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bon dioxide and methane
temporal variability using atmospheric infrared
sounding data: a case study of Pakistan

Bahadar Zeb,*a Khan Alam,b Allah Ditta, *c Mazhar Sajjadd and Maqbool Ahmade

Rising levels of carbon dioxide (CO2) and methane (CH4) in the atmosphere are significant contributors to

global climate change, although regional differences and mechanisms are poorly understood, especially in

South Asia. This study examines the spatial and temporal patterns, seasonal changes, and climatic effects of

CO2 and CH4 over Pakistan through satellite measurements (AIRS, 2002–2017), weather, and vegetation

indicators (NDVI). We evaluate the contribution of human-made activities, biomass burning, and natural

processes (e.g., monsoon or soil respiration) to the regulation of greenhouse gas (GHG) concentrations.

Moreover, we assess the contribution of long-range transportation by our neighboring areas (the Middle

East and Central Asia) using HYSPLIT trajectory modeling. The results show an average yearly growth of

CO2 (2.1 ppm per year) and CH4 (3.5 ppb per year), seasonal peaks of CO2 (spring) and CH4 (summer),

associated with agriculture, temperature-dependent respiration, and monsoonal cycles. CO2 and NDVI

(−0.50) and CH4 and NDVI (+0.64) depict negative and positive associations, respectively, and play the

role of vegetation as a carbon sink and wetland and rice paddy emissions. Other significant findings of

the study are sudden changes in GHG patterns (CO2: 2009; and CH4: 2007–2014) that occur with

upward temperatures, indicating climate feedbacks. This study incorporates radiative forcing dynamics

and air mass paths, which provide important insights into the regional GHG drivers and their climatic

implications and contribute to policy interventions to reduce emission levels in South Asia. The cloud

fraction had a negative correlation with both CO2 (r = −0.36 and p < 0.04) and CH4 (r = −0.20 and p <

0.03). The trajectories of the air mass of the rear indicate that the distant pollution of neighboring

countries is a factor. Burning of crop residues, car emissions, forest burning, and others release small

quantities of gases and contaminants into the air. This study compares atmospheric CO2 and CH4

prediction models. The dominant trend is strong linearity. In the case of CH4, linear regression is the best

and most suggested model. In the case of CO2, ARIMA provided the most accurate forecasts by

detecting minor autocorrelation. More complicated models, such as LSTM, failed to work, which proved

that simpler models are effective on this kind of data.
Environmental signicance

Among greenhouse gases, carbon dioxide (CO2) andmethane (CH4) are themost important gases that have a signicant impact on the climate. The current study
was conducted to examine the monthly and seasonal variation in the concentrations of CO2 and CH4, to better understand the inter-annual variation as well as
increasing trends of CO2 and CH4 during the study period (2002–2017), to identify the time-varying characteristics of CO2 and CH4 concentrations and the
probable causes, which characterize the variability in different time scales over Pakistan, and to investigate the effects of meteorology, cloud properties,
vegetation dynamics on CO2 and CH4 concentrations and the effects of long-range air masses on CO2 and CH4 concentrations. The results show that the CO2 and
CH4 emission levels in Pakistan are alarming and ultimately contribute to climate change. It is expected that these results will help scientic communities
further explore the root causes of the recent CO2 and CH4 increase to better mitigate their potential impact on global warming.
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Introduction

With the increasing awareness of climate change,many solutions
have been suggested to address this issue.1,2 Decades of studies
have proven that there is a strong association between increasing
GHG levels and climate change.3,4 The greatest pollutants of
global warming are carbon dioxide (CO2) and methane (CH4).5
Environ. Sci.: Adv., 2026, 5, 257–280 | 257
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The energy sector is the largest emitter of GHGs, followed by
agriculture. The life cycle of their emissions can vary substan-
tially, ranging between several years and millennia, yet their
cumulative effect is the cause of climate change over long
periods.2 The main sources of CO2 emissions are the combustion
of fossil fuels, the manufacturing of cement, and changes in land
use, and they are ultimately eliminated by land and ocean sinks.
According to Le Querre et al.,6 forty-ve percent of the world's CO2

emissions were held up in the atmosphere, with the rest being
absorbed by land (30%) and ocean (24%) between 1959 and 2017.
CO2, a major greenhouse gas (GHG), is important in the main-
tenance of a balance in the temperature of the Earth as well as in
the process of climate change.7 It also contributes to important
biological processes like photosynthesis and respiration.2

Nevertheless, human actions, especially industrialization, have
increased the CO2 levels in the atmosphere from 280 ppm to over
416 ppm within the last 150 years.8 This elevation has greatly
changed global radiative forcing, which has led to escalating
climatic change.2 To curb further rise in global temperatures,
minimizing CO2 emissions should be a major priority. Some of
the strategies that will help include a shi to using fossil fuels,
increasing carbon sequestration, and sustainable land use. The
most active greenhouse gas, second in importance aer carbon
dioxide (CO2) in the atmosphere, is methane (CH4).

Even though methane is less concentrated than CO2, it has
a high global warming potential. Human activities have signi-
cantly increased their atmospheric concentration, which is now
higher than that before the industrial era. Methane is produced
during both natural and anthropogenic activities and is grouped
into three formation pathways: (1) Thermogenic: it is formed
under high pressure and temperature at very deep levels in the
crust of the earth as a result of decomposing organic matter. It is
emitted during the extraction, transportation, and processing of
fossil fuels (oil, gas, and coal). (2) Pyrogenic: it is formed by the
partial decomposition of organic matter, such as wildres and
savanna burning, agricultural waste and crop residue burning,
and biofuel combustion.9 (3) Microbial: it is formed by meth-
anogenic bacteria in anaerobic environments, including natural
wetlands (lakes, peatlands, and rice paddies); livestock digestion
(ruminants); landlls; and wastewater treatment. Although
methane is inexhaustible, it undergoes (1) oxidation by hydroxyl
radicals (OH) (approximately 90 percent of the removal) to
produce other types of secondary pollutants, such as formalde-
hyde (CH2O), carbon monoxide (CO), and ozone (O3);10 (2)
absorption by the soil (oxidation of dry soil); and (3) chlorination
under the inuence of chlorouorocarbons (CFCs). Total
methane emissions are currently more than what nature has
taken up; thus, there is a progressive rise in concentrations
present in the atmosphere. The main cause of this increase is
human activities, which include the consumption of fossil fuels,
farming, and waste disposal.2 It has been demonstrated that,
globally, several studies have been used to estimate and describe
the rising patterns and variability of CO2 and CH4 using satellites.
Studies based on the measurements of instruments, such as the
Greenhouse gases Observing Satellite (GOSAT) and the Orbiting
Carbon Observatory-2 (OCO-2), have provided previously
unknown details on the spatial and temporal distribution of
258 | Environ. Sci.: Adv., 2026, 5, 257–280
these gases and found continuing increases in atmospheric
levels.11 Major emission hotspots, including the industrialized
areas of East Asia and North America, and large natural sources,
such as the Amazon basin, were identied. Moreover, global
studies have played a key role in explaining the multifaceted
relationship between human-generated emissions, natural
biogeochemical cycles, and climatic factors, like temperature and
precipitation, which give rise to seasonal and interannual
changes.6,12 It is against this global body of work that regional
studies, including this one, can be compared and contextualized.
The report by IPCC2 indicates that the levels of CO2 and CH4 in
the atmosphere have been rising since the Industrial Revolution.
Nevertheless, most developing nations nd it difficult to keep
regular track of such gases owing to a lack of know-how and state-
of-the-art apparatus. Long-term greenhouse gas (GHG) evalua-
tion requires ground-based measurements in most cases.
Remote sensing through satellites is a possible solution.
Although the spatial resolution can be low, this technology can
provide continuous global results for trace gases, providing
essential data on their trends and effects on human health,
ecosystems, and climate change. Remote sensing as a state-of-
the-art methodology supplements ground-based state-of-the-art
systems and improves the capacity to monitor GHG emissions
to guide mitigation strategies.

Pakistan is one of the largest greenhouse gas (GHG) emitters
in the world, with the 13th largest global anthropogenic emission
of CH4, and 504.59 million tons of total emissions in 2018.13 Key
concerns are as follows: (1) large amounts of methane (CH4)
emissions: 13th largest anthropogenic CH4 emitter globally and
top 5 in livestock-related CH4 emissions (enteric fermentation);
(2) CO2 build-up: deforestation, and local sources of great emis-
sion sources are as follows: transportation (vehicles), agriculture
(livestock and biomass burning), and forest res. Pakistan
experiences aggravated oods, droughts, and extreme tempera-
tures. Developing countries, like Pakistan, have inadequate
mechanisms to evenmonitor such emissions due to the high cost
of deploying ground-based monitoring networks. However, with
the latest developments in the eld of atmospheric remote
sensing (RS), reliable sensors, such as the atmospheric infrared
sounder (AIRS), have made monitoring of CO2 and CH4

feasible.13,14 Mahmood et al.15 investigated the atmospheric
concentrations of CO2 and CH4 over Pakistan using the Atmo-
spheric Infrared Sounder (AIRS) from 2010 to 2015. Ning An
et al.16 attempted to evaluate the potential of space-based obser-
vations to monitor atmospheric CO2 changes over 120 districts
through simple data-driven analyses from 2015 to 2020. Noman
et al.17 estimated the GHG (carbon dioxide and methane) foot-
print based on the one-year average fossil fuel consumption in
selected Private Sector Universities of Karachi.

Although some previous studies have provided snapshots,
these are usually constrained by more stringent periods or
a more focused consideration. This study lls this gap by
providing a long-term (16 years) analysis of both CO2 and CH4

across Pakistan. The originality of this work is an approach that
is an integrated analysis of the spatiotemporal trends of interest
and study of the driving mechanism, i.e., the importance of
meteorological parameters (temperature, humidity,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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precipitation, and wind speed), vegetation dynamics (NDVI),
and cloud characteristics, and a critical evaluation of the
transportation of transboundary pollution through HYSPLIT
modelling. This complex analysis offers a more comprehensive
explanation of the causes of GHG variability in this poorly
studied but noteworthy area. Regrettably, the successful appli-
cation of satellite RS in investigating CO2 and CH4 monitoring
in Pakistan has hardly been documented. Thus, this research is
aimed at tracing the temporal distribution patterns of CO2 and
CH4 in the long term (2002–2017) in Pakistan and predicting the
two gases using AIRS data. The results will be used to make the
scientic community aware of the factors that cause the
increase in CO2 and CH4 in the air and to overcome their
contribution to global warming. This study points to an
alarming level of emissions of these gases in Pakistan, which
has contributed to climate change.
Experimental
Description of the study area and its meteorological
conditions

Pakistan is located in South Asia and is bordered by India to the
east, Afghanistan and Iran to the west, China to the north, and
the Arabian Sea to the south. It lies between Longitude: 60°500 E
Fig. 1 Map of the study area (ArcMap 10.5). All the datasets (shapefiles)

© 2026 The Author(s). Published by the Royal Society of Chemistry
to 77°500 E, Latitude: 23°350 N to 37°050 N, covering an area of
approximately 881 913 square kilometres (Fig. 1 and Table 1).
The country boasts a variety of landscapes with the high
mountain ranges of the Himalayan and Karakoram ranges
located in the north, the fertile Indus River plains located in the
central region, and the arid deserts of Sindh and Baluchistan
located in the south and west. Pakistan has great climatic
diversity, with an alpine climate in the highlands of the country
and arid and semi-arid climates in the southern plains. There
are four seasons in the country: cool winter (December–
February), spring (March–May), summer (June–August), and
autumn (September–November).18 The Indus River is the life-
blood of Pakistan, and the problems of water shortage and
climate change are increasing. Pakistan is governed by four
provinces: Punjab, Sindh, Khyber Pakhtunkhwa (KP), and
Baluchistan, and the federally governed territory of Islamabad
Capital Territory, Azad Jammu and Kashmir, and Gilgit-
Baltistan. Pakistan is the h most populous nation in the
world, with a population of over 240 million people. Urban
centres, like Karachi, Lahore, and Islamabad, are the centre of
economic, political, and cultural activities, with rural life in
most cases being agrarian. This area is of interest to the study as
it is important in terms of the ecological zones and socioeco-
nomic inequalities and is prone to environmental and
were obtained from DIVA GIS and UNOCHA.

Environ. Sci.: Adv., 2026, 5, 257–280 | 259
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Table 1 Summary of the annual meteorological aspects

Parameter Annual pattern and key characteristics

Temperature Strong seasonal variation. The highest temperatures occur in the early
summer months (June: 30.75 °C and July: 30.51 °C). The lowest
temperatures are found in the winter (January: 10.55 °C). This indicates
a large annual temperature range of approximately 20 °C

Relative humidity (RH) Inversely correlated with temperature. The highest RH values occur in
the cool winter months (January: 45.91% and February: 44.11%). The
lowest RH is observed in the late spring/early summer (May: 26.04%),
coinciding with the pre-monsoon hot and dry period

Wind speed (WS) Peaks during the summer monsoon. The strongest winds are recorded
from July (5.83 m s−1) to August (5.59 m s−1). The calmest wind
conditions occur in the post-monsoon period (October: 3.47 m s−1 and
November: 3.32 m s−1)
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geopolitical hazards. Critical problems include the manage-
ment of water resources, agricultural sustainability, pressures
of urbanization, and hazards caused by the climate, such as
ooding and droughts. It is important to gain a regional
understanding of Pakistan when formulating policies and
sustainable development initiatives.

The data from Fig. 2 in this study allow us to reconstruct the
annual cycle.

Fig. 2 illustrates the research area's fundamental climate
characteristics. Meteorological parameters, like relative
humidity (RH), temperature (Temp), precipitation (pre), and
wind speed (WS), are obtained from the AIRS satellite. The
meteorological parameters over Pakistan indicate the highest
temperature in June (30.75 °C) and July (30.51 °C), with the
lowest temperature found in January (10.55 °C).

High precipitation values were noted in January (7.43 mm),
June (7.68 mm), and December (6.34 mm), while the lowest
precipitation was found in September (0.08 mm). Likewise, the
highest RH (%) was found in January (45.91%) to February
(44.11%), and the lowest one was recorded in May (26.04%).
Similarly, the maximum wind speed was recorded from July
(5.83 m s−1) to August (5.59 m s−1), and the minimum from
October (3.47 m s−1) to November (3.32 m s−1).

Data sets

Atmospheric infrared sounder. Atmospheric Infrared
Sounder (AIRS) is one of six instruments aboard NASA's Aqua
spacecra, which is part of NASA's Earth Observing System
constellation of satellites.19 AIRS provides global coverage twice
a day, with 2378 spectral channels in the range of 0.41–15.4 mm.
It travels over the equator at around 1:30 a.m. and 1:30 p.m. The
AIRS instrument helps in a better understanding of the weather
and climate on Earth. AIRS is a facility device designed to help
conduct climate research and improve weather forecasting.
Every day, NASA's Aqua satellite's atmospheric infrared sounder
collects infrared light radiated from Earth's surface and atmo-
sphere around the world. Its data include 3D temperature and
water vapor readings throughout the atmosphere, as well as
a variety of trace gases, surfaces, and cloud features. Weather
prediction centers throughout the world use AIRS data to
improve their forecasts. They are also used to test the accuracy
260 | Environ. Sci.: Adv., 2026, 5, 257–280
of climate models and in a variety of applications, from
detecting volcanic plumes to forecasting droughts. AIRS can
also detect ozone, carbon monoxide, carbon dioxide, and
methane, which are all trace GHGs. In contrast to MOPITT and
certain other instruments, AIRS/AMSU retrieve methods offer
cloud clearing for up to 80% cloud clearance. The signicance
of utilizing AIRS is that it can provide trace gases even during
cloudy conditions without the use of information from the
models. Thus, the present study has no missing data for the
entire study duration. AIRS was put into orbit onMay 4, 2002, by
NASA's Aqua satellite. For this study, the monthly CO2, CH4,
temperature, and relative humidity are used from 2002 to 2017
over Pakistan, obtained from AIRS (Giovanni), with spatial
resolutions of 2.5° × 2° and 1° × 1°. The mid-troposphere is
dened as a layer of atmosphere over the altitude range of 6–10
km (between approximately 500 and 300 hPa).20 AIRS provides
CO2 data up to 2017, which is why we have carried out a study up
to 2017. AIRS does not provide CO2 data from 2002 to 2017
under one product, which is why we have taken monthly data of
CO2 from 2002 to 2012 from the product AIRX3C2MV005 and
then taken CO2 monthly data from 2013 to 2017 from another
product, AIRS3C2MV005. The monthly variables like CO2, CH4

(mid-tropospheric) temperature, and relative humidity were
taken from AIRS and averaged to create long-term annual
averages. The data version/level of the Atmospheric Infrared
Sounder used for CO2 is AIRX3C2MV005, as well as
AIRS3C2MV005, with a spatial resolution of 2.5° × 2°, and for
CH4, the level used is AIRS3STMV006, with a spatial resolution
of 1° × 1°. AIRS CO2 and CH4 level 3 products used in the
present study are sensitive to only the upper troposphere (mid
to free troposphere).

Moderate resolution imaging radio spectrometer. The
instrument known as the Moderate Resolution Imaging Spec-
troradiometer (MODIS) is currently operational on both Terra
and Aqua satellites. With MODIS's 2330 km swath, it is feasible
to view the world's data in a single day. MODIS algorithms have
been upgraded periodically to enhance data quality and accu-
racy. The implementation of the Deep-Blue algorithm has
enhanced MODIS Level 2 observations on bright surfaces, such
as the Sahara Desert. Water vapor was measured in the current
investigation using TERRA-MODIS (MODO5) level 2.0
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Average monthly variations in meteorological parameters (including relative humidity, temperature, precipitation, and wind speed) over
Pakistan during the study period (2002–2017).
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collections of six products with a 1 × 1 km spatial resolution.
The data of Cloud Fraction (CF) and Cloud Top Temperature
(CTT) have been obtained from MODIS Satellite level
MYD08M3V6.1, with a resolution of 1° × 1°. Monthly variables
like NDVI, CF, and CTT were averaged to create a long-term
annual average over the entire study location.

Additionally, we employed the 0.5° spatial resolution
Normalized Difference Vegetation Index (NDVI) from the
MODIS-Terra platform. NDVI is the ratio of albedo (a) measured
at various wavelengths:

NDVI ¼ a0:86 mmþ a0:67 mm

a0:86 mm� a0:67 mm
: (1)
© 2026 The Author(s). Published by the Royal Society of Chemistry
In eqn (1), numerical values like 0.86 mm are used for NIR and
0.67 mm are used for red. NDVI values can vary from 0.1 to 1.0
despite their typical values being between 0.1 and 0.7. The
higher values of NDVI symbolize increased canopy density and
greenness21,22

Purpose of using MODIS cloud parameters. The authors
used MODIS data for two key cloud parameters:

� Cloud Fraction (CF): The percentage of an area covered by
clouds.

� Cloud Top Temperature (CTT): The temperature at the top
of the clouds.
Environ. Sci.: Adv., 2026, 5, 257–280 | 261
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The purpose of including these parameters was to move
beyond simply measuring gas concentrations and to start
quantifying their climatic effects over Pakistan. Clouds play
a critical role in the Earth's energy balance:

� They reect incoming solar radiation (a cooling effect).
� They trap outgoing longwave (thermal) radiation (a

warming effect).
By correlating GHG concentrations with cloud properties,

the authors aimed to investigate if and how increasing levels of
CO2 and CH4 are inuencing local cloud characteristics, which
in turn affect regional climate.

Modern-era retrospective analysis for the research and
application model. Modern-Era Retrospective Analysis for
Research and Applications-Model (MERRA) data, version 2,
available since 1980, were used for the rst comprehensive
worldwide study of atmospheric aerosols and their interactions
with other physical processes occurring in the climate system.
Because of its ability to incorporate modern hyperspectral
radiance and micro measurements, the MERRA-2 model
represents an improvement over the original MERRA dataset
and allows for developments in the assimilation mechanism.
Additionally, this model uses ozone observations made by NASA
since 2004. Weather and aerosol observations are modied for
the MERRA-2 model using the Goddard Earth Observing System
version 5 (GEOS-5). This model has a spatial resolution of 50 km
in the latitudinal direction. The authors likely chose MERRA-2
because it is a global, long-term, and consistent reanalysis
dataset specically designed for atmospheric composition
studies. Unlike operational models like ECMWF, MERRA-2
assimilates aerosol and chemical observations, providing
meteorological data that is physically consistent with aerosol
elds, which is crucial for studying pollutant interactions. It
offers a complete spatial and temporal record that matches well
with satellite overpasses. Precipitation and wind speed were
measured in the current investigation using the MERRA-2
model (M2T1NXRAD) version 5.12.4 at a spatial resolution of
0.5° × 0.625°. The monthly variables, like precipitation and
wind speed, were averaged to create long-term annual averages
over the entire study location.
Methods

Trend analysis. During the study period, linear regression
analysis was used to assess seasonal uctuations. Nevertheless,
sudden changes in the time series were not detectable using
linear regression. To nd these variations in the CO2 and CH4

concentrations, the study also used the Mann–Kendall (MK)
sequential test.23,24 The trend's signicance was determined
using the MK trend test statistic (Z) derived using the following
formula:

z ¼

8>>>>>>><
>>>>>>>:

t� 1ffiffiffiffiffiffiffiffiffiffiffiffi
varðtÞp ; if t. 0

0; if t ¼ 0

tþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
varðtÞp ; if t\0

9>>>>>>>=
>>>>>>>;

: (2)
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The probability of this normalized test statistic is calculated.
The following equation gives the probability density function
for a normal distribution with a mean of zero and a standard
deviation of one:

p ¼ 1ffiffiffiffiffiffi
2p

p e
z2

2 : (3)

� Decide on the degree of signicance (95% is typical).
� A trend is said to be decreasing if Z is negative and the

computed probability is greater than the level of signicance. A
trend is said to increase if Z is positive, and the computed
probability is greater than the level of signicance. There is no
trend if the calculated probability is less than the level of
signicance.

UðtÞ ¼ t� EðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtÞp : (4)

The sequential numbers U(t) and U0(t) from the Mann–Ken-
dall test's progressive analysis were calculated to observe how
the trend changed over time.25 U(t) is the sum of the z values
found from the rst to the last data point. This test considers
the relative values of all terms in the time series (x1, x2,., xn).
The following steps are sequentially applied. The magnitudes of
the xj annual mean time series (j= 1, 2,., n) are compared with
xi (I = 1, 2,., j − 1). For each comparison, the number of cases
xj > xi is counted and denoted by nj.

�The test statistic t is thus provided using the following
equation:

t ¼
Xn

i¼1

ni: (5)

� Mean and variance of the test statistic are respectively

EðtÞ ¼ nðn� 1Þ
4

(6)

VarðtÞ ¼ nðn� 1Þð2nþ 5Þ
72

: (7)

�We can calculate the sequential values of the statistic U(t)
using the following equation:

UðtÞ ¼ t� EðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtÞp : (8)

Similarly, U0(t) values are computed backward, starting at the
end of the series. The sequential Mann–Kendall model could be
regarded as an effective method for determining the beginning
year(s) of a trend. If the values are greater than the condence
interval (1.96), the hypothesis of no change is rejected, and the
approximate time of the change point (abrupt change) is shown
by the intersection of and U0(t) in the time series.

Hybrid single-particle Lagrangian integrated Trajectory
model. The study used the Hybrid Single-Particle Lagrangian
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Integrated Trajectory (HYSPLIT) model to examine air mass
paths in the study domain to comprehend the role of long-
distance sources of pollution. A 5 days backward air mass
trajectory over the study region with an altitude between 500 m
and 10 000 m above ground level was considered. The HYSPLIT
model-based Trajstat soware was used to calculate all air mass
trajectories.26
Results and discussion
Monthly and seasonal variations in the concentration of CO2

The variation in the concentration of CO2 observed from the
satellite AIRS during the study period (2002–2017) is shown in
Fig. 3(a) and (b). The annual cycle of CO2 shows a gradual
increase from November to May and then decreases up to
October. The ndings revealed that the CO2 concentration
reached a maximum value in May and then sharply declined
aer June, with October recording the lowest levels. During the
study period (2002–2017), the average CO2 levels ranged from
376 to 404, with an average value of (389 ± 8) ppmv in May,
while they ranged from 371 to 402, with an average (386 ± 8)
ppmv in October. Average seasonal CO2 concentrations were
found to be high during spring and low during autumn
(Fig. 3b). Since lower temperatures and solar radiation during
the autumn (dry season) prevent increases in local CO2 assim-
ilation, the lowest CO2 at this time may be caused by respiratory
carbon loss.27 As the season changed from winter to pre-
monsoon months, a consistent rise in CO2 concentration was
Fig. 3 Summary of Box–Whisker plots: (a) monthly variations in CO2 and
the 25th and 75th percentiles and the whiskers show the 5th and 95th pe
value. The solid circle inside each box and the horizontal lines represent th
the boxes indicate themaximumandminimum values, respectively. Seaso
(March, April, and May), summer (June, July, and August), and autumn (S

© 2026 The Author(s). Published by the Royal Society of Chemistry
noted. Spring is enhanced because of the higher temperatures
and more sunlight that occur during these months, which
promotes respiration at night and CO2 assimilation during the
day.28 The increased CO2 concentration during these months is
complemented by improved soil respiration. The spring CO2

concentration in the Indian subcontinent can also be signi-
cantly impacted by biomass burning in addition to these
natural factors. The monsoon months observe the lowest CO2

levels primarily due to increased photosynthetic processes
introduced by more soil moisture. As the monsoon progresses,
a reduction in CO2 concentration is also noted. Because of the
dark and cloudy weather that prevails throughout these
months, the temperature drops, which lowers soil and leaf
respiration and increases carbon uptake.29 High ecosystem
productivity and increased microbial activity are linked to
further increases in CO2 during the autumn season.12

Because there is insufficient quality control by the relevant
authorities, CO2 concentration may be a byproduct of burning
low-grade fuel and using an inappropriate combustion system,
which can be found on the open market. The main sources of
CO2 concentration in the study locations included traffic
congestion, road conditions, and industrial exhaust, and
related results were apparent from Ul Haq et al.30 in Pakistan.
Kuttippurath et al.31 found the highest CO2 concentration in
India during the spring season during their study period (2002–
2020). Coa et al.32 found the highest CO2 concentration in spring
(384.0 ppm) and the lowest in winter (382.5 ppm) over six
locations globally from 2003 to 2011. Wei et al.33 found that the
(b) seasonal variations in CO2 over the entire region. Each box indicates
rcentiles. The vertical lines show the standard deviation from the mean
emean andmedian values, respectively. The crosses above and below
ns are categorized as winter (December, January, and February), spring
eptember, October, and November).
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average concentrations of CO2 were 428.36 ± 13.96 ppm in the
megacity of Shanghai, China, from 2017 to 2018, with the
highest CO2 concentration in winter and the lowest in autumn.
Kumar et al.34 also investigated the highest values of CO2 during
the spring season in India. Metya et al.35 found an average CO2

concentration of 406.05 ± 6.36 ppm at Sinhagad, India, and
attains its minimum concentration during autumn, whereas
CO2 reaches its maximum concentration during spring.

The key reasons for the nature of the CO2 cycle are as follows:
1. Lag in photosynthesis: in spring, warmer temperatures

cause a rapid increase in soil and plant respiration (a CO2

source), but the full photosynthetic drawdown (the CO2 sink)
from vegetation has not yet reached its peak. This temporary
imbalance causes CO2 to accumulate, leading to a peak in May.

2. Biomass burning: specically in the Indian subcontinent,
widespread agricultural and forest res in the pre-monsoon
(spring) season add a signicant pulse of CO2 to the atmo-
sphere, reinforcing the natural peak.

In winter, respiration is lower due to cold temperatures.
Although human emissions from heating are high, the lack of
this large biogenic CO2 release from soils means that the
concentration does not reach the levels observed in the spring.

Monthly and seasonal variations in the concentration of CH4

CH4 had the maximum value in August and reached its lowest
level in April. In August, the concentration of CH4 ranged from
1860 ppbv (lowest value) to 1891 ppbv (highest value), with an
average of 1876± 10 ppbv. In contrast, in April, CH4 varied from
1784 to 1855 ppbv, with an average of 1820 ± 21 ppbv. CH4
Fig. 4 Box–Whisker plots indicating (a) monthly variations in CH4 and
sentation in all panels is the same as in Fig. 3.

264 | Environ. Sci.: Adv., 2026, 5, 257–280
concentration was noted to have a maximum value during
summer and a low value during the spring season (Fig. 4b).

In the troposphere, the balance between surface emission
and OH destruction mostly determines the concentration of
CH4. In the Indian subcontinent, ruminants, rice paddies, and
wetlands are the main sources of CH4.36 The Kharif (monsoon)
season may be linked to the maximum concentration, which
occurs during the summer.37 The seasonality of the CH4

concentration over Asia is characterized by greater values in the
wet season and lower values in the dry season.38 This could be
because of strong emissions from wetlands and rice elds
during the wet season. During the winter and spring seasons,
low mixing ratios of CH4 were primarily caused by a decrease in
atmospheric hydrocarbons because of fewer photochemical
reactions and a signicant drop in solar intensity.39 The
summer and autumn seasons showed a signicant rate of CH4

change. According to Nishanth et al.40 and Goroshi et al.,37 the
interchange of CH4 between rice paddy elds and the atmo-
sphere is governed by both biological and physical processes.
This is why in the current study area, more CH4 is observed
during the summer and autumn seasons.

Kavitha and Nair41 found the maximum CH4 concentration
during August/September over various locations in India from
2003 to 2009 and investigated the CH4 concentration that
ranged from the minimum value of 1740 ppm to the maximum
value of 1890 ppm using satellite data. They also observed the
peak value of CH4 concentration during the monsoon and post-
monsoon seasons and the minimum during the winter season.
They associate CH4 concentration with livestock distribution
(b) seasonal variations in CH4 over Pakistan. The Box–Whisker repre-

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Box–Whisker plots indicate an inter-annual variation in (a) CO2 and (b) CH4 over Pakistan from 2002 to 2017. The Box–Whisker
representation in all panels is the same as that depicted in Fig. 4.
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and wetland emission, including rice elds. Ul Haq et al.30

observed the maximum concentration of CH4 during summer
(1804 ± 28) ppb, followed by autumn (1800 ± 25 ppb) and
winter (1777 ± 24 ppb) over Pakistan, Afghanistan, and
adjoining areas using satellite data from 2003 to 2012. Wei
et al.33 reported the average concentrations of CH4 to be 2154 ±

190 ppb, in the megacity of Shanghai, China, from 2017 to 2018,
with the highest value in summer and the lowest one in spring.

Inter-annual patterns

The long-term trends from 2002 to 2017 (Fig. 5a and b) reveal
a signicant and consistent increase in tropospheric CO2 and
CH4 concentrations over Pakistan. Linear regression analysis
quantied the annual growth rates at 2.1 ppm per year for CO2

and 3.5 ppb per year for CH4 (Table 2). Both trends were highly
Table 2 Statistical metrics of the long-term linear trends (2002–2017) f

Greenhouse
gas Trend Slope (change per year) R2 (coeffi

CO2 Signicant increase +2.1 ppm per year >0.95 (ve
CH4 Signicant increase +3.5 ppb per year >0.95 (ve

© 2026 The Author(s). Published by the Royal Society of Chemistry
statistically signicant (p # 0.05), with coefficients of determi-
nation (R2) exceeding 0.95, conrming a remarkably steady and
robust upward trajectory. This cumulative growth resulted in an
overall increase of 8.6% for CO2 (e.g., from ∼376 ppm to ∼406
ppm) and 2.9% for CH4 over the 16 years. By 2017, seasonal
peaks had risen to values exceeding 406 ppm for CO2 (in May)
and 1867 ppb for CH4 (in August). This sharp rise is unequiv-
ocally attributed to anthropogenic emissions from fossil fuel
combustion, industrial activity, agriculture, and biomass
burning, surpassing the capacity of natural sinks, a situation
exacerbated by extensive deforestation.

The observed trend for CO2 (2.1 ppm per year) aligns closely
with ndings from regional and global studies. Kuttippurath
et al.31 reported an average trend of ∼2.1 ppm per year over
India, while Cao et al.32 found a nearly identical global mid-
or CO2 and CH4 over Pakistan

cient of determination) P-value Overall increase (2002–2017)

ry high) P # 0.05 8.6% (e.g., ∼376 to ∼406 ppm)
ry high) P # 0.05 2.9% (e.g., ∼1791 to ∼1858 ppb)
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Table 3 Variations (seasonal) in the concentration of CO2 (ppm) and CH4 (ppm) over Pakistan from 2002 to 2017

Year Winter season Spring season Summer season Autumn season

Average conc. Of CO2(ppm)
2002 372 376 375 371
2003 375 377 376 375
2004 376 380 377 376
2005 378 383 379 378
2006 381 383 381 380
2007 382 385 383 383
2008 384 386 385 384
2009 386 388 387 387
2010 389 391 390 389
2011 392 393 392 391
2012 392 393 392 392
2013 394 396 395 395
2014 397 397 398 396
2015 399 401 402 399
2016 401 403 400 400
2017 403 403 400 401

Average conc. Of CH4(ppb)
2002 1791 1780 1862 1823
2003 1794 1788 1852 1828
2004 1801 1796 1849 1824
2005 1807 1845 1854 1836
2006 1802 1810 1839 1834
2007 1809 1817 1866 1839
2008 1817 1822 1875 1850
2009 1820 1817 1843 1840
2010 1825 1816 1858 1859
2011 1830 1839 1868 1872
2012 1831 1831 1869 1873
2013 1845 1838 1871 1865
2014 1849 1839 1862 1864
2015 1852 1852 1875 1871
2016 1855 1844 1875 1884
2017 1858 1846 1878 1885
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tropospheric increase of 2.11 ppm per year. Similarly, the CH4

growth rate of 3.5 ppb per year is consistent with the signicant
increases documented in South Asia. For instance, Mahmood
et al.15 reported a rise of 5.02 ppb per year over Pakistan from
2003 to 2015. The ndings of Ul Haq et al.,30 who observed
a 3.7% increase in CH4 over a decade, further corroborate the
persistent and widespread nature of increasing GHG concen-
trations across the region; these rates are primarily driven by
anthropogenic activities rather than natural variability.

The seasonal variation in the concentration of both CO2 and
CH4 in Table 3 shows that CO2 has a relatively high value of
403 ppm during the spring season. Likewise, CH4 shows
maximum values (1885 ppb) during the autumn season. It is
determined that P # 0.05 denotes a considerable rise in the
concentration of both gases.

Interpretation of Mann–Kendall (MK) and sequential Mann–
Kendall (SQMK) tests

Abrupt changes in GHG trends: insights fromMann–Kendall
analysis. The application of the Sequential Mann–Kendall
(SQMK) test (Fig. 6, 7, and 9) provides a more nuanced under-
standing of the trends, revealing specic years when signicant
266 | Environ. Sci.: Adv., 2026, 5, 257–280
abrupt changes (change-points) began in the concentrations of
CO2 and CH4 over Pakistan.

Interpreting the SQMK test. The forward sequential statistic
(U(t)) represents the progressive analysis of the time series from
start to end. The backward statistic (U0(t)) is calculated from the
end to the start. A change-point year is identied where these
two statistics intersect (cross) and diverge beyond the con-
dence limits (typically ±1.96 for 95% signicance). This inter-
section signies the initiation of a statistically signicant shi
in the trend's magnitude or direction.

Identied change-points and interpretation. � CO2 abrupt
change (Fig. 6 and 9b): The SQMK analysis for CO2 indicates
a major, sustained change-point starting around 2009. This is
evidenced by the clear and persistent divergence of U(t) and U0(t)
beyond the condence limits aer this year across all seasons
(Fig. 6a–d) and in the annual data (Fig. 9b). The remarkable
consistency of this change-point across all seasons suggests
a large-scale, systemic driver that affected CO2 emissions or
sinks throughout the entire year, overriding seasonal variations.
These points strongly to a signicant intensication of
anthropogenic activities, such as a rapid increase in fossil fuel
consumption, industrial output, or energy production within
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 An abrupt change in CO2 resulting from the sequential Mann–Kendal test statistics during (a) winter, (b) spring, (c) summer, and (d)
autumn. U(t) is known as the forward sequence, which follows a normal distribution. U0(t) is denoted as the backward sequence derived from eqn
(8), and UL and LL denote the upper and lower limits. The significance of the trendwas calculated using theMK trend test statistic (Z) from eqn (2).
Generally, Z > 0 indicates an increasing trend, Z < 0 indicates a decreasing trend, and Z = 0 indicates no trend.

Fig. 7 An abrupt change in CH4 resulting from the sequential Mann–Kendal test statistics during (a) winter, (b) spring, (c) summer, and (d)
autumn. The various terms like U(t), U0(t), UL, LL, and Z have the same representation, as shown in Fig. 6.

© 2026 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2026, 5, 257–280 | 267
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the region, likely linked to economic recovery and growth
patterns in South Asia post-2008.

� CH4 Abrupt Changes (Fig. 7 and 9c): The change-points for
CH4 are more complex and variable than for CO2. The annual
analysis (Fig. 9c) suggests a potential shi beginning around
2010–2011, with U(t) crossing the condence limit. However,
the seasonal analysis (Fig. 7a–d) reveals a more scattered
pattern, with intersections and divergences occurring at
different times (e.g., ∼2008 in autumn and ∼2012 in winter).
This scattered nature suggests that the drivers for methane are
more complex and season-specic, which is likely inuenced by
a combination of anthropogenic activity and climatic variables.
For instance, change-points in spring/autumn could be linked
to modications in agricultural practices (e.g., rice cultivation
patterns and livestock management), while those in winter/
summer may be related to shis in monsoon patterns or
temperature, which control microbial methane production in
wetlands and rice paddies.

� Temperature trend shi (Fig. 9a): the SQMK test for
temperature reveals a highly signicant change-point starting
Fig. 8 Average monthly variations in the concentrations of (a) CO2 vs. ND
(wind speed).

268 | Environ. Sci.: Adv., 2026, 5, 257–280
around 2009, with U(t) sharply and permanently exceeding the
upper condence limit. This timing coincides precisely with the
change-point identied for CO2. This synchronicity suggests
a potential climate feedback mechanism, where the continued
accumulation of CO2 and other GHGs began to manifest a more
pronounced and consistent warming signal in the regional
climate system from that year onward.

Correlation of CO2 with NDVI, CF, CTT, and other
meteorological parameters

The correlation analysis reveals the complex interplay between CO2

concentrations and environmental drivers over Pakistan (Fig. 8
and Table 4). The key ndings and their logical interpretations are.

CO2 and NDVI (r = −0.50 and p = 0.01)

The signicant negative correlation robustly conrms the role
of vegetation as a carbon sink. Higher NDVI values, indicating
greater photosynthetic activity (particularly during the
monsoon and post-monsoon seasons), correspond with lower
atmospheric CO2 levels due to active carbon uptake. Conversely,
VI, CF, and CTT, and (b) CO2 vs. Temp, RH, Pre (precipitation), and W/S

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Correlation coefficients (r) of CO2 and CH4 with CF, CTT, Temp, RH, Pre, and WS

CO2 and NDVI CO2 and CF CO2 and CTT CO2 and Temp CO2 and RH CO2 and Pre
CO2 and
wind speed

−0.50 −0.36 0.31 0.12 −0.45 −0.23 −0.35
P = 0.01 P = 0.02 P = 0.03 P = 0.001 P = 0.003 P = 0.05 P = 0.08

CH4 and NDVI CH4 and CF CH4 and CTT CH4 and Temp CH4 and RH CH4 and Pre
CH4 and
wind speed

0.64 −0.20 0.32 0.60 0.29 −0.65 0.61
P = 0.001 P = 0.009 P = 0.07 P = 0.06 P = 0.005 P = 0.01 P = 0.04
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the CO2 peak in spring occurs when respiration from soils and
vegetation outpaces the regrowth of photosynthetic capacity
and is exacerbated by widespread biomass burning.

CO2 and meteorological parameters

Temperature (r = 0.12 and p = 0.001): the weak positive corre-
lation suggests that higher temperatures enhance soil and plant
respiration rates, releasing more CO2. However, the weakness of
the correlation indicates that local temperature is not the
dominant driver, which is overshadowed by larger-scale
anthropogenic emissions and photosynthetic drawdown.

Precipitation (r = −0.23 and p = 0.05) and relative humidity
(r = −0.45 and p = 0.003): the negative correlations align with
the seasonal cycle. The dry pre-monsoon season (low
precipitation/RH) is associated with peak CO2 from res and
respiration. The wet monsoon season (high precipitation/RH)
corresponds with CO2 drawdown due to enhanced photosyn-
thesis and reduced re activity.

Wind speed (r = −0.35 and p = 0.08): the negative rela-
tionship suggests that higher winds promote the dispersion and
dilution of locally emitted CO2, leading to lower observed
concentrations, particularly in polluted boundary layers.

CO2 and cloud properties (climatic response)

Cloud top temperature (CTT) (r = 0.31 and p = 0.03): the posi-
tive correlation is a critical indicator of greenhouse forcing.
Increased CO2 absorbs more longwave radiation, warming the
atmospheric layer. This warming can lead to higher cloud top
temperatures or a shi in cloud formation to lower, warmer
altitudes, reinforcing the warming effect.

Cloud fraction (CF) (r = −0.36 and p = 0.02): the negative
correlation is complex. It may reect meteorological patterns
where drier, high-pressure systems (favoring clear skies) coin-
cide with stable conditions that allow CO2 to accumulate.
Conversely, cloudy conditions oen accompany precipitation
and vertical mixing that dilute CO2.

In summary, CO2 variability is primarily driven by a combi-
nation of biological activity (source and sink) and anthropo-
genic emissions, modulated by meteorological conditions that
control dispersion and dilution. The correlations with cloud
properties suggest that rising CO2 interacts with and potentially
modies local cloud characteristics, contributing to regional
climate feedbacks.
© 2026 The Author(s). Published by the Royal Society of Chemistry
Pathakoti et al.42 found correlation coefficients of 0.13,
−0.18, −0.32, and −0.50 between CO2 and Temp, WS, RH, and
Prec, respectively, over Bharati (India) in 2016. Kumar et al.34

found correlation coefficients of 0.8 and −0.64 between CO2

and temperature and NDVI, respectively, over India from 2004
to 2011. Kumar et al.34 also found a negative correlation between
mid-tropospheric CO2 and rainfall over India.

Sreenivas et al.22 investigated that during pre-monsoon,
monsoon, post-monsoon, and winter, the corresponding
correlation coefficients (Rs) between wind speed and CO2 are
0.56, 0.32, 0.06, and 0.67, respectively, over Shadnagar,
a suburban site of Central India, in the year 2014. Nyasulu
et al.43 reported a signicant association between temperature
(T, ◦C) and CO2 (r= 0.75 and p < 0.01) during the SON pollution
peak season. Additionally, during SON, CO2 had a substantial
negative association with the cloud fraction (r = − 0.55 and p <
0.05) and a signicant positive correlation with cloud top
temperature (r = 0.56 and p < 0.05). These ndings suggest that
trace gases have a considerable impact on the climate during
periods of heavy pollution.

Metya et al.35 found that correlation coefficients (R) between
wind speed and CO2 during monsoon, post-monsoon, winter,
and pre-monsoon are 0.51, 0.15, − 0.02, and − 0.28, respec-
tively. A good inverse correlation between GHG and wind speed
suggests that with an increase in wind speeds, GHG concen-
trations decrease. In contrast, a weaker correlation suggests
that regional/local transport plays some roles.44 Strong winds,
especially during the monsoon season, are likely to dilute GHG
concentration. The changes in CO2 and CH4 concentrations are
linked to the adjusted temperature, and it was found that both
gases have been increasing from the beginning of the study
period (2002), but temperature showed an increasing trend only
aer 2009. As is clear from Fig. 9a–c, comparing the tempera-
ture trends with those of trace gases indicates that both
temperature and trace gases are increasing over the study area,
and a steady increase in temperature from 2009 onwards coin-
cides with the change point for CO2.
Correlation of CH4 with NDVI, CF, CTT, and other
meteorological parameters

The correlation analysis for CH4 reveals a distinct set of drivers
compared to CO2, which is heavily inuenced by microbial
processes and agricultural practices (Fig. 10 and Table 3).
Environ. Sci.: Adv., 2026, 5, 257–280 | 269
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Fig. 9 Annual abrupt change in (a) temperature, (b) CO2, and (c) CH4 resulting from the sequential Mann–Kendal test statistics. The various terms
like U(t), U0(t), UL, LL, and Z have the same representation as that depicted in Fig. 6.
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CH4 and NDVI (r = 0.64 and p = 0.001)

The strong positive correlation is counterintuitive at rst glance
but is a hallmark of agricultural methane sources. High NDVI
over Pakistan is oen linked to irrigated croplands, particularly
rice paddies. Flooded elds create anaerobic conditions in
which methanogenic archaea thrive, converting organic matter
into CH4. Thus, greener landscapes from agriculture can
directly correlate with higher methane emission rates.
CH4 and meteorological parameters

Temperature (r = 0.60 and p = 0.06): the strong positive
correlation is a key control on microbial methane production.
Warmer temperatures signicantly increase the metabolic rates
270 | Environ. Sci.: Adv., 2026, 5, 257–280
of methanogens in wetlands, rice elds, and soils, leading to
higher emission rates, especially during the summer season.

Precipitation (r = −0.65 and p = 0.01): the strong negative
correlation is likely indirect and related to atmospheric chem-
istry, not emissions. Higher precipitation is associated with
increased cloud cover and reduced solar radiation, which lowers
the atmospheric concentration of hydroxyl radicals (OH), the
primary sink for methane. With its main removal mechanism
weakened, CH4 concentrations accumulate.

Wind speed (r = −0.61 and p = 0.04): similar to CO2, the
negative correlation indicates that higher wind speeds disperse
and dilute concentrated plumes of CH4 from point sources like
wetlands, agricultural areas, and leaks from infrastructure.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Average monthly variations in the concentrations of (a) CH4 vs. NDVI, CF, and CTT, (b) CH4 vs. Pre, RH, WS, and Temp.
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CH4 and cloud properties (climatic response)

Cloud top temperature (CTT) (r = 0.32 and p = 0.07): as with
CO2, the positive trend suggests that CH4 contributes to lower
atmospheric warming, which may be reected in warmer cloud
tops, consistent with its role as a potent greenhouse gas.

Cloud fraction (CF) (r = −0.20 and p = 0.03): the weak
negative correlation may again reect synoptic weather patterns
where conditions favouring CH4 buildup (e.g., low wind and
stable atmosphere) may also be associated with fewer clouds.

In summary, CH4 concentrations are predominantly driven
by temperature-dependent microbial emissions from agricul-
ture (rice) and natural wetlands, as evidenced by the strong link
between NDVI and temperature. Its atmospheric lifetime is
further modulated by meteorological factors that control its
destruction (via OH), leading to an observed strong negative
correlation with precipitation.

Khaliq et al.10 showed that the CH4 concentration was
signicantly affected by anthropogenic emissions, NDVI,
meteorological parameters, and soil moisture over South, East,
and Southeast Asia from 2009 to 2020. Sreenivas et al.21 also
reported a positive correlation between CH4 and NDVI in
© 2026 The Author(s). Published by the Royal Society of Chemistry
a suburban site in India. Metya et al.35 noted a positive corre-
lation between CH4 and NDVI over Sinhagad, located on the
Western Ghats in peninsular India. Nyasulu et al.43 also found
a positive correlation between CH4 and NDVI over Muzambiq,
Africa.

Sreenivas et al.21 found that pre-monsoon, monsoon, post-
monsoon, and winter wind speed and CH4 correlation coeffi-
cients (Rs) are 0.28, 0.71, 0.21, and 0.60, respectively, over
Shadnagar, India, in 2014.

Nyasulu et al.43 found that the autumn season is the pollu-
tion peak season and there is a signicant association between
temperature (T ◦C) and CH4 (r = 0.80 and p < 0.01). In addition,
during autumn, CH4 demonstrated a strong negative associa-
tion with cloud percentage (r = − 0.69 and p < 0.01) and a large
positive correlation with cloud top temperature (r= 0.74 and p <
0.01). These ndings suggest that trace gases have a consider-
able impact on the climate.

According to Metya et al.,35 the correlation coefficients (R)
between wind speed and CH4 are −0.57, −0.3, −0.02, and −0.2
in the monsoon, post-monsoon, winter, and pre-monsoon
seasons, respectively. Conversely, a lower correlation implies
Environ. Sci.: Adv., 2026, 5, 257–280 | 271
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that local or regional emissions are important.47 The GHG
concentration is expected to be diluted by strong winds,
particularly during the monsoon season. This is conrmed for
CH4, where there is a negative correlation between wind and
CH4 concentration (R = −0.61).

The changes in CO2 andCH4 concentrationswere tried to link to
the adjusted temperature, and it was found that both gases showed
an increasing trend from the beginning of the study period (2002),
but temperature showed an increasing trend only aer 2009. The
observed temperature pattern indicates an increasing trend. As
shown in Fig. 9a–c, comparing the temperature trendswith those of
trace gases indicates that both temperature and trace gases are
increasing over the study area, and a steady increase in temperature
from 2009 onwards coincides with the change point for CH4.
During the study period, a steady temperature rise signies
a temperature response to a signicant increase in trace gases.
Essence of the observed correlations

The correlations found between the trace gases and cloud
parameters are not necessarily about gases causing changes in
Fig. 11 Seasonal spatial distribution of mid-tropospheric CO2 (ppbv) dur
(March–May), (c) summer (June–August), and (d) autumn (September–N
1000 m from the ground level during the study period.

272 | Environ. Sci.: Adv., 2026, 5, 257–280
clouds directly but rather about what these relationships reveal
about the radiative forcing environment and atmospheric
conditions.
Correlation with cloud top temperature (CTT)

� Observation: both CO2 (r = 0.31) and CH4 (r = 0.32) showed
a positive correlation with CTT.

� Interpretation and essence: this is a key indicator of the
greenhouse effect in action.

(1) CO2 and CH4 are well-mixed greenhouse gases that
absorb thermal infrared radiation emitted by the Earth's surface
and the atmosphere.

(2) This absorption warms the atmospheric layer where it
occurs.

(3) Clouds form at altitudes where the temperature drops to
the dew point. If the entire lower atmosphere (the troposphere)
is warmer due to increased GHG concentrations, the cloud
formation altitude might shi, or the cloud tops might be
warmer.

(4) A higher cloud.
ing four seasons, including (a) winter (December–February), (b) spring
ovember), along with 3 days air masses reaching Pakistan observed at

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Inuence of air masses

Currently, air mass back trajectories are used to investigate the
long- and short-range transportation of pollutants from one
region of the earth to another region.43,45 Using the Hybrid Single
Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the
backward trajectories arriving at Pakistan were examined during
the entire study period (2002–2017) at 1000 m above ground
level.46 In the current study, the HYSPLITmodel shows the source
of different backward trajectories of air masses from multiple
regions reaching the study location, as shown in Fig. 11 and 12.

Fig. 11 (a) and (b) show the three-day back trajectory analysis
of air masses at a height of 1000 m above the ground surface
during the study period (2002–2017). The three-day back
trajectories were calculated and clustered into four seasons for
each entire study period (2002–2017) over Pakistan. It is clear
from Fig. 11 that most of the source regions lie in the Middle
East, arising from Egypt, Saudi Arabia, Iraq, Iran, etc., and travel
long distances to reach the receptor region, Pakistan. However,
air masses also arise from central Asia from Turkmenistan and
Uzbekistan and travel through Afghanistan to reach Pakistan.
Air masses also arise from neighboring countries, such as India.
Fig. 12 Seasonal spatial distribution of mid-tropospheric CH4 (ppbv) dur
(March–May), (c) summer (June–August), and (d) autumn (September–N
1000 m from the ground level during the study period.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Middle Eastern countries are some of the strongest GHG
emitters in the world.47 In particular, Saudi Arabia is the largest
producer and exporter of petroleum products, and 90% of its
revenue relies on oil and petroleum-related industries.48 In
addition, the Peninsula (Iraq, Bahrain, Kuwait, Saudi Arabia, etc.)
is considered a hotspot for the emission of GHGs due to vast oil
and natural gas reserves and industries.4 Moreover, in Iraq, the
total CO2 emission increased by 300% from fuels that are roughly
14 000 Gg and 58 000 Gg from 1990 to 2017.9 In addition, the
Egyptian share of GHG emissions to the global atmosphere
increased from 0.4% in 2000 to 0.6% in 2016.49 The air masses
from these regions traveled through Iran and Afghanistan to
reach Pakistan. Iran is ranked 7th in terms of CO2 emissions
resulting from fuel combustion in the world.50 The main sources
of CO2 and CH4 emissions are various sectors of energy
production, agriculture, livestock, forestry, and waste. Moreover,
in Afghanistan, coal burning is the major cause of GHG emis-
sions, and over 70% of household energy is used to heat space
and water. In Kabul, on average, each family produces 4062
kilograms of greenhouse gases (CO2, NO2 and CH4), and con-
cerning this value, approximately 2.39 million tons of GHG are
ing four seasons, including (a) winter (December–February), (b) spring
ovember), along with 3 days air masses reaching Pakistan observed at

Environ. Sci.: Adv., 2026, 5, 257–280 | 273
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Table 5 Quantitative performance metrics of each model during the training fit

Model MSE RMSE MAE R2 MAPE

Linear regression 0.2101 0.4584 0.3714 0.9977 0.10%
Exponential smoothing 0.2101 0.4584 0.3714 0.9977 0.10%
ARIMA 8652.3921 93.0182 23.9110 −91.8053 6.42%
SARIMA 8652.3921 93.0182 23.9110 −91.8053 6.42%
LSTM 0.9590 0.9793 0.7783 0.9840 0.20%
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emitted in one month during winter.51 As shown in Fig. 12, some
of the airmasses arise from central Asia, including Turkmenistan
and Azerbaijan. Turkmenistan is one of the few countries with an
entire dependence on fossil fuels, with the sixth-largest natural
gas reserve in the world. 99% of the electricity in the country is
provided by natural gas-red power plants.52 Similarly, the
economy of Azerbaijan is also signicantly based on oil produc-
tion.53 The air masses from central Asia and Middle Eastern
regions traveled through Afghanistan and reached Pakistan and
contributed to locally emitted CH4 and CO2 to elevate their
concentration in the regional troposphere.
CO2 and CH4 models of forecasting

In the current study, ve forecasting models were evaluated
based on predicting the annual concentrations of carbon
dioxide (CO2) and methane (CH4) in the atmosphere between
2002 and 2017 using Linear Regression, Exponential Smoothing
(ETS), Autoregressive Integrated Moving Average (ARIMA), Long
Short-Term Memory (LSTM), and Seasonal Autoregressive
Integrated Moving Average (SARIMA) models.

To predict atmospheric CO2 and CH4 concentrations from
2002 to 2017, we evaluate the performance of ve forecasting
models: Linear Regression, Exponential Smoothing (ETS),
ARIMA, LSTM, and SARIMA. The tuning of the Hyperparameter
is conducted for each model.
Table 6 Quantitative performance metrics of each model while
forecasting CO2 from 2028 to 2024

Model MSE RMSE MAE R2 MAPE

LSTM 9.7485 3.1223 2.7073 0.3082 0.65%
ARIMA 7.3027 2.7023 2.6265 0.4818 0.63%
Exponential smoothing 12.3441 3.5134 3.4823 0.1240 0.84%
Linear regression 12.3441 3.5134 3.4823 0.1240 0.84%

Table 7 Quantitative performance metrics of each model while
LSTM

� Architecture: LSTM single layer is followed by a dense output
layer.

�Hyperparameters: we experimented with different settings.
The last model had 50 units in the LSTM layer at a learning rate
of 0.01 and 1000 epochs. The predictive data used a rolling
window of the past 3 years.

Training: the Adam optimizer and Mean Squared Error
(MSE) were used as the loss function to train the model. Even
with tuning, the model never converged to a solution that was
better than the linear trend, whichmeans that it was overtting,
and the model was fundamentally incorrect in its approach to
the data, which was highly linear.
forecasting CH4 from 2028 to 2024

Model MAE RMSE MAPE

Linear regression 2.123 2.456 0.12%
ETS 3.215 3.678 0.18%
ARIMA 4.892 5.234 0.27%
ARIMA (1,1,1) 3.956 4.312 0.22%
LSTM 5.678 6.123 0.31%
ARIMA/SARIMA

� Model selection: the optimal model was chosen using the
Akaike Information Criterion (AIC).

Hyperparameters of CO2: the optimal performance of the
ARIMA was ARIMA (1,1,1), meaning one autoregressive term,
one degree of differencing, and one moving average term.
274 | Environ. Sci.: Adv., 2026, 5, 257–280
Smart parameters of SARIMA: we tested seasonal terms (e.g.,
SARIMA (1,1,1) (1,1,1,12)), but there was no signicant seasonal
model in the annual aggregated data, showing that SARIMA was
an overly complicated selection.
Linear regression and ETS

They are simpler models in which hyperparameters that must
be tuned are not present within the model (e.g., ETS model,
additive error, trend, and seasonality). It is this simplicity that is
their strength.
Best-tting model results with statistical results

As illustrated in Tables 5–7, the most meaningful statistical
ndings are the following models:

� Linear regression is the clearly best model in CH4. It gave
the fewest errors on the test forecast (2018–2024) with an MAE
of 2.123 ppb, RMSE of 2.456 ppb, andMAPE of 0.12%. The trend
is overwhelmingly linear as it almost explains everything in the
historical data (R2 = 0.9977).

� In the case of CO2, ARIMA (1, 1, 1) gave the best projections.
It performed better during the test period, as it gave the lowest
RMSE (2.7023) and the highest R2 (0.4818), which means that it
could capture the small autocorrelation structure of the CO2

data that a pure linear trend failed to capture.
The ndings summarize that linear regression is the choice

of chart to use in CH4 prediction, and ARIMA is the choice of
chart in predicting CO2 in the case of this data. The LSTM
© 2026 The Author(s). Published by the Royal Society of Chemistry
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model, which is the most complex, still performed the worst,
which conrms our assumption that easier models are more
effective in this case.

Characteristics and model tting of data

The two gases (Fig. 13 and 14) showed a strong linear, positive
rise over time with little noise or seasonality in the annual
aggregate data. This inherent property was the major determi-
nant of model performance, as indicated in the training t
gures (e.g., Fig. 15 and 16) and measured in Table 5.

Linear regression showed an almost perfect t using the
historical data of the two gases, with an R2 of 0.9977 for CO2.
This means that the simple linear trend describes more than
99.7 percent of the variance in the data, and more complicated
models are not needed to describe the historical pattern. The
steady annual growth (about 2.0–2.3 ppm per year of CO2) is
best tted to a linear model.

More sophisticated models, such as SARIMA (seasonality)
and LSTM (complex non-linearities), did not manage to do so
on the training data. The benet of their added complexity was
not signicant, and, as is usual with parsimonious data, they
introduced a risk of overtting.

Performance and model comparison forecasting

Linear regression continued performing better in the near-term
forecasting task (2018–2024) with respect to CH4.
Fig. 14 Methane (CH4) concentration from 2002–2017.

Fig. 13 Carbon dioxide (CO2) concentration from 2002–2017.

© 2026 The Author(s). Published by the Royal Society of Chemistry
CO2 forecasting

CO2 results, illustrated in Table 6 and Fig. 17, were more subtle.
Linear regression optimally ts the trend in history, but the
ARIMA model was the best in terms of forecasting performance
during the test period, with the lowest RMSE (2.7023) value and
the highest R2 value (0.4818). This indicates that the trend is
linear, but the explicit modelling and extrapolation of the
autocorrelation structure in the time series (e.g., integration of
past values and errors) using the ARIMA model had a small
effect on forecast performance relative to linear extrapolation
alone in the case of CO2.

It is worth noting that the LSTMmodel performed poorly for
both gases. This is typical when small and clean datasets are
employed, which are highly linear because LSTMs require large
amounts of data to learn more complicated patterns and can be
easily outperformed by simpler and more statistically suitable
models.

For CH4 forecasting

Linear regression was clearly the superior model, as illustrated
in Table 7 and Fig. 18. It recorded the lowest error values (MAE:
2.123 ppb, RMSE: 2.456 ppb, MAPE: 0.12%), which were far
better than all the other models, including ETS and ARIMA.
This proves that the increase in atmospheric methane over the
future prognosis still takes a strong and consistent linear form
due to consistent anthropogenic emissions.
Environ. Sci.: Adv., 2026, 5, 257–280 | 275
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Fig. 15 Comparison of the training fits of different models using the CO2 historical data.
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Recommendations

The most important result of this study is that the character-
istics of the data signicantly affect the performance of the
model. In these particular annual concentration data, which are
non-seasonal, short, and have a strong linear trend, the
simplest model (linear regression) was either optimal or highly
competitive. Thus, in light of our ndings, we advise the
following:

(1) Because of its remarkable accuracy, ease of use, inter-
pretability, and low processing cost, linear regression should be
the model of choice for operational forecasting of CH4 with this
type of data.
Fig. 16 Comparison of the training fits of different models using the CH

276 | Environ. Sci.: Adv., 2026, 5, 257–280
(2) An ARIMA model should be considered for CO2 fore-
casting since it captured the trend and autocorrelation well and
produced the most accurate forecasts in our test scenario.

Signicance

The environmental science community can benet greatly from
this study since it shows that reliable and precise operational
forecasts of CO2 and CH4 can be produced without the
computational cost and data needs of sophisticated machine
learning models like LSTM. Clearly, fact-based recommenda-
tions for model selection for regional GHG trend predictions are
provided in our analysis.
4 historical data.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 Comparison of different models for forecasting CH4 from 2018–2024.

Fig. 17 Comparison of different models while forecasting CO2 from 2018 to 2024.
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(1) Finding the most realistic model for predicting these
particular GHG trends was the goal.

(2) The concept of parsimony is the main nding: the most
effective model is the simplest one (linear regression for CH4

and ARIMA for CO2), as adding complexity (LSTM and SARIMA)
had no advantage and frequently resulted in worse
performance.

(3) We specically address the reasons why complicated
models do not work, such as LSTM's requirement for huge
© 2026 The Author(s). Published by the Royal Society of Chemistry
datasets to identify patterns that are already well captured by
a straightforward linear trend.
Conclusions

This study is an in-depth examination of tropospheric CO2 and
CH4 changes in Pakistan between 2002 and 2017 using AIRS
satellite data, which has provided vital information about
seasonal patterns, climatic factors, and human effects. Key
ndings include the following:
Environ. Sci.: Adv., 2026, 5, 257–280 | 277
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➢ CO2 maxima in May (389 ± 8 ppmv) resulted from
increased biomass burning, soil respiration, and pre-monsoon
agricultural activities, and minima in October (386 ± 8 ppmv)
occurred aer photosynthetic uptake during the monsoons.

➢ CH4 peaks in August (1876 10 ppbv) with wetlands and
rice planting during the monsoon, and the lowest concentra-
tions occur in April (1820 21 ppbv) with decreased photo-
chemical activity.

➢ Both gases are characterised by a high rate of increase:
CO2 increasing by 2.1 ppmv/year and CH4 increasing by 3.5
ppbv per year over 15 years, corresponding to total increases of
8.6 and 2.9 percent, respectively.

➢ Sudden shis observed through the Mann–Kendall test
(CO2 in 2009, CH4 in 2007–2014) are consistent with the
increased anthropogenic effects (industrial expansion, defor-
estation, and burning of fossil fuels).

➢ CO2 has a negative relationship with NDVI (r=−0.50) and
precipitation, showing the importance of vegetation and
monsoonal uptake in concentration control.

➢ CH4 exhibits very positive correlations with NDVI (r =

0.64) and temperature (r = 0.60), with both microbial activity
and agricultural emissions being dependent on temperature.

➢ Both gases affect radiative forcing, with CO2 and CH4

having cloud top temperature and cloud fraction relationships,
respectively, of r= 0.31 and r=−0.20, highlighting the climatic
feedback processes of the two gases.

➢ The HYSPLIT trajectory analysis indicates transboundary
Middle East (oil/gas industries) and Central Asia (fossil fuel
dependence) contributions to the problem of local agriculture,
transportation, and biomass burning emissions.

➢ Increased surveillance: increased ground-based and
satellite monitoring to measure emission hotspots and model
climates.

➢ Emission control: strengthening of the emission control
of industries and vehicles, use of renewable energy, and
sustainable agricultural methods (e.g., alternate wetting/drying
in rice elds).

➢ Regional cooperation: collaborate with other neighbour-
ing countries to deal with transboundary pollution by working
together on similar climate programmes.

In addition, it was observed that simple statistical models
(linear regression of CH4 and ARIMA of CO2) performed better
than more complicated models, such as LSTM, in the scenario
of strongly linear trends of GHG. This offers an excellent, cost-
effective model in which policymakers and scientists can
project future GHG concentrations and evaluate scenarios for
the mitigation of emissions without the complexity and
obscurity of computationally demanding models.
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