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Tropospheric carbon dioxide and methane
temporal variability using atmospheric infrared
sounding data: a case study of Pakistan

Bahadar Zeb,*® Khan Alam,® Allah Ditta, {2 ** Mazhar Sajjad® and Magbool Ahmad®

Rising levels of carbon dioxide (CO,) and methane (CH,4) in the atmosphere are significant contributors to
global climate change, although regional differences and mechanisms are poorly understood, especially in
South Asia. This study examines the spatial and temporal patterns, seasonal changes, and climatic effects of
CO, and CH,4 over Pakistan through satellite measurements (AIRS, 2002-2017), weather, and vegetation
indicators (NDVI). We evaluate the contribution of human-made activities, biomass burning, and natural
processes (e.g., monsoon or soil respiration) to the regulation of greenhouse gas (GHG) concentrations.
Moreover, we assess the contribution of long-range transportation by our neighboring areas (the Middle
East and Central Asia) using HYSPLIT trajectory modeling. The results show an average yearly growth of
CO; (2.1 ppm per year) and CH,4 (3.5 ppb per year), seasonal peaks of CO, (spring) and CH,4 (summer),
associated with agriculture, temperature-dependent respiration, and monsoonal cycles. CO, and NDVI
(—0.50) and CH4 and NDVI (+0.64) depict negative and positive associations, respectively, and play the
role of vegetation as a carbon sink and wetland and rice paddy emissions. Other significant findings of
the study are sudden changes in GHG patterns (CO,: 2009; and CH,4: 2007-2014) that occur with
upward temperatures, indicating climate feedbacks. This study incorporates radiative forcing dynamics
and air mass paths, which provide important insights into the regional GHG drivers and their climatic
implications and contribute to policy interventions to reduce emission levels in South Asia. The cloud
fraction had a negative correlation with both CO, (r = —0.36 and p < 0.04) and CH,4 (r = —0.20 and p <
0.03). The trajectories of the air mass of the rear indicate that the distant pollution of neighboring
countries is a factor. Burning of crop residues, car emissions, forest burning, and others release small
quantities of gases and contaminants into the air. This study compares atmospheric CO, and CHy4
prediction models. The dominant trend is strong linearity. In the case of CHy, linear regression is the best
and most suggested model. In the case of CO,, ARIMA provided the most accurate forecasts by
detecting minor autocorrelation. More complicated models, such as LSTM, failed to work, which proved
that simpler models are effective on this kind of data.

Among greenhouse gases, carbon dioxide (CO,) and methane (CH,) are the most important gases that have a significant impact on the climate. The current study

was conducted to examine the monthly and seasonal variation in the concentrations of CO, and CHy, to better understand the inter-annual variation as well as
increasing trends of CO, and CH, during the study period (2002-2017), to identify the time-varying characteristics of CO, and CH, concentrations and the

probable causes, which characterize the variability in different time scales over Pakistan, and to investigate the effects of meteorology, cloud properties,
vegetation dynamics on CO, and CH, concentrations and the effects of long-range air masses on CO, and CH, concentrations. The results show that the CO, and

CH, emission levels in Pakistan are alarming and ultimately contribute to climate change. It is expected that these results will help scientific communities
further explore the root causes of the recent CO, and CH, increase to better mitigate their potential impact on global warming.
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With the increasing awareness of climate change, many solutions
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have been suggested to address this issue."” Decades of studies
have proven that there is a strong association between increasing
GHG levels and climate change.** The greatest pollutants of
global warming are carbon dioxide (CO,) and methane (CH,).?
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The energy sector is the largest emitter of GHGs, followed by
agriculture. The life cycle of their emissions can vary substan-
tially, ranging between several years and millennia, yet their
cumulative effect is the cause of climate change over long
periods.” The main sources of CO, emissions are the combustion
of fossil fuels, the manufacturing of cement, and changes in land
use, and they are ultimately eliminated by land and ocean sinks.
According to Le Querre et al.,® forty-five percent of the world's CO,
emissions were held up in the atmosphere, with the rest being
absorbed by land (30%) and ocean (24%) between 1959 and 2017.
CO,, a major greenhouse gas (GHG), is important in the main-
tenance of a balance in the temperature of the Earth as well as in
the process of climate change.” It also contributes to important
biological processes like photosynthesis and respiration.”
Nevertheless, human actions, especially industrialization, have
increased the CO, levels in the atmosphere from 280 ppm to over
416 ppm within the last 150 years.® This elevation has greatly
changed global radiative forcing, which has led to escalating
climatic change.> To curb further rise in global temperatures,
minimizing CO, emissions should be a major priority. Some of
the strategies that will help include a shift to using fossil fuels,
increasing carbon sequestration, and sustainable land use. The
most active greenhouse gas, second in importance after carbon
dioxide (CO,) in the atmosphere, is methane (CH,).

Even though methane is less concentrated than CO,, it has
a high global warming potential. Human activities have signifi-
cantly increased their atmospheric concentration, which is now
higher than that before the industrial era. Methane is produced
during both natural and anthropogenic activities and is grouped
into three formation pathways: (1) Thermogenic: it is formed
under high pressure and temperature at very deep levels in the
crust of the earth as a result of decomposing organic matter. It is
emitted during the extraction, transportation, and processing of
fossil fuels (oil, gas, and coal). (2) Pyrogenic: it is formed by the
partial decomposition of organic matter, such as wildfires and
savanna burning, agricultural waste and crop residue burning,
and biofuel combustion.” (3) Microbial: it is formed by meth-
anogenic bacteria in anaerobic environments, including natural
wetlands (lakes, peatlands, and rice paddies); livestock digestion
(ruminants); landfills; and wastewater treatment. Although
methane is inexhaustible, it undergoes (1) oxidation by hydroxyl
radicals (OH) (approximately 90 percent of the removal) to
produce other types of secondary pollutants, such as formalde-
hyde (CH,0), carbon monoxide (CO), and ozone (O3);" (2)
absorption by the soil (oxidation of dry soil); and (3) chlorination
under the influence of chlorofluorocarbons (CFCs). Total
methane emissions are currently more than what nature has
taken up; thus, there is a progressive rise in concentrations
present in the atmosphere. The main cause of this increase is
human activities, which include the consumption of fossil fuels,
farming, and waste disposal.> It has been demonstrated that,
globally, several studies have been used to estimate and describe
the rising patterns and variability of CO, and CH, using satellites.
Studies based on the measurements of instruments, such as the
Greenhouse gases Observing Satellite (GOSAT) and the Orbiting
Carbon Observatory-2 (OCO-2), have provided previously
unknown details on the spatial and temporal distribution of
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these gases and found continuing increases in atmospheric
levels."™ Major emission hotspots, including the industrialized
areas of East Asia and North America, and large natural sources,
such as the Amazon basin, were identified. Moreover, global
studies have played a key role in explaining the multifaceted
relationship between human-generated emissions, natural
biogeochemical cycles, and climatic factors, like temperature and
precipitation, which give rise to seasonal and interannual
changes.*" It is against this global body of work that regional
studies, including this one, can be compared and contextualized.
The report by IPCC? indicates that the levels of CO, and CH, in
the atmosphere have been rising since the Industrial Revolution.
Nevertheless, most developing nations find it difficult to keep
regular track of such gases owing to a lack of know-how and state-
of-the-art apparatus. Long-term greenhouse gas (GHG) evalua-
tion requires ground-based measurements in most cases.
Remote sensing through satellites is a possible solution.
Although the spatial resolution can be low, this technology can
provide continuous global results for trace gases, providing
essential data on their trends and effects on human health,
ecosystems, and climate change. Remote sensing as a state-of-
the-art methodology supplements ground-based state-of-the-art
systems and improves the capacity to monitor GHG emissions
to guide mitigation strategies.

Pakistan is one of the largest greenhouse gas (GHG) emitters
in the world, with the 13th largest global anthropogenic emission
of CH,, and 504.59 million tons of total emissions in 2018." Key
concerns are as follows: (1) large amounts of methane (CH,)
emissions: 13th largest anthropogenic CH, emitter globally and
top 5 in livestock-related CH, emissions (enteric fermentation);
(2) CO, build-up: deforestation, and local sources of great emis-
sion sources are as follows: transportation (vehicles), agriculture
(livestock and biomass burning), and forest fires. Pakistan
experiences aggravated floods, droughts, and extreme tempera-
tures. Developing countries, like Pakistan, have inadequate
mechanisms to even monitor such emissions due to the high cost
of deploying ground-based monitoring networks. However, with
the latest developments in the field of atmospheric remote
sensing (RS), reliable sensors, such as the atmospheric infrared
sounder (AIRS), have made monitoring of CO, and CH,
feasible.’** Mahmood et al' investigated the atmospheric
concentrations of CO, and CH, over Pakistan using the Atmo-
spheric Infrared Sounder (AIRS) from 2010 to 2015. Ning An
et al.*® attempted to evaluate the potential of space-based obser-
vations to monitor atmospheric CO, changes over 120 districts
through simple data-driven analyses from 2015 to 2020. Noman
et al.”’ estimated the GHG (carbon dioxide and methane) foot-
print based on the one-year average fossil fuel consumption in
selected Private Sector Universities of Karachi.

Although some previous studies have provided snapshots,
these are usually constrained by more stringent periods or
a more focused consideration. This study fills this gap by
providing a long-term (16 years) analysis of both CO, and CH,
across Pakistan. The originality of this work is an approach that
is an integrated analysis of the spatiotemporal trends of interest
and study of the driving mechanism, i.e., the importance of
meteorological parameters (temperature, humidity,

© 2026 The Author(s). Published by the Royal Society of Chemistry
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precipitation, and wind speed), vegetation dynamics (NDVI),
and cloud characteristics, and a critical evaluation of the
transportation of transboundary pollution through HYSPLIT
modelling. This complex analysis offers a more comprehensive
explanation of the causes of GHG variability in this poorly
studied but noteworthy area. Regrettably, the successful appli-
cation of satellite RS in investigating CO, and CH, monitoring
in Pakistan has hardly been documented. Thus, this research is
aimed at tracing the temporal distribution patterns of CO, and
CH, in the long term (2002-2017) in Pakistan and predicting the
two gases using AIRS data. The results will be used to make the
scientific community aware of the factors that cause the
increase in CO, and CH, in the air and to overcome their
contribution to global warming. This study points to an
alarming level of emissions of these gases in Pakistan, which
has contributed to climate change.

Experimental

Description of the study area and its meteorological
conditions

Pakistan is located in South Asia and is bordered by India to the
east, Afghanistan and Iran to the west, China to the north, and
the Arabian Sea to the south. It lies between Longitude: 60°50’ E
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to 77°50' E, Latitude: 23°35’ N to 37°05' N, covering an area of
approximately 881913 square kilometres (Fig. 1 and Table 1).
The country boasts a variety of landscapes with the high
mountain ranges of the Himalayan and Karakoram ranges
located in the north, the fertile Indus River plains located in the
central region, and the arid deserts of Sindh and Baluchistan
located in the south and west. Pakistan has great climatic
diversity, with an alpine climate in the highlands of the country
and arid and semi-arid climates in the southern plains. There
are four seasons in the country: cool winter (December-
February), spring (March-May), summer (June-August), and
autumn (September-November).*®* The Indus River is the life-
blood of Pakistan, and the problems of water shortage and
climate change are increasing. Pakistan is governed by four
provinces: Punjab, Sindh, Khyber Pakhtunkhwa (KP), and
Baluchistan, and the federally governed territory of Islamabad
Capital Territory, Azad Jammu and Kashmir, and Gilgit-
Baltistan. Pakistan is the fifth most populous nation in the
world, with a population of over 240 million people. Urban
centres, like Karachi, Lahore, and Islamabad, are the centre of
economic, political, and cultural activities, with rural life in
most cases being agrarian. This area is of interest to the study as
it is important in terms of the ecological zones and socioeco-
nomic inequalities and is prone to environmental and
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Fig. 1 Map of the study area (ArcMap 10.5). All the datasets (shapefiles) were obtained from DIVA GIS and UNOCHA.
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Table 1 Summary of the annual meteorological aspects
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Parameter

Annual pattern and key characteristics

Temperature

Relative humidity (RH)

wind speed (WS)

geopolitical hazards. Critical problems include the manage-
ment of water resources, agricultural sustainability, pressures
of urbanization, and hazards caused by the climate, such as
flooding and droughts. It is important to gain a regional
understanding of Pakistan when formulating policies and
sustainable development initiatives.

The data from Fig. 2 in this study allow us to reconstruct the
annual cycle.

Fig. 2 illustrates the research area's fundamental climate
characteristics. Meteorological parameters, like relative
humidity (RH), temperature (Temp), precipitation (pre), and
wind speed (WS), are obtained from the AIRS satellite. The
meteorological parameters over Pakistan indicate the highest
temperature in June (30.75 °C) and July (30.51 °C), with the
lowest temperature found in January (10.55 °C).

High precipitation values were noted in January (7.43 mm),
June (7.68 mm), and December (6.34 mm), while the lowest
precipitation was found in September (0.08 mm). Likewise, the
highest RH (%) was found in January (45.91%) to February
(44.11%), and the lowest one was recorded in May (26.04%).
Similarly, the maximum wind speed was recorded from July
(5.83 m s7') to August (5.59 m s~ '), and the minimum from
October (3.47 m s ') to November (3.32 m s~ ).

Data sets

Atmospheric infrared sounder. Atmospheric Infrared
Sounder (AIRS) is one of six instruments aboard NASA's Aqua
spacecraft, which is part of NASA's Earth Observing System
constellation of satellites.'® AIRS provides global coverage twice
a day, with 2378 spectral channels in the range of 0.41-15.4 um.
It travels over the equator at around 1:30 a.m. and 1:30 p.m. The
AIRS instrument helps in a better understanding of the weather
and climate on Earth. AIRS is a facility device designed to help
conduct climate research and improve weather forecasting.
Every day, NASA's Aqua satellite's atmospheric infrared sounder
collects infrared light radiated from Earth's surface and atmo-
sphere around the world. Its data include 3D temperature and
water vapor readings throughout the atmosphere, as well as
a variety of trace gases, surfaces, and cloud features. Weather
prediction centers throughout the world use AIRS data to
improve their forecasts. They are also used to test the accuracy

260 | Environ. Sci.: Adv, 2026, 5, 257-280

Strong seasonal variation. The highest temperatures occur in the early
summer months (June: 30.75 °C and July: 30.51 °C). The lowest
temperatures are found in the winter (January: 10.55 °C). This indicates
a large annual temperature range of approximately 20 °C

Inversely correlated with temperature. The highest RH values occur in
the cool winter months (January: 45.91% and February: 44.11%). The
lowest RH is observed in the late spring/early summer (May: 26.04%),
coinciding with the pre-monsoon hot and dry period

Peaks during the summer monsoon. The strongest winds are recorded
from July (5.83 m s~ ') to August (5.59 m s~ '). The calmest wind
conditions occur in the post-monsoon period (October: 3.47 m s~
November: 3.32 m s~ )

! and

of climate models and in a variety of applications, from
detecting volcanic plumes to forecasting droughts. AIRS can
also detect ozone, carbon monoxide, carbon dioxide, and
methane, which are all trace GHGs. In contrast to MOPITT and
certain other instruments, AIRS/AMSU retrieve methods offer
cloud clearing for up to 80% cloud clearance. The significance
of utilizing AIRS is that it can provide trace gases even during
cloudy conditions without the use of information from the
models. Thus, the present study has no missing data for the
entire study duration. AIRS was put into orbit on May 4, 2002, by
NASA's Aqua satellite. For this study, the monthly CO,, CHy,,
temperature, and relative humidity are used from 2002 to 2017
over Pakistan, obtained from AIRS (Giovanni), with spatial
resolutions of 2.5° x 2° and 1° x 1°. The mid-troposphere is
defined as a layer of atmosphere over the altitude range of 6-10
km (between approximately 500 and 300 hPa).>* AIRS provides
CO, data up to 2017, which is why we have carried out a study up
to 2017. AIRS does not provide CO, data from 2002 to 2017
under one product, which is why we have taken monthly data of
CO, from 2002 to 2012 from the product AIRX3C2MV005 and
then taken CO, monthly data from 2013 to 2017 from another
product, AIRS3C2MV005. The monthly variables like CO,, CH,
(mid-tropospheric) temperature, and relative humidity were
taken from AIRS and averaged to create long-term annual
averages. The data version/level of the Atmospheric Infrared
Sounder used for CO, is AIRX3C2MV005, as well as
AIRS3C2MV005, with a spatial resolution of 2.5° x 2°, and for
CHy,, the level used is AIRS3STMV006, with a spatial resolution
of 1° x 1° AIRS CO, and CH, level 3 products used in the
present study are sensitive to only the upper troposphere (mid
to free troposphere).

Moderate resolution imaging radio spectrometer. The
instrument known as the Moderate Resolution Imaging Spec-
troradiometer (MODIS) is currently operational on both Terra
and Aqua satellites. With MODIS's 2330 km swath, it is feasible
to view the world's data in a single day. MODIS algorithms have
been upgraded periodically to enhance data quality and accu-
racy. The implementation of the Deep-Blue algorithm has
enhanced MODIS Level 2 observations on bright surfaces, such
as the Sahara Desert. Water vapor was measured in the current
investigation using TERRA-MODIS (MODO5) level 2.0

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Average monthly variations in meteorological parameters (including relative humidity, temperature, precipitation, and wind speed) over

Pakistan during the study period (2002-2017).

collections of six products with a 1 x 1 km spatial resolution.
The data of Cloud Fraction (CF) and Cloud Top Temperature
(CTT) have been obtained from MODIS Satellite level
MYDO08M3V6.1, with a resolution of 1° x 1°. Monthly variables
like NDVI, CF, and CTT were averaged to create a long-term
annual average over the entire study location.

Additionally, we employed the 0.5° spatial resolution
Normalized Difference Vegetation Index (NDVI) from the
MODIS-Terra platform. NDVI is the ratio of albedo («) measured
at various wavelengths:

«0.86 pm + «0.67 um

NDVI = .
v «0.86 pm — «0.67 um

1)

© 2026 The Author(s). Published by the Royal Society of Chemistry

In eqn (1), numerical values like 0.86 pm are used for NIR and
0.67 um are used for red. NDVI values can vary from 0.1 to 1.0
despite their typical values being between 0.1 and 0.7. The
higher values of NDVI symbolize increased canopy density and
greenness*"**

Purpose of using MODIS cloud parameters. The authors
used MODIS data for two key cloud parameters:

e Cloud Fraction (CF): The percentage of an area covered by
clouds.

e Cloud Top Temperature (CTT): The temperature at the top
of the clouds.

Environ. Sci.: Adv., 2026, 5, 257-280 | 261
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The purpose of including these parameters was to move
beyond simply measuring gas concentrations and to start
quantifying their climatic effects over Pakistan. Clouds play
a critical role in the Earth's energy balance:

e They reflect incoming solar radiation (a cooling effect).

e They trap outgoing longwave (thermal) radiation (a
warming effect).

By correlating GHG concentrations with cloud properties,
the authors aimed to investigate if and how increasing levels of
CO, and CH, are influencing local cloud characteristics, which
in turn affect regional climate.

Modern-era retrospective analysis for the research and
application model. Modern-Era Retrospective Analysis for
Research and Applications-Model (MERRA) data, version 2,
available since 1980, were used for the first comprehensive
worldwide study of atmospheric aerosols and their interactions
with other physical processes occurring in the climate system.
Because of its ability to incorporate modern hyperspectral
radiance and micro measurements, the MERRA-2 model
represents an improvement over the original MERRA dataset
and allows for developments in the assimilation mechanism.
Additionally, this model uses ozone observations made by NASA
since 2004. Weather and aerosol observations are modified for
the MERRA-2 model using the Goddard Earth Observing System
version 5 (GEOS-5). This model has a spatial resolution of 50 km
in the latitudinal direction. The authors likely chose MERRA-2
because it is a global, long-term, and consistent reanalysis
dataset specifically designed for atmospheric composition
studies. Unlike operational models like ECMWF, MERRA-2
assimilates aerosol and chemical observations, providing
meteorological data that is physically consistent with aerosol
fields, which is crucial for studying pollutant interactions. It
offers a complete spatial and temporal record that matches well
with satellite overpasses. Precipitation and wind speed were
measured in the current investigation using the MERRA-2
model (M2T1NXRAD) version 5.12.4 at a spatial resolution of
0.5° x 0.625°. The monthly variables, like precipitation and
wind speed, were averaged to create long-term annual averages
over the entire study location.

Methods

Trend analysis. During the study period, linear regression
analysis was used to assess seasonal fluctuations. Nevertheless,
sudden changes in the time series were not detectable using
linear regression. To find these variations in the CO, and CH,
concentrations, the study also used the Mann-Kendall (MK)
sequential test.>*** The trend's significance was determined
using the MK trend test statistic (Z) derived using the following
formula:

2l s
var(z)
7= 0, ifr=0 . @)
Lo
var(r)
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The probability of this normalized test statistic is calculated.
The following equation gives the probability density function
for a normal distribution with a mean of zero and a standard
deviation of one:

e7. (3)

e Decide on the degree of significance (95% is typical).

e A trend is said to be decreasing if Z is negative and the
computed probability is greater than the level of significance. A
trend is said to increase if Z is positive, and the computed
probability is greater than the level of significance. There is no
trend if the calculated probability is less than the level of
significance.

t—E(1)

Uut) = W. (4)

The sequential numbers U(¢) and U'(¢) from the Mann-Ken-
dall test's progressive analysis were calculated to observe how
the trend changed over time.* U(t) is the sum of the z values
found from the first to the last data point. This test considers
the relative values of all terms in the time series (xy, Xy,..., X,)-
The following steps are sequentially applied. The magnitudes of
the x;annual mean time series (=1, 2, ..., n) are compared with
x;(I=1,2,...,j — 1). For each comparison, the number of cases
x; > x; is counted and denoted by n;.

oThe test statistic ¢ is thus provided using the following
equation:

t= in,-. (5)

e Mean and variance of the test statistic are respectively

£ =" ©)
Var(r) = n(n — 1;;2n +5) . )

eWe can calculate the sequential values of the statistic U(¢)
using the following equation:
t—E(1)

U(r) = NACon 8)

Similarly, U'(¢) values are computed backward, starting at the
end of the series. The sequential Mann-Kendall model could be
regarded as an effective method for determining the beginning
year(s) of a trend. If the values are greater than the confidence
interval (1.96), the hypothesis of no change is rejected, and the
approximate time of the change point (abrupt change) is shown
by the intersection of and U'(¢) in the time series.

Hybrid single-particle Lagrangian integrated Trajectory
model. The study used the Hybrid Single-Particle Lagrangian

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Integrated Trajectory (HYSPLIT) model to examine air mass
paths in the study domain to comprehend the role of long-
distance sources of pollution. A 5 days backward air mass
trajectory over the study region with an altitude between 500 m
and 10 000 m above ground level was considered. The HYSPLIT
model-based Trajstat software was used to calculate all air mass
trajectories.>®

Results and discussion
Monthly and seasonal variations in the concentration of CO,

The variation in the concentration of CO, observed from the
satellite AIRS during the study period (2002-2017) is shown in
Fig. 3(a) and (b). The annual cycle of CO, shows a gradual
increase from November to May and then decreases up to
October. The findings revealed that the CO, concentration
reached a maximum value in May and then sharply declined
after June, with October recording the lowest levels. During the
study period (2002-2017), the average CO, levels ranged from
376 to 404, with an average value of (389 + 8) ppmv in May,
while they ranged from 371 to 402, with an average (386 + 8)
ppmv in October. Average seasonal CO, concentrations were
found to be high during spring and low during autumn
(Fig. 3b). Since lower temperatures and solar radiation during
the autumn (dry season) prevent increases in local CO, assim-
ilation, the lowest CO, at this time may be caused by respiratory
carbon loss.”” As the season changed from winter to pre-
monsoon months, a consistent rise in CO, concentration was
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noted. Spring is enhanced because of the higher temperatures
and more sunlight that occur during these months, which
promotes respiration at night and CO, assimilation during the
day.”® The increased CO, concentration during these months is
complemented by improved soil respiration. The spring CO,
concentration in the Indian subcontinent can also be signifi-
cantly impacted by biomass burning in addition to these
natural factors. The monsoon months observe the lowest CO,
levels primarily due to increased photosynthetic processes
introduced by more soil moisture. As the monsoon progresses,
a reduction in CO, concentration is also noted. Because of the
dark and cloudy weather that prevails throughout these
months, the temperature drops, which lowers soil and leaf
respiration and increases carbon uptake.” High ecosystem
productivity and increased microbial activity are linked to
further increases in CO, during the autumn season."

Because there is insufficient quality control by the relevant
authorities, CO, concentration may be a byproduct of burning
low-grade fuel and using an inappropriate combustion system,
which can be found on the open market. The main sources of
CO, concentration in the study locations included traffic
congestion, road conditions, and industrial exhaust, and
related results were apparent from Ul Haq et al.*® in Pakistan.
Kuttippurath et al®*' found the highest CO, concentration in
India during the spring season during their study period (2002-
2020). Coa et al.** found the highest CO, concentration in spring
(384.0 ppm) and the lowest in winter (382.5 ppm) over six
locations globally from 2003 to 2011. Wei et al.*® found that the
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Fig.3 Summary of Box—Whisker plots: (a) monthly variations in CO, and (b) seasonal variations in CO, over the entire region. Each box indicates
the 25th and 75th percentiles and the whiskers show the 5th and 95th percentiles. The vertical lines show the standard deviation from the mean
value. The solid circle inside each box and the horizontal lines represent the mean and median values, respectively. The crosses above and below
the boxes indicate the maximum and minimum values, respectively. Seasons are categorized as winter (December, January, and February), spring
(March, April, and May), summer (June, July, and August), and autumn (September, October, and November).
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average concentrations of CO, were 428.36 + 13.96 ppm in the
megacity of Shanghai, China, from 2017 to 2018, with the
highest CO, concentration in winter and the lowest in autumn.
Kumar et al.>* also investigated the highest values of CO, during
the spring season in India. Metya et al.*® found an average CO,
concentration of 406.05 + 6.36 ppm at Sinhagad, India, and
attains its minimum concentration during autumn, whereas
CO, reaches its maximum concentration during spring.

The key reasons for the nature of the CO, cycle are as follows:

1. Lag in photosynthesis: in spring, warmer temperatures
cause a rapid increase in soil and plant respiration (a CO,
source), but the full photosynthetic drawdown (the CO, sink)
from vegetation has not yet reached its peak. This temporary
imbalance causes CO, to accumulate, leading to a peak in May.

2. Biomass burning: specifically in the Indian subcontinent,
widespread agricultural and forest fires in the pre-monsoon
(spring) season add a significant pulse of CO, to the atmo-
sphere, reinforcing the natural peak.

In winter, respiration is lower due to cold temperatures.
Although human emissions from heating are high, the lack of
this large biogenic CO, release from soils means that the
concentration does not reach the levels observed in the spring.

Monthly and seasonal variations in the concentration of CH,

CH,4 had the maximum value in August and reached its lowest
level in April. In August, the concentration of CH, ranged from
1860 ppbv (lowest value) to 1891 ppbv (highest value), with an
average of 1876 £ 10 ppbv. In contrast, in April, CH, varied from
1784 to 1855 ppbv, with an average of 1820 + 21 ppbv. CH,
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concentration was noted to have a maximum value during
summer and a low value during the spring season (Fig. 4b).

In the troposphere, the balance between surface emission
and OH destruction mostly determines the concentration of
CH,. In the Indian subcontinent, ruminants, rice paddies, and
wetlands are the main sources of CH,.*® The Kharif (monsoon)
season may be linked to the maximum concentration, which
occurs during the summer.”” The seasonality of the CH,
concentration over Asia is characterized by greater values in the
wet season and lower values in the dry season.*® This could be
because of strong emissions from wetlands and rice fields
during the wet season. During the winter and spring seasons,
low mixing ratios of CH, were primarily caused by a decrease in
atmospheric hydrocarbons because of fewer photochemical
reactions and a significant drop in solar intensity.** The
summer and autumn seasons showed a significant rate of CH,
change. According to Nishanth et al.** and Goroshi et al.,*” the
interchange of CH, between rice paddy fields and the atmo-
sphere is governed by both biological and physical processes.
This is why in the current study area, more CH, is observed
during the summer and autumn seasons.

Kavitha and Nair** found the maximum CH, concentration
during August/September over various locations in India from
2003 to 2009 and investigated the CH, concentration that
ranged from the minimum value of 1740 ppm to the maximum
value of 1890 ppm using satellite data. They also observed the
peak value of CH, concentration during the monsoon and post-
monsoon seasons and the minimum during the winter season.
They associate CH, concentration with livestock distribution
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Fig. 4 Box-Whisker plots indicating (a) monthly variations in CH4 and (b) seasonal variations in CH4 over Pakistan. The Box—Whisker repre-

sentation in all panels is the same as in Fig. 3.
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and wetland emission, including rice fields. Ul Haq et al.*®
observed the maximum concentration of CH, during summer
(1804 + 28) ppb, followed by autumn (1800 + 25 ppb) and
winter (1777 + 24 ppb) over Pakistan, Afghanistan, and
adjoining areas using satellite data from 2003 to 2012. Wei
et al.* reported the average concentrations of CH, to be 2154 +
190 ppb, in the megacity of Shanghai, China, from 2017 to 2018,
with the highest value in summer and the lowest one in spring.

Inter-annual patterns

The long-term trends from 2002 to 2017 (Fig. 5a and b) reveal
a significant and consistent increase in tropospheric CO, and
CH, concentrations over Pakistan. Linear regression analysis
quantified the annual growth rates at 2.1 ppm per year for CO,
and 3.5 ppb per year for CH, (Table 2). Both trends were highly

statistically significant (p = 0.05), with coefficients of determi-
nation (R*) exceeding 0.95, confirming a remarkably steady and
robust upward trajectory. This cumulative growth resulted in an
overall increase of 8.6% for CO, (e.g., from ~376 ppm to ~406
ppm) and 2.9% for CH, over the 16 years. By 2017, seasonal
peaks had risen to values exceeding 406 ppm for CO, (in May)
and 1867 ppb for CH, (in August). This sharp rise is unequiv-
ocally attributed to anthropogenic emissions from fossil fuel
combustion, industrial activity, agriculture, and biomass
burning, surpassing the capacity of natural sinks, a situation
exacerbated by extensive deforestation.

The observed trend for CO, (2.1 ppm per year) aligns closely
with findings from regional and global studies. Kuttippurath
et al.*' reported an average trend of ~2.1 ppm per year over
India, while Cao et al** found a nearly identical global mid-

Table 2 Statistical metrics of the long-term linear trends (2002-2017) for CO, and CH,4 over Pakistan

Greenhouse

gas Trend Slope (change per year)  R? (coefficient of determination)  P-value Overall increase (2002-2017)
CO, Significant increase  +2.1 ppm per year >0.95 (very high) P=0.05 8.6% (e.g., ~376 to ~406 ppm)
CH, Significant increase ~ +3.5 ppb per year >0.95 (very high) P=10.05 2.9% (e.g., ~1791 to ~1858 ppb)
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Table 3 Variations (seasonal) in the concentration of CO, (ppm) and CH,4 (ppm) over Pakistan from 2002 to 2017

Year Winter season Spring season

Summer season Autumn season

Average conc. Of CO,(ppm)

2002 372 376
2003 375 377
2004 376 380
2005 378 383
2006 381 383
2007 382 385
2008 384 386
2009 386 388
2010 389 391
2011 392 393
2012 392 393
2013 394 396
2014 397 397
2015 399 401
2016 401 403
2017 403 403
Average conc. Of CH,(ppb)

2002 1791 1780
2003 1794 1788
2004 1801 1796
2005 1807 1845
2006 1802 1810
2007 1809 1817
2008 1817 1822
2009 1820 1817
2010 1825 1816
Y011 1830 1839
2012 1831 1831
2013 1845 1838
2014 1849 1839
2015 1852 1852
2016 1855 1844
017 1858 1846

tropospheric increase of 2.11 ppm per year. Similarly, the CH,
growth rate of 3.5 ppb per year is consistent with the significant
increases documented in South Asia. For instance, Mahmood
et al.™ reported a rise of 5.02 ppb per year over Pakistan from
2003 to 2015. The findings of Ul Haq et al,*® who observed
a 3.7% increase in CH, over a decade, further corroborate the
persistent and widespread nature of increasing GHG concen-
trations across the region; these rates are primarily driven by
anthropogenic activities rather than natural variability.

The seasonal variation in the concentration of both CO, and
CH, in Table 3 shows that CO, has a relatively high value of
403 ppm during the spring season. Likewise, CH, shows
maximum values (1885 ppb) during the autumn season. It is
determined that P < 0.05 denotes a considerable rise in the
concentration of both gases.

Interpretation of Mann-Kendall (MK) and sequential Mann—
Kendall (SQMK) tests

Abrupt changes in GHG trends: insights from Mann-Kendall
analysis. The application of the Sequential Mann-Kendall
(SQMK ) test (Fig. 6, 7, and 9) provides a more nuanced under-
standing of the trends, revealing specific years when significant
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375 371
376 375
377 376
379 378
381 380
383 383
385 384
387 387
390 389
392 391
392 392
395 395
398 396
402 399
400 400
400 401
1862 1823
1852 1828
1849 1824
1854 1836
1839 1834
1866 1839
1875 1850
1843 1840
1858 1859
1868 1872
1869 1873
1871 1865
1862 1864
1875 1871
1875 1884
1878 1885

abrupt changes (change-points) began in the concentrations of
CO, and CH, over Pakistan.

Interpreting the SQMK test. The forward sequential statistic
(U(1)) represents the progressive analysis of the time series from
start to end. The backward statistic (U'(¢)) is calculated from the
end to the start. A change-point year is identified where these
two statistics intersect (cross) and diverge beyond the confi-
dence limits (typically +1.96 for 95% significance). This inter-
section signifies the initiation of a statistically significant shift
in the trend's magnitude or direction.

Identified change-points and interpretation. e CO, abrupt
change (Fig. 6 and 9b): The SQMK analysis for CO, indicates
a major, sustained change-point starting around 2009. This is
evidenced by the clear and persistent divergence of U(¢t) and U'(¢)
beyond the confidence limits after this year across all seasons
(Fig. 6a-d) and in the annual data (Fig. 9b). The remarkable
consistency of this change-point across all seasons suggests
a large-scale, systemic driver that affected CO, emissions or
sinks throughout the entire year, overriding seasonal variations.
These points strongly to a significant intensification of
anthropogenic activities, such as a rapid increase in fossil fuel
consumption, industrial output, or energy production within

© 2026 The Author(s). Published by the Royal Society of Chemistry
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the region, likely linked to economic recovery and growth
patterns in South Asia post-2008.

e CH, Abrupt Changes (Fig. 7 and 9¢): The change-points for
CH, are more complex and variable than for CO,. The annual
analysis (Fig. 9c) suggests a potential shift beginning around
2010-2011, with U(t) crossing the confidence limit. However,
the seasonal analysis (Fig. 7a-d) reveals a more scattered
pattern, with intersections and divergences occurring at
different times (e.g., ~2008 in autumn and ~2012 in winter).
This scattered nature suggests that the drivers for methane are
more complex and season-specific, which is likely influenced by
a combination of anthropogenic activity and climatic variables.
For instance, change-points in spring/autumn could be linked
to modifications in agricultural practices (e.g, rice cultivation
patterns and livestock management), while those in winter/
summer may be related to shifts in monsoon patterns or
temperature, which control microbial methane production in
wetlands and rice paddies.

e Temperature trend shift (Fig. 9a): the SQMK test for
temperature reveals a highly significant change-point starting
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around 2009, with U(¢) sharply and permanently exceeding the
upper confidence limit. This timing coincides precisely with the
change-point identified for CO,. This synchronicity suggests
a potential climate feedback mechanism, where the continued
accumulation of CO, and other GHGs began to manifest a more
pronounced and consistent warming signal in the regional
climate system from that year onward.

Correlation of CO, with NDVI, CF, CTT, and other
meteorological parameters

The correlation analysis reveals the complex interplay between CO,
concentrations and environmental drivers over Pakistan (Fig. 8
and Table 4). The key findings and their logical interpretations are.

CO, and NDVI (r = —0.50 and p = 0.01)

The significant negative correlation robustly confirms the role
of vegetation as a carbon sink. Higher NDVI values, indicating
greater photosynthetic activity (particularly during the
monsoon and post-monsoon seasons), correspond with lower
atmospheric CO, levels due to active carbon uptake. Conversely,
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Fig. 8 Average monthly variations in the concentrations of (a) CO, vs. NDVI, CF, and CTT, and (b) CO, vs. Temp, RH, Pre (precipitation), and W/S

(wind speed).
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Table 4 Correlation coefficients (r) of CO, and CH,4 with CF, CTT, Temp, RH, Pre, and WS

CO, and
CO, and NDVI CO, and CF CO, and CTT CO, and Temp CO, and RH CO, and Pre wind speed
—0.50 —0.36 0.31 0.12 —0.45 —0.23 —0.35
P =0.01 P =0.02 P =0.03 P =0.001 P =0.003 P =0.05 P =10.08
CH, and
CH, and NDVI CH, and CF CH, and CTT CH, and Temp CH, and RH CH, and Pre wind speed
0.64 —0.20 0.32 0.60 0.29 —0.65 0.61
P =0.001 P =0.009 P =0.07 P = 0.06 P = 0.005 P =0.01 P =0.04

the CO, peak in spring occurs when respiration from soils and
vegetation outpaces the regrowth of photosynthetic capacity
and is exacerbated by widespread biomass burning.

CO, and meteorological parameters

Temperature (r = 0.12 and p = 0.001): the weak positive corre-
lation suggests that higher temperatures enhance soil and plant
respiration rates, releasing more CO,. However, the weakness of
the correlation indicates that local temperature is not the
dominant driver, which is overshadowed by larger-scale
anthropogenic emissions and photosynthetic drawdown.

Precipitation (r = —0.23 and p = 0.05) and relative humidity
(r = —0.45 and p = 0.003): the negative correlations align with
the seasonal cycle. The dry pre-monsoon season (low
precipitation/RH) is associated with peak CO, from fires and
respiration. The wet monsoon season (high precipitation/RH)
corresponds with CO, drawdown due to enhanced photosyn-
thesis and reduced fire activity.

Wind speed (r = —0.35 and p = 0.08): the negative rela-
tionship suggests that higher winds promote the dispersion and
dilution of locally emitted CO,, leading to lower observed
concentrations, particularly in polluted boundary layers.

CO, and cloud properties (climatic response)

Cloud top temperature (CTT) ( = 0.31 and p = 0.03): the posi-
tive correlation is a critical indicator of greenhouse forcing.
Increased CO, absorbs more longwave radiation, warming the
atmospheric layer. This warming can lead to higher cloud top
temperatures or a shift in cloud formation to lower, warmer
altitudes, reinforcing the warming effect.

Cloud fraction (CF) (r = —0.36 and p = 0.02): the negative
correlation is complex. It may reflect meteorological patterns
where drier, high-pressure systems (favoring clear skies) coin-
cide with stable conditions that allow CO, to accumulate.
Conversely, cloudy conditions often accompany precipitation
and vertical mixing that dilute CO,.

In summary, CO, variability is primarily driven by a combi-
nation of biological activity (source and sink) and anthropo-
genic emissions, modulated by meteorological conditions that
control dispersion and dilution. The correlations with cloud
properties suggest that rising CO, interacts with and potentially
modifies local cloud characteristics, contributing to regional
climate feedbacks.

© 2026 The Author(s). Published by the Royal Society of Chemistry

Pathakoti et al** found correlation coefficients of 0.13,
—0.18, —0.32, and —0.50 between CO, and Temp, WS, RH, and
Prec, respectively, over Bharati (India) in 2016. Kumar et al.**
found correlation coefficients of 0.8 and —0.64 between CO,
and temperature and NDVI, respectively, over India from 2004
to 2011. Kumar et al.** also found a negative correlation between
mid-tropospheric CO, and rainfall over India.

Sreenivas et al.*® investigated that during pre-monsoon,
monsoon, post-monsoon, and winter, the corresponding
correlation coefficients (Rs) between wind speed and CO, are
0.56, 0.32, 0.06, and 0.67, respectively, over Shadnagar,
a suburban site of Central India, in the year 2014. Nyasulu
et al.*® reported a significant association between temperature
(T, °C) and CO, (r=0.75 and p < 0.01) during the SON pollution
peak season. Additionally, during SON, CO, had a substantial
negative association with the cloud fraction (r = — 0.55 and p <
0.05) and a significant positive correlation with cloud top
temperature (r = 0.56 and p < 0.05). These findings suggest that
trace gases have a considerable impact on the climate during
periods of heavy pollution.

Metya et al.* found that correlation coefficients (R) between
wind speed and CO, during monsoon, post-monsoon, winter,
and pre-monsoon are 0.51, 0.15, — 0.02, and — 0.28, respec-
tively. A good inverse correlation between GHG and wind speed
suggests that with an increase in wind speeds, GHG concen-
trations decrease. In contrast, a weaker correlation suggests
that regional/local transport plays some roles.** Strong winds,
especially during the monsoon season, are likely to dilute GHG
concentration. The changes in CO, and CH, concentrations are
linked to the adjusted temperature, and it was found that both
gases have been increasing from the beginning of the study
period (2002), but temperature showed an increasing trend only
after 2009. As is clear from Fig. 9a-c, comparing the tempera-
ture trends with those of trace gases indicates that both
temperature and trace gases are increasing over the study area,
and a steady increase in temperature from 2009 onwards coin-
cides with the change point for CO,.

Correlation of CH, with NDVI, CF, CTT, and other
meteorological parameters

The correlation analysis for CH, reveals a distinct set of drivers
compared to CO,, which is heavily influenced by microbial
processes and agricultural practices (Fig. 10 and Table 3).
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Fig.9 Annualabrupt change in (a) temperature, (b) CO,, and (c) CH4 resulting from the sequential Mann—Kendal test statistics. The various terms
like U(t), U'(t), UL, LL, and Z have the same representation as that depicted in Fig. 6.

CH, and NDVI (r = 0.64 and p = 0.001)

The strong positive correlation is counterintuitive at first glance
but is a hallmark of agricultural methane sources. High NDVI
over Pakistan is often linked to irrigated croplands, particularly
rice paddies. Flooded fields create anaerobic conditions in
which methanogenic archaea thrive, converting organic matter
into CH,. Thus, greener landscapes from agriculture can
directly correlate with higher methane emission rates.

CH, and meteorological parameters

Temperature (r = 0.60 and p = 0.06): the strong positive
correlation is a key control on microbial methane production.
Warmer temperatures significantly increase the metabolic rates

270 | Environ. Sci: Adv., 2026, 5, 257-280

of methanogens in wetlands, rice fields, and soils, leading to
higher emission rates, especially during the summer season.

Precipitation (r = —0.65 and p = 0.01): the strong negative
correlation is likely indirect and related to atmospheric chem-
istry, not emissions. Higher precipitation is associated with
increased cloud cover and reduced solar radiation, which lowers
the atmospheric concentration of hydroxyl radicals (OH), the
primary sink for methane. With its main removal mechanism
weakened, CH, concentrations accumulate.

Wwind speed (r = —0.61 and p = 0.04): similar to CO,, the
negative correlation indicates that higher wind speeds disperse
and dilute concentrated plumes of CH, from point sources like
wetlands, agricultural areas, and leaks from infrastructure.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Average monthly variations in the concentrations of (a) CH,4 vs.

CH, and cloud properties (climatic response)

Cloud top temperature (CTT) (r = 0.32 and p = 0.07): as with
CO,, the positive trend suggests that CH, contributes to lower
atmospheric warming, which may be reflected in warmer cloud
tops, consistent with its role as a potent greenhouse gas.

Cloud fraction (CF) (r = —0.20 and p = 0.03): the weak
negative correlation may again reflect synoptic weather patterns
where conditions favouring CH, buildup (e.g., low wind and
stable atmosphere) may also be associated with fewer clouds.

In summary, CH, concentrations are predominantly driven
by temperature-dependent microbial emissions from agricul-
ture (rice) and natural wetlands, as evidenced by the strong link
between NDVI and temperature. Its atmospheric lifetime is
further modulated by meteorological factors that control its
destruction (via OH), leading to an observed strong negative
correlation with precipitation.

Khaliq et al'® showed that the CH, concentration was
significantly affected by anthropogenic emissions, NDVI,
meteorological parameters, and soil moisture over South, East,
and Southeast Asia from 2009 to 2020. Sreenivas et al.>* also
reported a positive correlation between CH, and NDVI in

© 2026 The Author(s). Published by the Royal Society of Chemistry

NDVI, CF, and CTT, (b) CH4 vs. Pre, RH, WS, and Temp.

a suburban site in India. Metya et al.*>* noted a positive corre-
lation between CH, and NDVI over Sinhagad, located on the
Western Ghats in peninsular India. Nyasulu et al.** also found
a positive correlation between CH, and NDVI over Muzambiq,
Africa.

Sreenivas et al.** found that pre-monsoon, monsoon, post-
monsoon, and winter wind speed and CH, correlation coeffi-
cients (Rs) are 0.28, 0.71, 0.21, and 0.60, respectively, over
Shadnagar, India, in 2014.

Nyasulu et al.** found that the autumn season is the pollu-
tion peak season and there is a significant association between
temperature (T °C) and CH, (r = 0.80 and p < 0.01). In addition,
during autumn, CH, demonstrated a strong negative associa-
tion with cloud percentage (r = — 0.69 and p < 0.01) and a large
positive correlation with cloud top temperature (r=0.74 and p <
0.01). These findings suggest that trace gases have a consider-
able impact on the climate.

According to Metya et al.,* the correlation coefficients (R)
between wind speed and CH, are —0.57, —0.3, —0.02, and —0.2
in the monsoon, post-monsoon, winter, and pre-monsoon
seasons, respectively. Conversely, a lower correlation implies
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that local or regional emissions are important.” The GHG
concentration is expected to be diluted by strong winds,
particularly during the monsoon season. This is confirmed for
CH,, where there is a negative correlation between wind and
CH, concentration (R = —0.61).

The changes in CO, and CH, concentrations were tried to link to
the adjusted temperature, and it was found that both gases showed
an increasing trend from the beginning of the study period (2002),
but temperature showed an increasing trend only after 2009. The
observed temperature pattern indicates an increasing trend. As
shown in Fig. 9a-c, comparing the temperature trends with those of
trace gases indicates that both temperature and trace gases are
increasing over the study area, and a steady increase in temperature
from 2009 onwards coincides with the change point for CH,.
During the study period, a steady temperature rise signifies
a temperature response to a significant increase in trace gases.

Essence of the observed correlations

The correlations found between the trace gases and cloud
parameters are not necessarily about gases causing changes in

View Article Online
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clouds directly but rather about what these relationships reveal
about the radiative forcing environment and atmospheric
conditions.

Correlation with cloud top temperature (CTT)

e Observation: both CO, (r = 0.31) and CH, (r = 0.32) showed
a positive correlation with CTT.

e Interpretation and essence: this is a key indicator of the
greenhouse effect in action.

(1) CO, and CH, are well-mixed greenhouse gases that
absorb thermal infrared radiation emitted by the Earth's surface
and the atmosphere.

(2) This absorption warms the atmospheric layer where it
occurs.

(3) Clouds form at altitudes where the temperature drops to
the dew point. If the entire lower atmosphere (the troposphere)
is warmer due to increased GHG concentrations, the cloud
formation altitude might shift, or the cloud tops might be
warmer.

(4) A higher cloud.

— Air masses
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Fig. 11 Seasonal spatial distribution of mid-tropospheric CO, (ppbv) during four seasons, including (a) winter (December—February), (b) spring
(March—May), (c) summer (June—August), and (d) autumn (September—November), along with 3 days air masses reaching Pakistan observed at

1000 m from the ground level during the study period.
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Influence of air masses

Currently, air mass back trajectories are used to investigate the
long- and short-range transportation of pollutants from one
region of the earth to another region.*>** Using the Hybrid Single
Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the
backward trajectories arriving at Pakistan were examined during
the entire study period (2002-2017) at 1000 m above ground
level.*® In the current study, the HYSPLIT model shows the source
of different backward trajectories of air masses from multiple
regions reaching the study location, as shown in Fig. 11 and 12.

Fig. 11 (a) and (b) show the three-day back trajectory analysis
of air masses at a height of 1000 m above the ground surface
during the study period (2002-2017). The three-day back
trajectories were calculated and clustered into four seasons for
each entire study period (2002-2017) over Pakistan. It is clear
from Fig. 11 that most of the source regions lie in the Middle
East, arising from Egypt, Saudi Arabia, Iraq, Iran, etc., and travel
long distances to reach the receptor region, Pakistan. However,
air masses also arise from central Asia from Turkmenistan and
Uzbekistan and travel through Afghanistan to reach Pakistan.
Air masses also arise from neighboring countries, such as India.

®

View Article Online

Environmental Science: Advances

Middle Eastern countries are some of the strongest GHG
emitters in the world.*”” In particular, Saudi Arabia is the largest
producer and exporter of petroleum products, and 90% of its
revenue relies on oil and petroleum-related industries.*® In
addition, the Peninsula (Iraq, Bahrain, Kuwait, Saudi Arabia, etc.)
is considered a hotspot for the emission of GHGs due to vast oil
and natural gas reserves and industries.* Moreover, in Iraq, the
total CO, emission increased by 300% from fuels that are roughly
14000 Gg and 58000 Gg from 1990 to 2017.° In addition, the
Egyptian share of GHG emissions to the global atmosphere
increased from 0.4% in 2000 to 0.6% in 2016.* The air masses
from these regions traveled through Iran and Afghanistan to
reach Pakistan. Iran is ranked 7th in terms of CO, emissions
resulting from fuel combustion in the world.** The main sources
of CO, and CH, emissions are various sectors of energy
production, agriculture, livestock, forestry, and waste. Moreover,
in Afghanistan, coal burning is the major cause of GHG emis-
sions, and over 70% of household energy is used to heat space
and water. In Kabul, on average, each family produces 4062
kilograms of greenhouse gases (CO,, NO, and CH,), and con-
cerning this value, approximately 2.39 million tons of GHG are

e High : 1920.31

=

(c) Summer FEE Low 1 1853.92

"y —— Air masses —— Air masses
_ .q.,..--a\A = wem  High : 1914.17 — ) wm High: 1919.97
(a) Winter b Low : 1824.85 (b) Spring X Low : 1852.9
— Air masses — Air masses

e High : 1922.85

“»

T Low : 1856.88

(d) Autumn

Fig. 12 Seasonal spatial distribution of mid-tropospheric CH,4 (ppbv) during four seasons, including (a) winter (December—February), (b) spring
(March—May), (c) summer (June—August), and (d) autumn (September—November), along with 3 days air masses reaching Pakistan observed at

1000 m from the ground level during the study period.
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Table 5 Quantitative performance metrics of each model during the training fit

Model MSE RMSE MAE R MAPE
Linear regression 0.2101 0.4584 0.3714 0.9977 0.10%
Exponential smoothing 0.2101 0.4584 0.3714 0.9977 0.10%
ARIMA 8652.3921 93.0182 23.9110 —91.8053 6.42%
SARIMA 8652.3921 93.0182 23.9110 —91.8053 6.42%
LST™ 0.9590 0.9793 0.7783 0.9840 0.20%

emitted in one month during winter.>* As shown in Fig. 12, some
of the air masses arise from central Asia, including Turkmenistan
and Azerbaijan. Turkmenistan is one of the few countries with an
entire dependence on fossil fuels, with the sixth-largest natural
gas reserve in the world. 99% of the electricity in the country is
provided by natural gas-fired power plants.>* Similarly, the
economy of Azerbaijan is also significantly based on oil produc-
tion.*® The air masses from central Asia and Middle Eastern
regions traveled through Afghanistan and reached Pakistan and
contributed to locally emitted CH, and CO, to elevate their
concentration in the regional troposphere.

CO, and CH, models of forecasting

In the current study, five forecasting models were evaluated
based on predicting the annual concentrations of carbon
dioxide (CO,) and methane (CH,) in the atmosphere between
2002 and 2017 using Linear Regression, Exponential Smoothing
(ETS), Autoregressive Integrated Moving Average (ARIMA), Long
Short-Term Memory (LSTM), and Seasonal Autoregressive
Integrated Moving Average (SARIMA) models.

To predict atmospheric CO, and CH, concentrations from
2002 to 2017, we evaluate the performance of five forecasting
models: Linear Regression, Exponential Smoothing (ETS),
ARIMA, LSTM, and SARIMA. The tuning of the Hyperparameter
is conducted for each model.

LSTM

e Architecture: LSTM single layer is followed by a dense output
layer.

e Hyperparameters: we experimented with different settings.
The last model had 50 units in the LSTM layer at a learning rate
of 0.01 and 1000 epochs. The predictive data used a rolling
window of the past 3 years.

Training: the Adam optimizer and Mean Squared Error
(MSE) were used as the loss function to train the model. Even
with tuning, the model never converged to a solution that was
better than the linear trend, which means that it was overfitting,
and the model was fundamentally incorrect in its approach to
the data, which was highly linear.

ARIMA/SARIMA

e Model selection: the optimal model was chosen using the
Akaike Information Criterion (AIC).

Hyperparameters of CO,: the optimal performance of the
ARIMA was ARIMA (1,1,1), meaning one autoregressive term,
one degree of differencing, and one moving average term.

274 | Environ. Sci.: Adv, 2026, 5, 257-280

Smart parameters of SARIMA: we tested seasonal terms (e.g.,
SARIMA (1,1,1) (1,1,1,12)), but there was no significant seasonal
model in the annual aggregated data, showing that SARIMA was
an overly complicated selection.

Linear regression and ETS

They are simpler models in which hyperparameters that must
be tuned are not present within the model (e.g., ETS model,
additive error, trend, and seasonality). It is this simplicity that is
their strength.

Best-fitting model results with statistical results

As illustrated in Tables 5-7, the most meaningful statistical
findings are the following models:

e Linear regression is the clearly best model in CH,. It gave
the fewest errors on the test forecast (2018-2024) with an MAE
of 2.123 ppb, RMSE of 2.456 ppb, and MAPE of 0.12%. The trend
is overwhelmingly linear as it almost explains everything in the
historical data (R*> = 0.9977).

e In the case of CO,, ARIMA (1, 1, 1) gave the best projections.
It performed better during the test period, as it gave the lowest
RMSE (2.7023) and the highest R2 (0.4818), which means that it
could capture the small autocorrelation structure of the CO,
data that a pure linear trend failed to capture.

The findings summarize that linear regression is the choice
of chart to use in CH, prediction, and ARIMA is the choice of
chart in predicting CO, in the case of this data. The LSTM

Table 6 Quantitative performance metrics of each model while
forecasting CO, from 2028 to 2024

Model MSE RMSE MAE R’ MAPE
LSTM 9.7485 3.1223 2.7073 0.3082 0.65%
ARIMA 7.3027 2.7023 2.6265 0.4818 0.63%
Exponential smoothing 12.3441 3.5134 3.4823 0.1240 0.84%
Linear regression 12.3441 3.5134 3.4823 0.1240 0.84%

Table 7 Quantitative performance metrics of each model while
forecasting CH,4 from 2028 to 2024

Model MAE RMSE MAPE
Linear regression 2.123 2.456 0.12%
ETS 3.215 3.678 0.18%
ARIMA 4.892 5.234 0.27%
ARIMA (1,1,1) 3.956 4.312 0.22%
LSTM 5.678 6.123 0.31%

© 2026 The Author(s). Published by the Royal Society of Chemistry
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model, which is the most complex, still performed the worst,
which confirms our assumption that easier models are more
effective in this case.

Characteristics and model fitting of data

The two gases (Fig. 13 and 14) showed a strong linear, positive
rise over time with little noise or seasonality in the annual
aggregate data. This inherent property was the major determi-
nant of model performance, as indicated in the training fit
figures (e.g., Fig. 15 and 16) and measured in Table 5.

Linear regression showed an almost perfect fit using the
historical data of the two gases, with an R? of 0.9977 for CO,.
This means that the simple linear trend describes more than
99.7 percent of the variance in the data, and more complicated
models are not needed to describe the historical pattern. The
steady annual growth (about 2.0-2.3 ppm per year of CO,) is
best fitted to a linear model.

More sophisticated models, such as SARIMA (seasonality)
and LSTM (complex non-linearities), did not manage to do so
on the training data. The benefit of their added complexity was
not significant, and, as is usual with parsimonious data, they
introduced a risk of overfitting.

Performance and model comparison forecasting

Linear regression continued performing better in the near-term
forecasting task (2018-2024) with respect to CH,.

View Article Online
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CO, forecasting

CO, results, illustrated in Table 6 and Fig. 17, were more subtle.
Linear regression optimally fits the trend in history, but the
ARIMA model was the best in terms of forecasting performance
during the test period, with the lowest RMSE (2.7023) value and
the highest R> value (0.4818). This indicates that the trend is
linear, but the explicit modelling and extrapolation of the
autocorrelation structure in the time series (e.g., integration of
past values and errors) using the ARIMA model had a small
effect on forecast performance relative to linear extrapolation
alone in the case of CO,.

It is worth noting that the LSTM model performed poorly for
both gases. This is typical when small and clean datasets are
employed, which are highly linear because LSTMs require large
amounts of data to learn more complicated patterns and can be
easily outperformed by simpler and more statistically suitable
models.

For CH, forecasting

Linear regression was clearly the superior model, as illustrated
in Table 7 and Fig. 18. It recorded the lowest error values (MAE:
2.123 ppb, RMSE: 2.456 ppb, MAPE: 0.12%), which were far
better than all the other models, including ETS and ARIMA.
This proves that the increase in atmospheric methane over the
future prognosis still takes a strong and consistent linear form
due to consistent anthropogenic emissions.

Carbon Dioxide (CO:z) Concentration (2002-2017)

CO: Concentration (ppm)
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Fig. 13 Carbon dioxide (CO,) concentration from 2002-2017.
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Fig. 14 Methane (CH,4) concentration from 2002-2017.
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CO: Concentration: Model Training Fits (2002-2017)

Comparison of Historical Data vs Model Fitted Values
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Fig. 15 Comparison of the training fits of different models using the CO, historical data.

Recommendations

The most important result of this study is that the character-
istics of the data significantly affect the performance of the
model. In these particular annual concentration data, which are
non-seasonal, short, and have a strong linear trend, the
simplest model (linear regression) was either optimal or highly
competitive. Thus, in light of our findings, we advise the
following:

(1) Because of its remarkable accuracy, ease of use, inter-
pretability, and low processing cost, linear regression should be
the model of choice for operational forecasting of CH, with this

type of data.

(2) An ARIMA model should be considered for CO, fore-
casting since it captured the trend and autocorrelation well and
produced the most accurate forecasts in our test scenario.

Significance

The environmental science community can benefit greatly from
this study since it shows that reliable and precise operational
forecasts of CO, and CH, can be produced without the
computational cost and data needs of sophisticated machine
learning models like LSTM. Clearly, fact-based recommenda-
tions for model selection for regional GHG trend predictions are

provided in our analysis.

CHa Concentration: Model Training Fits (2002-2017)
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Fig. 16 Comparison of the training fits of different models using the CH,4 historical data.
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CO:2 Concentration: Combined Future Forecast Comparison (2018-2024)
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Fig. 17 Comparison of different models while forecasting CO, from 2018 to 2024.

CH4 Concentration: Model Forecasts (2018-2024)
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Fig. 18 Comparison of different models for forecasting CH,4 from 2018-2024.

(1) Finding the most realistic model for predicting these
particular GHG trends was the goal.

(2) The concept of parsimony is the main finding: the most
effective model is the simplest one (linear regression for CH,
and ARIMA for CO,), as adding complexity (LSTM and SARIMA)
had no advantage and frequently resulted in worse
performance.

(3) We specifically address the reasons why complicated
models do not work, such as LSTM's requirement for huge

© 2026 The Author(s). Published by the Royal Society of Chemistry

datasets to identify patterns that are already well captured by
a straightforward linear trend.

Conclusions

This study is an in-depth examination of tropospheric CO, and
CH, changes in Pakistan between 2002 and 2017 using AIRS
satellite data, which has provided vital information about
seasonal patterns, climatic factors, and human effects. Key
findings include the following:
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> CO, maxima in May (389 + 8 ppmv) resulted from
increased biomass burning, soil respiration, and pre-monsoon
agricultural activities, and minima in October (386 + 8 ppmv)
occurred after photosynthetic uptake during the monsoons.

> CH, peaks in August (1876 10 ppbv) with wetlands and
rice planting during the monsoon, and the lowest concentra-
tions occur in April (1820 21 ppbv) with decreased photo-
chemical activity.

> Both gases are characterised by a high rate of increase:
CO, increasing by 2.1 ppmv/year and CH, increasing by 3.5
ppbv per year over 15 years, corresponding to total increases of
8.6 and 2.9 percent, respectively.

> Sudden shifts observed through the Mann-Kendall test
(CO, in 2009, CH, in 2007-2014) are consistent with the
increased anthropogenic effects (industrial expansion, defor-
estation, and burning of fossil fuels).

> CO, has a negative relationship with NDVI (r = —0.50) and
precipitation, showing the importance of vegetation and
monsoonal uptake in concentration control.

> CH, exhibits very positive correlations with NDVI (r =
0.64) and temperature (r = 0.60), with both microbial activity
and agricultural emissions being dependent on temperature.

> Both gases affect radiative forcing, with CO, and CH,
having cloud top temperature and cloud fraction relationships,
respectively, of r = 0.31 and r = —0.20, highlighting the climatic
feedback processes of the two gases.

> The HYSPLIT trajectory analysis indicates transboundary
Middle East (oil/gas industries) and Central Asia (fossil fuel
dependence) contributions to the problem of local agriculture,
transportation, and biomass burning emissions.

> Increased surveillance: increased ground-based and
satellite monitoring to measure emission hotspots and model
climates.

> Emission control: strengthening of the emission control
of industries and vehicles, use of renewable energy, and
sustainable agricultural methods (e.g., alternate wetting/drying
in rice fields).

> Regional cooperation: collaborate with other neighbour-
ing countries to deal with transboundary pollution by working
together on similar climate programmes.

In addition, it was observed that simple statistical models
(linear regression of CH, and ARIMA of CO,) performed better
than more complicated models, such as LSTM, in the scenario
of strongly linear trends of GHG. This offers an excellent, cost-
effective model in which policymakers and scientists can
project future GHG concentrations and evaluate scenarios for
the mitigation of emissions without the complexity and
obscurity of computationally demanding models.
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