid, three-dimensional network often described using the
“egg-box” model 148, This structural transformation occurs as calcium ions (Ca2*)
form ionic cross-links between the G-block residues, forming a hydrogel. The
schematic representation of this process, as depicted in Fig. 1c, is adapted from
work.#? illustrates how calcium ions mediate the cross-linking of alginate chains,
resulting in a stable gel network. The binding capacity with divalent metal cations
reported is Pb2* > Cu2* > Cd2* > Ba?* > Sr2* > Ca?* >Co?*, Ni2*, Zn2* >Mn2* 150

Beyond their gelation properties, alginates are extensively studied for their

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

capacity to adsorb heavy metal ions from aqueous environments. The presence

of abundant hydroxyl and carboxyl functional groups in the polymer backbone

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

enables strong interactions with metal ions, making alginates a promising
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material for water purification and environmental remediation applications. 38151
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Figure 7 Schematic of alginic acid structure: Structure of alginate showing (a)
chain conformation (b) block distribution, and (Adapted with permission, Licensed
under Elsevier's terms) (c) a structurally modified model describing the
interactions between alginate G-blocks and divalent cations (Ca2*) (Creative
Commons Attribution (CC BY 4.0) from MDPI) 147,149

4.2.2 Functional Modifications in Alginate-Based Adsorbents

Various functional modifications have been explored to enhance the adsorption
performance of alginate-based materials for removing heavy metal ions from

aqueous environments.134152153 These modifications aim to improve key
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parameters, including selectivity, mechanical stability, and regeneration capacity.
Figures 8 illustrate an example of fabricating alginate-based composites, as
reported in a previous study !°3. Studies have categorised alginate composite
materials into several groups, including polymeric blends and graft copolymers,
biopolymer-based composites, alginate-inorganic nanohybrids, magnetic
nanocomposites, and structurally engineered forms such as electrospun fibres,
wet-spun fibres, and 3D-printed structures. Each class offers distinct
physicochemical advantages that contribute to improved efficiency in heavy

metal ion adsorption.?’
A) Polymeric Blends and Graft Copolymers

The formation of alginate-based polymeric blends and graft copolymers has been
extensively employed to enhance adsorption selectivity and reusability. Studies
have shown that surface grafting with functional groups such as thiol (-SH) and
amine (-NH,) enhances the selective affinity for metal ions. Thiolates alginates
exhibit strong binding to metal ions, while aminated variants demonstrate high
adsorption of Cd2*.39152 Cross-linking alginate, particularly with calcium ions,
yields mechanically robust hydrogel beads that resist dissolution in agueous

media and maintain stable adsorption capacities across multiple use cycles

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

152,154 For instance, hydrogels are often based on ionic or covalent crosslinking

without specific fillers or advanced frameworks. Calcium-cross-linked sodium

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

alginate beads have demonstrated capacities ranging from 54.9 to 82.8 and

(cc)

135.5 mg/g for Cu2*, Ag*, Fe2*, and Fe3*, respectively >, The polyaniline—sodium
alginate—MXene nanomaterial composite (PANI@SA-SNM) integrates MXene
nanosheets and polyaniline within a sodium alginate hydrogel matrix, significantly
enhancing the adsorption of Cu2* and Hg?" ions when used for their removal from
agueous solution. The interaction between polyaniline’s redox-active nitrogen
sites, MXene’s layered surface functionalities, and alginate’s carboxyl groups
facilitates high metal uptake (up to 352.76 mg/g), confirming the efficacy of
multifunctional polymeric blends in adsorptive remediation .#* Modified alginate-
based biocomposite hydrogel microsphere, effectively adsorbing Pb2*and Cu?

ions, has 369.6mg/g and 124.1mg/g, and some studies also reported the potential
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cellulose—alginate sponges that exhibit high water permeability and excellent
reusability properties. Studies have further demonstrated the effectiveness of
alginate-based hybrid materials. Notably, mesoporous alginate/B-cyclodextrin
beads exhibit remarkable adsorption capacities for Pb2*, Cu2*, Cd?*, and Ni2*
21.09, 15.54, 2.47, and 2.68 mg/g, respectively, highlighting the enhanced
performance of alginate—polymer composites for heavy-metal removal.46:142
Moreover, sodium alginate-based carboxymethyl cellulose (CMC) hydrogel
beads Pb2* uptake (>600 mg/g), demonstrating the benefits of combining
carboxyl-rich alginate matrices with amine-rich copolymers. Similarly, the sodium
alginate-g-poly (acrylic acid-co-acrylamide) nanocomposite hydrogel absorbed
Pb2*, Cd?*, Ni#*, and Cu?" at concentrations of 231.88, 235.62, 67.52, and
76.35mg/qg, respectively.

(B) Inorganic Fillers and Nanomaterials

Incorporating inorganic fillers, such as metal oxides and salts, into alginate
matrices enhances ion exchange capabilities and structural rigidity while
increasing the surface area. These additives interact physically or chemically with
alginate to form functional hybrid structures. For instance, alginate-caged
magnesium sulphate nanoparticle microbeads demonstrated an adsorption
capacity of 84.7 mg/g for Pb2*.142 The inclusion of Magnesium sulfate (MgSO,)
likely provides ionic sites for selective lead interaction while boosting the
mechanical robustness of the hydrogel structure. The carbonised composite
manganese-crosslinked sodium alginate showed excellent removal of As3*
(189.29 mg/g), As®* (193.29 mg/g), and Cr®* (104.5 mg/g).** Manganese
enhances redox activity, reducing toxic ions and subsequent immobilisation. This
composite benefits from electrostatic and surface complexation mechanisms
enabled by the manganese-carbon interface. The calcium alginate-nanoscale
zero-valent iron (nZVI)-biochar composite reportedly adsorbs Pb?*, Zn?*, and
Cd2* with capacities of 47.99, 71.77, and 47.?” mg/g, respectively, 14> combining
the adsorptive nature of biochar with the magnetic and reductive properties of

nanoscale zero-valent iron (nZVI). The cross-linked alginate—rice husk ash—
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graphene oxide—chitosan nanoparticles (CL-ARCG-CNP) composite combines
alginate with silica-rich rice husk ash, reduced graphene oxide, and chitosan
nanoparticles, forming a cross-linked hybrid with a high Pb2* adsorption capacity
of 242.5 mg/g. This multifunctional system leverages the high surface area of
GO, the amine-rich functionality of chitosan, and the reactive silanol groups from
rice husk ash, collectively enhancing Pb2* chelation and stability in aqueous
environments.*® The Calcium carbonate on alginate/chitosan biocomposite
(CSAX_Ca) was also reported to have an affinity for the Pollutants Cuz*and Pb2*
at the Adsorption Capacities 429, 1742 mg/g. This performance is attributed to
the ionic exchange properties of CaCO;, combined with the carboxyl groups of
alginates and the amine groups of chitosan, respectively.'>> Such materials serve
dual functions: adsorbing metal ions and reducing them to less toxic or
immobilised forms while being easily recoverable due to their magnetic
properties. These composites demonstrate the effectiveness of hybrid materials
that combine inorganic fillers with alginate to produce multifunctional adsorbents.
Their efficacy is further enhanced by the synergistic role of metal oxides in charge

exchange, redox transformations, and maintaining structural integrity.56:157

(C) Magnetic Nanocomposites

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Magnetic nanocomposites offer the dual benefits of effective heavy metal

removal and straightforward post-treatment separation utilising external magnetic

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

fields. These materials are essential in scalable water treatment technologies.>8
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The Calcium Alginate-nZVI-Biochar Composite for Removing Pb, Zn, and Cd
from Water: Insights into Governing Mechanisms and Performance. This
category is exemplified by calcium alginate—nZVI-biochar, as nZVI provides
magnetic properties and facilitates the reductive precipitation of metal ions. The
removal capacities for Pb?*, Zn?*, and Cd? with absorption capacities of 47.99,
71.77, and 47.27.15° Demonstrate the synergistic role of nZVI with alginate's ion
exchange capability. While no other strictly magnetic composites are explicitly
mentioned in the dataset, this entry emphasises a growing research interest in

merging magnetic responsiveness with adsorption functionalities. The
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advancement of magnetically recoverable alginate-based adsorbents represents
a practical approach for real-time and reusable water purification applications.

(D) Metal-organic frameworks (MOFS) and Graphene-Based Composites
(GBC)

Advanced nanostructures such as reduced graphene oxide (rGO), thiacalixarene
derivatives, and metal-organic frameworks (MOFs) significantly enhance alginate
performance due to their high surface areas, -1 interactions, and diverse
coordination environments.1%9-163  The alginate/reduced graphene double-
network hydrogel beads and their single-network counterparts exhibited 169.5
and 72.5 mg/g capacities for Cu2* and Cr,0-2, respectively.®3163 The double-
network structure offers improved mechanical stability and a higher density of
adsorption sites. Meanwhile, rGO sheets promote 1r-electron-rich regions,
facilitating cation-1r interactions and electrostatic attractions. The tetrasodium
thiacalixarene tetra sulfonate—sodium alginate nanocomposite hydrogel achieved
broad-spectrum metal ion adsorption: Pb2* (99.8 mg/g), Niz* (67.4 mg/g), Cuz*
(90.56 mg/g), Cd2* (94.5 mg/g), Co?* (74.9 mg/g), and Cr3* (79.2 mg/g).*** As
macrocyclic ligands, Thiacalixarene derivatives provide tailored cavities that
selectively complex metal ions. Their integration into alginate matrices
substantially enhances binding specificity and capacity through host-guest
chemistry. These advanced composites demonstrate the potential of
incorporating MOFs, graphene derivatives, and supramolecular chemistries into
alginate-based platforms to create highly selective and high-capacity adsorbents.
Their tunable architectures and multifunctional binding sites facilitate the

simultaneous removal of various metal ions from aqueous environments.
(E) Bio-based/Biowaste-Derived Alginate Composites.

Bio-based and biowaste materials are gaining popularity, as studies have shown
that alginate composites derived from orange and nectarine peels (OAF and
NAF) exhibit high adsorption capacities for Cr°* ions. These Agro-waste materials
provide additional hydroxyl and phenolic functionalities that enhance hexavalent

chromium's chelation and electrostatic attraction. Table 2 shows the adsorption
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Capacities of Alginate-Based Composites for Heavy Metal Removal. Integrating
alginate improves structural integrity and water dispersibility, demonstrating a
green valorisation strategy for effective Cr** removal, with adsorption capacities
of 224.3 and 256.5 mg/g.%* A multi-metal adsorption study using M. oleifera
extract encapsulated in sodium alginate matrices reported modest adsorption
capacities for Co2*, Ni¢*, Cu?*, Zn?*, Manganese ion (Mn2*) and sometimes
Uranyl ion (UO,2*). Although the uptake values (1.02-5.8 mg/qg) are relatively low,
the system uses plant-derived bioactives to introduce additional binding
functionalities into alginate networks. The biosorption mechanism is likely driven
by phytochemical interactions combined with the carboxyl groups of alginates.
Pollutants: Co?*, Niz*, Cu?*, Zn2*, Mnz2; adsorption capacities: 5.8, 4.78, 4.6, 1.3,
1.02 mg/g.*® In another study, Sodium alginate was functionalised with M. oleifera
seed powder and fabricated via wet spinning to explore its use for removing
heavy metals, particularly Cuz*, Cd?*, and Ni?*, as investigated by Orisawayi et
al.?’Although the adsorption capacity was not reported, future work was
discussed to investigate this further. The study primarily aimed to investigate the
natural bioactive compounds in M. oleifera that enhance metal binding. At the
same time, the alginate matrix provides ionic carboxyl for additional sorption. This

combination illustrates a sustainable approach for producing biodegradable,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

fibre-based adsorbents with a selective affinity for the metal. The electrospinning

process fabricates a hybrid of pulverised M. oleifera seed powder embedded

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

within a sodium alginate matrix, with polyethene oxide (PEO) as a co-spinning

(cc)

agent.3” The process was successful, as investigated, aiming to explore the
feasibility of producing fibrous biosorbents that harness the natural adsorptive
capacity of M. oleifera, the ion-exchange potential of alginate, and the fibre-
forming capability of PEO. While the complete adsorption properties of these
composites have not yet been evaluated, the conceptual integration of these
materials through electrospinning could serve as a baseline for a potential
method for generating nanostructured materials with improved surface area,
porosity, and enhanced alginate mechanical properties, thereby facilitating

improved interaction with heavy metal ions in agueous solutions.
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Table 2. Adsorption Capacities of Alginate-Based Composites for Heavy Metal Removal

S/IN

Alginate-Based Adsorbents

Pollution/Target
Heavy Metal lon(s)

Adsorption Capacity
(mg/g)

Reference
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(ec)

Modified alginate-based biocomposite hydrogel

microsphere

Mesoporous alginate/B-cyclodextrin  polymeric

beads

Alginate-caged magnesium sulfate nanoparticle

microbeads

Carbonised composite manganese crosslinked

sodium alginate

Amino-functionalised sodium alginate aerogel

Pb2* and Cu?*

Pb2*, Cu?* and Cd?*,
Ni2*

Pb?*

As3*, As®* and Cr¢*

Cr¢* and Cd?*

35

369.6 (Pb?) and
124.1(Cu?*)

21.09 (Pb?"), 15.54
(Cu?*), 2.47(Cd?") and
2.68 (Niz*)

84.7 for Pb2*

189.29 (As3Y),
193.29(As%") and
104.50(Cr®%)

678.67(Cr¢") and

464.23(Cd?*)

164

46

165

166

167
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Calcium alginate-nZVI-biochar

Sodium alginate-based carboxymethyl cellulose

hydrogel beads

Sodium alginate-g-poly(acrylic acid-co-

acrylamide) nanocomposite hydrogel

Alginate/reduced graphene double-network and
single-network hydrogel beads

Tetrasodium thiacalixarenetetrasulfonate—

sodium alginate nanocomposite hydrogel

Sodium alginate hydrogel beads by post-

crosslinking

Pb2*, Zn2* and Cd2*

Pb2*

Pb2*, Cd?*, Ni¢*, Cu?*

Cu?*, Cr,0,2~

Pb2*, Ni2*, Cuz*, Cd?",

Co?* and Cr3*

Cu?*, Ag* and Fe3*

36

47.99(Pb2*),

71.77(Znz) and
47.27(Cd?")
231.88(Pb?*), 235.62

(Cd2*), 67.52 (Ni2*) and
76.35(Cu?*)

169.5 (Cu?*) and 72.5
(Crz0,2)

99.8 (Pb2*) , 67.4 (Niz*),

90.56 (Cu?*), 94.5,
74.9(Co?") and 79.2
(Cr7)

54.9 (Cu?"), 82.8 (Ag")
and 135.5 (Fe3*)

159

168

169

154

170

154
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Sodium alginate-functionalised M. oleifera seed

wet-spinning
MXene/polyaniline/
sodium alginate
(PANI@SA-SNM) gel

Orange  peels/alginate  (OAF)  Nectarine
peels/alginate (NAF)

Cross-linked alginate-rice husk ash-graphene
oxide-chitosan nanoparticles (CL-ARCG-CNP)

Calcium carbonate on
alginate/chitosan biocomposite (CSAX_Ca)

Alginate+ encapsulated M. oleifera

Cu?*, Cd?" and Ni

Cu?*, Hg?*

Crot

Pb2*

Cu?* and Pb2*

Co?*, Niz*, Cu?" , Zn?",

and Mn2*

255.81(Cuz") and
352.76(Hg**)

About 224.3 (Cr®) -
OAF and 256.5 (Cr°*)-
NAF

2425 (Pb?*)

429 (Cu?*) and 1742
(Pb2")

5.8 (Co?"), 4.78 (Niz*),
4.6 (Cu?* ), 1.3 (Zn?),

and

171

152

172

40

155

48

37
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Figure 8 Examples of (a) fabrication of alginate-based composites, (b) adsorption
mechanisms of alginate composites (Adapted with permission, Licensed under
Elsevier's terms), and (c) preparation of PANI@SA-SNM gel adsorbent using
calcium alginate to encapsulate nZVI-rice straw composite (CANRC) for Pb2*,
Zn?*, and Cd?* removal (Adapted with permission, Licensed under Elsevier’s

In addition to alginate, cellulose, another abundant, renewable, and functional
biopolymer, has demonstrated considerable promise in heavy metal ion

adsorption, as detailed in other sections.

4.3 Cellulose-Based Adsorbents

Cellulose is the most abundant natural biopolymer on Earth, consisting of a long-

chain polysaccharide composed of B-D-glucose units, which are often covalently
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linked by Acetal functionalities between the equatorial (OH) groups on the carbon
atoms, known as (C4) and (C1), via B-1,4-glycosidic bonds 173174 |ts unique
molecular structure contributes to its exceptional physicochemical stability,
particularly its insolubility in water, which arises from the extensive hydrogen
bonding and crystallinity imparted by its glycosidic linkages.'”>*’7 The long
polymer chains are organised into two distinct regions: highly ordered crystalline
domains confer mechanical strength and stability, and amorphous regions
enhance chemical reactivity and biological interactions.1’®-180 Cellulose is
predominantly obtained from plant cell walls, although microbial sources produce
bacterial cellulose with unique nanostructures 178179181 |ncreasingly, agricultural
residues are being explored as low-cost, renewable sources of cellulose for
developing sustainable materials. Due to its intrinsic properties, renewability,
biodegradability, chemical stability, non-toxicity, and the abundance of reactive
hydroxyl groups, cellulose is an excellent platform for fabricating advanced
functional materials. Among various cellulose-based materials, cellulose
hydrogels and their regenerated counterparts have emerged as a prominent

class of water purification media.*>176.182

4.3.1 Cellulose Composite Hydrogels

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Cellulose composite hydrogels are synthesised by blending native or modified

cellulose with other biopolymers, such as chitosan, gelatine, alginate,

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

nanomaterials, and other biosorbents.®318 This creates an interpenetrating

(cc)

network of several polymer networks that enhances the surface area and activity
for adsorption.'®> These composites offer promising results in removing toxic
heavy metals due to their high swelling capacity, porous structure, and the
synergistic effect of the combined components.52185-187 Several works have been
developed to incorporate different cellulose hydrogels into the composite;
however, only a few will be discussed in this section on cellulose hydrogels for
adsorption, as detailed in Table 3 comparing the varying adsorption capacities
of cellulose, regenerated cellulose, and cellulose-based hydrogels for heavy
metal removal. Copper-based Metal-Organic Framework (CuMOF) immobilised

on sodium alginate/chitosan/cellulose nanofibril hydrogel composite was
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developed and demonstrated an adsorption capacity of 531.38 mg/g for Pb2*.18
Similarly, the sodium alginate/cellulose nanofibre composite hydrogel achieved a
higher adsorption capacity of 544.66 mg/g for Pb2*.188 Multi-ion removal was also
demonstrated by carboxymethyl cellulose/chitosan/alginic acid hydrogels, which
exhibited exceptional uptake (>750 mg/qg) for Cré*, Niz*, and Cu?*.23° Furthermore,
oxidised carboxymethyl cellulose hydrogels demonstrated outstanding
adsorption capacities of 1250 mg/g for Pb?*, 1111 mg/g for Cu?*, and 407 mg/g

for Ag* , revealing the critical role of oxidation in enhancing metal ion binding. 1&°

4.3.2 Regenerated Cellulose Composites

In addition to hydrogels, regenerated cellulose-based composites are another
significant category of adsorbents for removing heavy metal ions from aqueous
solutions.?®%191 These materials are typically produced by dissolving native
cellulose in eco-friendly solvents such as ionic liquids or alkali-urea systems, then
reconstituting them into films, fibres, or beads through controlled regeneration.
192 Although these structures do not exhibit the water-swollen matrix typical of
hydrogels, they retain high crystallinity and mechanical strength. Cellulose-based
hydrogel microspheres exhibited high removal capacities of 373 mg/g for Ni2* and
358 mg/g for Co2?*, 189 facilitated by the increased surface area and the formation
of micro spherical morphologies, which provide rapid diffusion pathways and
more active sites for metal binding, carboxymethyl cellulose hydrogel-pectin-
based system demonstrated adsorption capacities of 84.4 mg/g for Cd?*, 159.4
mg/g for Pb2*, and 125.6 mg/g for Cu2*.1°3 Despite lower capacities in some
systems, such as mercerised cellulose with 30.4 mg/g for Cu?*, Cd?* and Pb?*
adsorption capacity of 30.4 mg/g, 86.0 and 205.9mg/g Pb2* , respectively and
that of cellulose acetate/silica composite, which was 19.46 mg/g for Cr®*. In
addition, Regenerated cellulose can also be blended with other biopolymers or
inorganic materials to improve surface reactivity and adsorption capacity, and the
applications have shown that regenerated cellulose composites are suitable for
dynamic filtration systems and can be engineered for high reusability and

targeted removal of heavy metals.11419419 Together, cellulose hydrogels and
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regenerated cellulose composites offer complementary pathways for creating
efficient and sustainable adsorbents.'%¢ Table 3 presents the adsorption
capacities of Cellulose, Regenerated Cellulose, and Cellulose-Based hydrogel
composites for nontargeted heavy metal ions, as reported in the literature. This
highlights the potential limitations of cellulose as a suitable water treatment
material. Their physicochemical diversity and tunable surface functionality make
cellulose-based systems crucial in pursuing greener water treatment

technologies.®’
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Table 3 Adsorption Capacities of Cellulose, Regenerated Cellulose and Cellulose-Based Hydrogels

S/IN

Cellulose-Based Composite

Pollution  /Target

Heavy Metal lon(s)

Adsorption Capacity
(mg/g)

Reference

carboxymethyl cellulose/gelatin

composite hydrogel

CuMOF on sodium alginate/chitosan/cellulose
nanofibril composite hydrogel

sodium alginate/cellulose nanofibre composite
hydrogel

Porous Kappa-Carrageenan/Cellulose Hydrogels

Cellulose Hydrogels (G50)

carboxymethyl  cellulose/chitosan/alginic  acid

hydrogels

Cd?*, Hg?* and Pb?*

Pb2*

Pb2*

Pb?*

Uo,?*

Cré* |, Ni2* and Cu?*

43

147.7 (Cd?), 88.62
(Hg?*) and 163.89 (Pb?*)

531.38 for Pb?*

544.66 for Pb?*

486 + 28.5 for Pb2*

572.3 for UO,2*

>750 for (Cr®* , Niz* and
Cuz*)

198

187

188

199

193

133
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chitosan/cellulose phosphonate composite Pb?* and Cu?*

hydrogel

Cellulose (37%)—Chitosan (63%) Cuz*
Cellulose/Chitosan/PVA/nano-Fe203 Cu?z*

oxidised carboxymethyl cellulose hydrogel Ag*, Pbz*, Cuz*

(wheat straw cellulose-g-poly (acrylic acid)/poly Cu?*
(vinyl alcohol)

Carboxymethyl cellulose-based cryogels Pb2*, Ni2*, Co?*

Cellulose grafted with Crd+
Acrylonitrile (CelEnEs)

Collagen/cellulose hydrogel beads ( M- Cu*
CS/PVA/CCNFs)

44

211.42 (Pb?*) and 74.29
(Cuz)

94.3 for Cu?*

15.95 for Cu?*

407 (Ag*), 1250 (Pb2*)

and 1111 (Cu?")

142.7 for Cu?*

550 (Pb2*), 620 (Niz*)
and 760 (Co?*)

67.36 mg/g
for (Cuz*)
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79.0 for Niz*
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19.46 for (Cr°*)
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22 Cellulose-Based Composite Hydrogel Microsphere Co?%*and

Ni2*

Pb2* and Cu?*

Cd?*, Pb?*, and Cu?*

358 (Co?*) and 373
(Niz*)

180

879.84  (Pb2*) and 2%°
543.50 (Cu?*)

84.4 (Cd?"), 159.4 (
Pb2*), and 125.6 (

Cu?")

210
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Recently, advancements in functional materials science have positioned
cellulose, particularly in its nanoform known as nanocellulose.''#2! These
materials are emerging sustainable biopolymers for various water treatment
applications. Figure 9 illustrates the functionalisation of cellulose through
chemical modification.'** The abundant hydroxyl groups enable the introduction
of various reactive moieties, such as carboxyl, amine, thiol, and sulfonate groups,
as reported.?2213 This has been studied to significantly enhance the material’s
affinity for heavy metal ions in aqueous solutions, with the functional group
transformations altering the surface charge, coordination capacity, and
hydrophilicity.®11%* These nanocellulose-based systems exhibit a high surface
area, increased porosity, enhanced mechanical strength, and aqueous stability,
all of which are desirable characteristics for adsorbents specifically targeting the
removal of divalent heavy metal contaminants such as Pb2*, Cd?*, Cré*, and Cu?*
from wastewater.''#24 Furthermore, nanocellulose's high aspect ratio and
tunable functional surfaces facilitate efficient diffusion, rapid ion exchange, and
chelation processes, improving adsorption kinetics and capacity.?142%°
Consequently, modified cellulose and its nanostructured derivatives serve as
renewable, biodegradable, and highly effective materials for the adsorption and

removal of toxic metal ions in water purification systems. 216:217

While alginate, cellulose derivatives, and their composites have shown
considerable promise as eco-friendly adsorbents in water purification, their
performance can be significantly enhanced through hybridisation with plant-
derived materials that offer active biosorption properties. One such material, M.
oleifera seed powder, has garnered attention for its rich bioactive compounds and
ability to adsorb heavy metal ions effectively. The following section explores the
potential of M. oleifera as a natural biosorbent in sustainable water treatment.
Beyond structural biopolymers like alginate and cellulose, plant-based

biosorbents such as M. oleifera offer complementary adsorption mechanisms and
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Figure 9: Emerging Nanocellulose-Based Modifications of Cellulose for
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bioactive functionalities, enriching the development of multifunctional composite

systems for water purification

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

5 M. oleifera-Based Adsorbents
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The M. oleifera tree thrives in tropical and subtropical regions worldwide. It is

(cc)

often called the “miracle tree” or “drumstick” in English. Nowadays, M. oleifera
has naturalised throughout the tropics, including regions in Africa, Central and
South America, and Southeast Asia. M. oleifera has been introduced and

cultivated across Europe for research purposes, enhancing its accessibility. 28~
220

5.1 Biosorption Mechanisms and Functional Components of M. oleifera

Research has shown that M. oleifera seeds are primarily protein-rich and exhibit

active functions known for binding with pollutants. The tree is also reported to
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have been a preferred source of nutrition and second-generation biodiesel, and
its components can be used as drugs. They have reportedly demonstrated an
affinity for absorbing carbon dioxide from the atmosphere.?!®22% Figure 10
displays the various M. oleifera biomass samples used in this study, including M.
oleifera unpeeled seeds (MOU), M. oleifera shelled seeds (MOS), M. oleifera
seed powder (MoP), M. oleifera husk (MOH), M. oleifera husk powder (MOHP),
M. oleifera dried leaves (MODL), M. oleifera dried Leaves powder (MODLP), M.
oleifera bark pieces (MOB), M. oleifera and bark powder (MOBP). These
components represent the diverse functional fractions of M. oleifera investigated
for coagulant and adsorbent applications in water purification. Studies suggest
that each part contains a protein that can be used as an antimicrobial flocculant
to remove wastewater impurities through electrostatic interactions between the
cationic protein and colloids. ??> Some studies have also shown that M. oleifera,
known for its high content of bioactive compounds, shows promise in various
water treatment applications due to its availability, biodegradability, and non-
toxicity. Therefore, the coagulating properties make them a potential additive for
alginate in water purification applications, presenting a promising alternative to
alginate, as it has been previously used in the manufacture and functionalisation
of alginate.??® However, only a few studies have explored the combination of M.
oleifera with most biopolymers, such as alginate and cellulose. In the case of
heavy metal ions, M. oleifera has been reported to remove heavy metals such as
copper, cadmium, chromium, and lead at rates of 95%, 76%, 70%, and 93%,
respectively. 224225 |n a study on using M. oleifera seed for water treatment, the
final concentration of copper was below the desirable limit for drinking water (less
than 1 mg/L) 26227 However, the removal of cadmium, chromium, and lead after
coagulation with M. oleifera seed cake coagulant did not meet the limits of

drinking water standards.

This inconsistency is closely related to the underlying mechanisms governing its
removal efficiency was also observed in studies carried out by orisawayi et al, %
and study on the purification of river water using M. oleifera seed for copper

removal for point-of-use household application discussed that the cationic
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proteins and bioactive compounds present in M. oleifera could function primarily

as a natural coagulant 228,

Several recent studies also discussed that the mechanisms are highly effective
for metal ions such as Cu?*, which exhibit favourable interactions with the
functional groups in the extract. 22°-231 However, ions such as Cdz2*, Pb?*, and
Cr3 and Cr°* possess lower charge densities, weaker binding affinities, or distinct
hydrolysis behaviours, which could result in less efficient coagulation and
adsorption. This possibly suggests reason M. oleifera is an excellent coagulant;
its capacity as a high-affinity adsorbent is limited for specific metal species, and
therefore, its performance may require enhancement through composite
formulation or integration with other biopolymers?32233, Therefore, additional
treatments may be required to meet the standards of the EPA, WHO, EU, and
some indigenous bureau standards, such as those of the indigenous peoples.
The study's findings indicate that M. oleifera seed cake is suitable as a coagulant
and is effective for pre-treatment applications for removing heavy metals from

water systems.22°

Figure 11 presents an example of MOS biosorption comparison before and after
24 hours of brilliant green (BG) and biosorption of crystal violet (CV) of typical M.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

oleifera seed obtained from literature as when used, it was reported that adsorb

heavy metal ions, these functions provide selective and effective absorption for

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

various metal ions which belong to Class B, including Hg?*, Ag®*, Pd2*, Pt>*, Pt3*,

(cc)

Aut, and Cs*. For instance, Benettayeb et al. observed an enhancement in
sorption for the ions Pb2*, Cd?*, and Cu2* 27, Lin et al. also demonstrated that
adsorbents with amine groups possess unique properties, enabling them to
adsorb compounds with cationic or anionic charges at different pH values, which
are present in the M. oleifera seed and capable of removing these heavy metals
from an aqueous solution.?®* By using composite coagulants, drinking water
standards can be met, and in many cases, heavy metals are not detected in the
treated water. Polymers possess numerous functional groups, including
carboxylic, amine, hydroxyl, and sulfonic. They can be used as complexing

agents for the adsorptive removal of metal ions from aqueous solutions. 40235
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Figure 10 Photographs and modified images of the (a) unpeeled seeds (MOU),
(b) shelled seeds (MOS), (c) seed powder (MoP), (d) husk (MOH), (e) husk
powder (MOHP), (f) dried leaves (MODL), (g) Leaves powder (MODLP), (h) bark
pieces (MOB), 236
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Figure 11 lllustration of the nature of M. oleifera seeds after 24 hours of the
sorption process for heavy metal ions from an aqueous solution: (a) Brilliant
Green (BG) and (b) Crystal Violet (CV) sorption 237

Processing Pathways and Fabrication

The schematic flow illustrated in Figure 12 provides a comprehensive overview
of the sequential processing stages and functional applications of various M.
oleifera seed components, including whole seeds, shelled seeds, unshelled

seeds, husk, bark, and gum, for preparing natural coagulants and bio-adsorbents

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

intended for heavy metal ion removal in water purification systems. 23 M. oleifera

is a multipurpose tree whose biomass contains several valuable fractions.?*° The

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

whole seed comprises both the kernel and the seed coat. In contrast, shelled

(cc)

seeds specifically refer to the kernel, which is the nutrient-rich part, and the
unshelled seeds and husks are more fibrous. The bark contains lignocellulosic
compounds suitable for thermal activation.?*® Additionally, M. oleifera gum, a
natural exudate from the bark, is a polysaccharide-based biopolymer with
potential flocculant and stabilising properties. Each part possesses distinct
physicochemical features that dictate its suitability for either coagulation or

adsorption applications.?40-242

The initial processing step involves mechanical disintegration using grinders,
blenders, or a traditional mortar and pestle. This process reduces patrticle size,
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increases surface area, and facilitates further downstream applications. A sieving
stage follows to ensure particle homogeneity for consistent application. The
protein-rich shelled seeds and gum exudates undergo aqueous or solvent-based
extraction. The cationic proteins from the kernel interact with negatively charged
colloids in water, promoting coagulation and flocculation. M. oleifera gum, due to
its polysaccharide backbone and high molecular weight, enhances coagulation
through bridging mechanisms and aids in viscosity control during composite
synthesis.?*3244 This process is particularly relevant in systems where organic
turbidity or microbial contamination is a concern. The fibrous seed husks, bark,
and other lignocellulosic fractions are subjected to pyrolysis or chemical
activation to produce biochar or activated carbon. These materials exhibit a high

surface area and porosity, essential for effective adsorption of heavy metal ions.
245,246

Surface functional groups such as hydroxyl, carboxyl, and phenolic moieties
facilitate metal binding through ion exchange, surface complexation, and
electrostatic attraction. The performance of bio-based composites derived from
M. oleifera, alginate, and cellulose is subsequently enhanced through systematic
material modification techniques to improve structural integrity, processability,
and adsorption efficiency in water purification systems.246-248 These modifications
typically begin by mixing the primary biopolymers with binders or cross-linking
agents, such as poly(vinyl alcohol) (PVA), starch, or modified cellulose
derivatives, and the process seeks to strengthen the network structure, enhance
the dispersion of M. oleifera components, and improve compatibility within the

matrix materials.242.249.250

The modified blends can be fabricated into functional forms, such as beads, films,
fibres, or pellets, each offering distinct surface area and porosity advantages for
water treatment.?*® Depending on the desired morphology and end-use
application, various fabrication techniques, including casting, extrusion, wet

spinning, electrospinning, and freeze-drying, are utilised.37.242.251
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Figure 12 A typical illustration step of processing M. oleifera parts for water treatment application
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5.2 Heavy Metal Biosorption Mechanism of M. oleifera in Aqueous Systems

Figure 13. Schematic illustration of the various mechanisms involved in the
biosorption of M. oleifera for removing toxic contaminants, such as Cr®*, V**, and
Pb2*; this was explained by Benettayeb et al. 23’ In a critical review of the
emphasis, recent pieces of evidence study M. oleifera as a biosorbent for water
and wastewater treatment. The primary biosorption mechanisms by which M.
oleifera interacts with toxic heavy metal ions. The ion-exchange mechanism is
central, whereby native ions (e.g., Na*, H*, Ca?*) present on the biosorbent
surface are replaced by heavy metal ions (M2*), such as Pb2*, Cr**, and V**. The
functional groups that facilitate this process reported that are peculiar to M.
oleifera include hydroxyl (—OH), carboxyl (—COOH), carbonyl (C=0), and amine
(~NH,) that are present in M. oleifera.1°1252.253 The adsorption mechanisms
encompass electrostatic attraction between negatively charged functional groups
and metal cations, surface complexation, chemisorption, and intraparticle
diffusion within the porous matrix. The overall biosorption performance is further
influenced by the solution pH, the surface charge of the adsorbent, and the
specific interaction modes governing metal-ligand binding. These interactive
mechanisms collectively highlight M. oleifera’s efficiency as a multifunctional
biosorbent for remediating metal-contaminated water.2542% Table 4 also presents
the biosorbents for heavy metal biosorption of various toxic heavy metal

pollutants (Main M. oleifera parts used for heavy metal adsorption).

An evaluation of the biosorption capacities reported from the table reveals clear
differences in performance among various M. oleifera plant parts. The Gum-
derived materials, particularly those modified via acryloylation, exhibit
exceptionally high adsorption capacities, reaching 840.34 mg/g for Hg?*,
indicating a high density of reactive functional groups. Modified leaves
consistently show superior performance, achieving values above 150 mg/g for
Cd?z*, Cu?*, and Ni?*, especially when treated with NaOH—citric acid or activated
carbon, suggesting that surface functionalisation significantly enhances metal-

binding affinity. Seed-based materials, including seed cake by-products, also
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demonstrate promising performance, with adsorption capacities up to 357.14 mg
g for Cd?*, reflecting their favourable protein and lipid composition. By contrast,
bark, wood, and unmodified seed or pod materials tend to exhibit lower uptake
values. Based on these findings, there is a clear indication that leaves, gums, and
chemically modified seed-derived materials are the most promising biosorbent

components for heavy-metal remediation
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Figure 13 Schematic illustration of the various mechanisms involved in M. oleifera
biosorption for removing toxic contaminants from aqueous solutions, such as
Cr*, V>, and Pb2*. Probable mechanism ion-exchange mechanism between M.

oleifera and metal ions (M2*) (Open access ) 2%’
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Table 4 Biosorbents for Heavy Metal Adsorption of Various Toxic Heavy Metal Pollutants (Main M. oleifera Parts Used

for Heavy Metal Adsorption)
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S/N Biosorbent Part of M. oleifera with or Pollution /Target Adsorption Capacity (mg/g)
without Modification Heavy Metal lon(s)
1 Pure Seed / Leaves Pb2*, Cd2*,Co2* and Seed Leaves 30
Nij2*
13.29 (Pb%*, ), 4.97 49.50 (Pb2*, ),
(Cdz) 16.13(Cd?*) , 10.94
(Co2* ) and 10.16 (Ni2*)

5.80 (Co?* )
and 3.61(Ni2*)

3 Pods modified HNO3 0.3 M Pb2* and Cd2* 35.97 (Pb?*) and 18.24 (Cdz?*) 256

4 Pure Seed Pb2*, For 5.6 (Pb2*) 257

5 Leaves modified Diethylamine Cr5* 60.6061 for (Cr®") 258

functionalisation
6 Pure Leaves Pb2* 45.83for (Pb2*) 222
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7 Pure seed Cd?* 357.14 for (Cd?*) 259
9 Gum-modified Acryloylation reaction Hg?* 840.34 for (Hg?") 260
10 Pure Seed pods Cr5* 119.02 for (Cr®%) 261
11 Pure Seed and Pure husk Cu2* and Cd?* 13.089 (Cu?*) and 262

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/20264:53

13.123 (Cd?*)

(ec)

12 Seed modified with Oil extraction to obtain  Pb2* 12.24 (Pb?*) 263
M. oleifera cake (byproduct)
13 Leaves modified with Activated carbon AsS* 6.23 (As®) 264

14 Pure seed-modified Oil extraction to obtain  Cdz2* 7.864 (Cd?*) 265
M. oleifera cake (byproduct)

15 Seed Oil extraction to Cr+ 3.191(Cr3) 266

obtain M. oleifera
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Cd?*,Cu?* and Ni 2*

Cd?*and Cu?*on to

MOB

Ni2*

Cu?*, Ni 2* and Zn?*

Pb2*

Pb?*

171.37 (Cd?*),

167.90 (Cu?* ) and

163.88 (Ni 2*)

39.41(Cd?*) and 36.59 (Cu?*)

30.38 for (Ni2*)

11.53 (Cu?*), 19.08 (Ni2* ) and 17.67(Zn?")

209.54 for (Pb?*)

34.6 for (Pb?*)

267

236

268

269

269

270
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Various fabrication techniques have been employed to enhance bio-based
composites' adsorption efficiency and stability, including electrospinning, wet
spinning, hydrogel formation, and hybrid processing. These methods enable the
formation of fibres or gels with high surface area, tunable porosity, and enhanced
stability, all of which are critical for water treatment applications. While numerous
studies have demonstrated the promising capabilities of M. oleifera, alginate, and
cellulose, significant research gaps remain in integrating these materials
effectively for real-world applications. The following section identifies these gaps
and proposes future research pathways.

6 Comparative Evaluation of Sodium Alginate, Cellulose composited and
the M. oleifera Parts Biosorbent

A systematic comparison of sodium alginate, cellulose, and M. oleifera
composites is essential to establish their relative adsorption performance and
identify the most efficient bio-based materials for heavy metal removal.114271
Although each of these biopolymers exhibits distinctive structural features and
functional groups that support metal ion binding, their adsorption efficiencies
differ considerably depending on the degree of chemical modification, composite

formulation, and the physicochemical characteristics of the target ions!®. This

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

systematic comparison is based on the data retrieved from Tables 2, 3 and 4 of
this study. Figure 13 shows the comparison of the adsorption capacities of

alginate-based composites. Alginate composites show very high adsorption

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

efficiencies, particularly when hybridised with metal oxides, nano-additives, or

(cc)

functional groups. Notable peak capacities include all metal ions Pb2* at 1742
mg/g for CaCOs—alginate/chitosan composite>®, Cré* with 678.67 mg/g Amino-
functionalised alginate aerogel and Cd2* with 464.23 mg/g?’?. The deduction from
these findings shows an extraordinary adsorption capacity after chemical/nano-

based functionalisation.

In addition, Figure 14 presents the comparison of adsorption capacities of
cellulose-based composites extracted the study shows the peak values of

capacities retrieved from the cellulose-based composites for metal ions with the
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highest adsorption are Pb2* at 1250 mg/g, with an oxidised CMC hydrogel with
affinity with for Cu2* at1111 mg/g, Co?* with 760 mg/g and the CMC cryogel Ni2*
at 620 mg/g2°1292, The findings show the strength of sustained high adsorption
across multiple metal ions, broad selectivity, and stability in aqueous

environments.

Furthermore, Figure 13 also shows the comparison of the adsorption capacities
of parts of M. oleifera with or without modification. The M.oleifera-based
adsorbent study was limited to pure M. oleifera parts and modified treatment. Our
findings show high adsorption capacities, particularly when chemically modified.
Peak capacities include Hg2* 840.34 mg/g for Acryloylated M. oleifera gum?2°,
Cdz* with 357.14 mg/g of the Pure seed, and Pb2* with capacities of 209.54 mg/g
for Citric-acid-modified leaves?>%269, Overall, the key findings from the
comparative evaluation indicate a clear performance hierarchy among the three
biopolymer systems. Cellulose-based composites show the highest overall
efficiency, with several materials achieving capacities above 1000 mg/g™ for
metals such as Pb2* and Cu?*. Alginate composites display very high peak
capacities, including the highest value reported (1742 mg/g for Pb?*), but this
performance is strongly dependent on functionalisation. In contrast, M. oleifera
biosorbents generally exhibit moderate adsorption, with higher capacities
achieved only after chemical modification. Overall, cellulose demonstrates the
most stable and versatile adsorption behaviour.
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Figure 14: Comparison of adsorption capacities of cellulose-based
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Figure 15: Comparison of the adsorption capacities of parts of M. oleifera

with or without modifications

{ Consolidated Comparative Discussion of Electrospinning and Wet
Spinning

Building upon the comparative evaluation presented in the preceding section, it

is essential to examine how the choice of fabrication technique further shapes the

structural and functional attributes of these biopolymer-based adsorbents using

the specific biopolymers and the biosorbent M. oleifera composites. The following

discussion, therefore, consolidates the key features of electrospinning and wet

spinning, highlighting how each method distinctly influences fibre morphology,

active-site accessibility, and overall adsorption performance.

Electrospinning and wet spinning have been identified as the key fabrication
techniques for biopolymer-based and absorbent materials. However,
consolidated information on the comparison of these techniques for these specific
biopolymers on how these methods distinctly influence the final adsorbent's
properties of the materials, such as general processing parameters, Mechanical
properties, microstructure and porosity, water interaction and adsorption
properties and industrial suitability and economic perspectives. This section

combines the findings of this study with relevant literature on biopolymer-based
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fibres for wastewater purification. The results align with previous studies on
electrospinning wet-spinning alginate, cellulose and M. oleifera. The
development of bio-based fibre materials for water treatment addressed in this
research is very crucial in addressing the increasing contamination of both
domestic and industrial wastewater, such as oil and gas, mining, chemical
processing, and textile wastewater, among others, with heavy metal ions such as
Cu?*, Niz*, Pb2*, Cr®*, and Cd?*. These contaminants, common in effluents from
the oil and gas, mining, chemical processing, and textile sectors, pose critical
risks to human health and ecological integrity and several metals which could
pose serious risks to human health, aquatic ecosystems, and environmental

sustainability?”3.

This comparative analysis could serve as a guideline for researchers and
industries currently working in water treatment, particularly those related to
wastewater treatment and management. 2’4 Table 5 shows several comparisons,
like the selected fabrication technique, which might be tailored to specific
treatment goals, whether for heavy metal adsorption, mechanical durability, or

large-scale industrial filtration.

The comparative assessment demonstrates that each fibre system offers distinct

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

strengths relevant to water purification. Electrospun alginate fibres offer the
highest porosity and surface area, making them theoretically ideal for adsorption-

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

based applications; however, experimental data on their mechanical and

(cc)

adsorption performance remain limited. Wet-spun fibre, specifically those
fabricated from alginate fibres, is the most cost-effective and sustainable; yet,
their tendency to swell and leach Ca2z* compromises long-term structural stability.
Wet-spun cellulose fibres deliver superior mechanical strength and water stability
due to dense hydrogen bonding, but their compact microstructure restricts

diffusion and adsorption efficiency.

Overall, no single fabrication method is universally optimal. Instead, the results
suggest that hybrid structures integrating the high surface area of electrospun

alginate with the mechanical robustness of cellulose wet-spun fibres may offer
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the most balanced performance for advanced heavy-metal removal in water
purification.Future studies can build on this analysis by modifying fibre
compositions used in our study or related literature by integrating nanomaterials
for enhanced selectivity to scale up the fibre for production in real-world

applications.

To bridge the gap between scientific research and industrial adoption, a study
has ensured that the development of bio-based water purification materials,
including those incorporating M. oleifera, aligns with sustainability goals,
regulatory compliance, and practical feasibility.?”> Furthermore, we believe that
countries such as developing nations, where low-cost and locally sourced
materials are essential for clean water access, can use M. oleifera-based fibre
composites to provide a viable, sustainable, and highly effective solution for
addressing heavy metal contamination in drinking water and industrial

wastewater
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SIN

Parameter

Electrospinning (Alginate-
Based)

Wet-Spinning (Alginate-
Based)

Wet-Spinning (Cellulose-
Based)

References

1. Processing Comparison

1 Solubility Water-soluble, requires Water-soluble, requires Water-insoluble retains 36
blending with polyethene ionic crosslinking for stability in water
oxide (PEO) for stability
electrospinning and
crosslinking for stability

2 Processing Method Electrospinning via high Water-soluble, requires Wet-spinning using ionic 82,276
voltage application onto a ionic crosslinking for liquid (EMIM DEP), then
collector plate stability water coagulation

3 Crosslinking Mechanism Post-processing lonic crosslinking via Hydrogen bonding-based 21,36
electrospinning crosslinking  divalent Ca2* (egg-box structural regeneration
using CacCl, model)

4 Fibre Morphology Nanofibrous structure with a  Soft polymeric network . 27,36
high surface area after fibres D_ense, weII.- packed. fibres
spinni with strong interchain

pinning . ;
interactions

5 Spinnability Requires precise control of  Easier to spin but prone Challenging to spin due to ~ 27:32.36

viscosity and voltage to swelling high viscosity
2. Mechanical Properties Comparison
1 Tensile Strength Not reported With different With different 2n,32

concentrations of M.

66

concentrations of M.
oleifera seed, but best at
2% MoP (Higher)
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Young's Modulus

Elongation At Break

Structural Rigidity

Fracture Behavior

Not reported

Not reported

Not reported

Not reported

oleifera seed, but best at
1% MoP (Lower )

Lower dependent on
hydration state

Moderate, decreases with
M.oleifera seed due to
embrittlement

Soft and flexible, but
weaker than cellulose-
based fibres

Soft and flexible, but
weaker than cellulose-
based fibres

Higher improved stiffness
due to dense hydrogen
bonding

Higher retains flexibility at
higher M. oleifera content

Rigid and mechanically
stable

Ductile failure can
elongate before breaking

27,32

27,32,36

277

27,32,36

3. Microstructure and Porosity

Microstructure Morphology

Pore Interconnectivity

Highly porous nanostructure

Excellent, ideal for diffusion-
based applications

Water Interaction & Adsorption Properties

3

Water Interaction

Possible Resistance to lon
Leaching

Adsorption Efficiency

Moderate hydrophilicity,
tunable via crosslinking

Less prone to ion leaching
with possible Ca2* ion
compared to wet-spun
alginate

Potential is higher due to
nanofibre morphology, but

Open pore structure,
good for ion diffusion

Moderate, interconnected
pores improve diffusion

Highly hydrophilic, swells
in aqueous conditions

Prone to Ca?* ion
leaching, impacting
stability

Potential High, suitable
for multiple metal ions

67

Dense, compact structure

Lower interconnectivity
reduces diffusion efficiency

Water-stable, resistant to
degradation

Highly resistant to leaching

Moderate, selective for
Cu?*

27,32,36

27,32,36

27,32,36

27,32,36

27,32,36
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Heavy Metal Selectivity
(based on the SEM-EDX
characterisation )

Environmental Science: Advances

adsorption was not
conducted for these
studies

Expected more selective
adsorption due to surface
functionalisation
(recommended for future
studies )

Broad-spectrum
adsorption (Cu?2*, Ni2*,
Cd2z")

Selective adsorption,
primarily Cu2*

27,32,36

4,

Industrial Suitability and Economic Perspectives

Industrial Suitability

Recyclability Potential

Cost-Effectiveness

Sustainability Factor

Processing Challenges

Best for high surface area
applications (e.g.,
nanofiltration

Moderate recyclability:
crosslinking affects
reusability

Higher cost due to high-
voltage equipment and
polymer additives

Sustainable but requires
additional processing for
stability due to the addition
of PEO

Requires strict control
(voltage, viscosity, humidity)

Best for filtration
membranes requiring
mechanical strength

Possible limited
recyclability due to ionic
crosslinking

Low-cost, simple
processing, widely
available materials

Highly sustainable, from
seaweed and plant-based
sources

Crosslinking control is
essential for stability

68

Best for water treatment
systems

Possibility of more
recyclable materials due to
hydrogen bonding
regeneration

Moderate cost, ionic liquid
processing is expensive

Sustainable, but depends
on ionic liquid recycling

Complex ionic liquid
handling limits the
feasibility during the
dissolution and wet-
spinning process

27,32,36

27,32,36

27,32,36

278,279

280,281
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Scalability for Mass
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Scalable but requires
advanced electrospinning
setups

Scalable but requires
precise crosslinking
control

Scalable but ionic liquid
recycling is a challenge

32,36,282

5. Industrial Suitability and Economic Perspectives

Industrial Suitability

Recyclability Potential

Cost-Effectiveness

Sustainability Factor

Processing Challenges

Scalability for Mass
Production

Best for high surface area
applications (e.g.,
nanofiltration

Moderate recyclability:
crosslinking affects
reusability

Higher cost due to high-
voltage equipment and
polymer additives

Sustainable but requires
additional processing for
stability due to the addition
of PEO

Requires strict control
(voltage, viscosity, humidity)

Scalable but requires
advanced electrospinning
setups

Best for filtration
membranes requiring
mechanical strength

Possible limited
recyclability due to ionic
crosslinking

Low-cost, simple
processing, widely
available materials

Highly sustainable, from
seaweed and plant-based
sources

Crosslinking control is
essential for stability

Scalable but requires
precise crosslinking
control

69

Best for water treatment
systems

Possibility of more
recyclable materials due to
hydrogen bonding
regeneration

Moderate cost, ionic liquid
processing is expensive

Sustainable, but depends
on ionic liquid recycling

Complex ionic liquid
handling limits the
feasibility during the
dissolution and wet-
spinning process

Scalable but ionic liquid
recycling is a challenge

27,32,36,283

27,32,36,283

27,32,36,284

27,32,36

27,32,36

27,32,36,280-282
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8 Research Gaps and Future Directions.

Despite significant progress in developing biopolymer-based adsorbents for
heavy metal remediation, key research gaps persist in the current literature. Many
existing systems depend heavily on synthetic or chemically modified materials,
raising concerns about sustainability, cost, and potential secondary pollution.
Natural biopolymers like sodium alginate and cellulose are gaining increased
attention due to their abundance, biodegradability, and functional groups suitable
for metal ion binding. However, their full potential is yet to be realised, particularly
in hybrid forms incorporating low-cost biosorbents such as M. oleifera. While seed
extracts have been extensively studied as biosorbents because of their cationic
proteins and bioactive components, limited research has been conducted on their
integration with alginate and cellulose using advanced fabrication techniques like
wet spinning and electrospinning. Despite the rising demand for biodegradable
and renewable alternatives, several studies have focused on synthetic polymers
and unsustainable materials. Integrating alginate, cellulose, and M. oleifera within
engineered fibres marks an emerging research frontier. These materials can be
utilised to develop adsorbents with tunable adsorption capacities based on

optimised parameters such as pH, dosage, and contact time. However, the

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

experimental frameworks for selecting and fine-tuning these parameters have not
been fully developed. Furthermore, although the seed has been the most studied

part of M. oleifera, other parts of the plant, such as the bark, husk, and leaves,

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

contain functional bioactive compounds and should be comparatively assessed

(cc)

for their adsorption efficacy.

Therefore, future studies should aim to:

I.  Explore underutilised parts of M. oleifera in combination with alginate,
cellulose or their combinations.
[I.  Optimise electrospinning and wet spinning methods to fabricate advanced
biopolymeric adsorbents.
lll. Establish application-relevant parameters for enhanced adsorption

capacities.

70


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00347d

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 December 2025. Downloaded on 1/13/2026 10:53:28 PM.

(cc)

Environmental Science: Advances

Page 72 of 119

View Article Online
DOI: 10.1039/D5VA00347D

IV. Validate composite performance in real water matrices and assess their
regeneration, reusability potential and detailed assessment of adsorption

performance

These gaps highlight the need for systematic investigations that bridge materials
science and environmental engineering. The insights gained from this review
provide a foundational basis for selecting suitable material combinations,
fabrication strategies, and operational parameters for improved heavy metal
adsorption.

9 Conclusion

This review critically evaluates the potential of alginate, cellulose, and M. oleifera-
based composites for heavy metal removal from agueous systems. These bio-
based materials offer environmentally friendly, low-cost alternatives to
conventional synthetic adsorbents and align with the goals of sustainable water
treatment. Sodium alginate and cellulose provide the necessary functional groups
for efficient adsorption, while M. oleifera contributes additional bioactive
compounds that enhance adsorption performance. Although significant progress
has been made in their utilisation, a lack of integrated systems developed using
advanced fabrication techniques such as electrospinning and wet spinning
remains. The novelty of this study lies in its emphasis on the potential interactions
among these bio-based components and the emerging fabrication strategies that
can enhance their adsorption properties. Based on the systematic comparison
of sodium alginate, cellulose, and M. oleifera composites, alginate-based
systems consistently show that cellulose-based composites offer the most
consistent and broadly effective adsorption performance. Alginate-based
systems can reach exceptionally high capacities, though largely when modified.
M. oleifera adsorbents remain effective and sustainable but generally show lower
capacities unless chemically enhanced. Taken together, cellulose emerges as
the most reliable high-performance bio-adsorbent, followed by alginate and M.
oleifera. Notably, the review highlights how adsorption performance can be tuned
through parameter optimisation rather than solely relying on mechanical strength

or structural modifications. The major gaps remain in developing sustainable,
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high-performance bio-based adsorbents. The combined use of alginate,
cellulose, and M. oleifera, especially within engineered fibres, remains
underexplored, and optimisation frameworks for adsorption parameters are still
limited. Furthermore, most work focuses only on the seed, leaving other
functional plant parts insufficiently investigated. The findings herein contribute to
the body of knowledge by outlining the suitability of these biopolymers as viable
adsorbents for water purification and by identifying clear directions for material
selection, design, and implementation. Ultimately, this review provides a basis for
designing future studies to improve adsorption capacities through the
development of tailored composites using sustainable materials and processes.
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