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Environmental Significance Statement

Chitosan-based nanomaterials offer a biodegradable, non-toxic alternative to synthetic
agrochemicals, addressing major environmental challenges in agriculture. By enhancing nutrient
uptake, photosynthesis, and stress resilience in vegetable crops, they reduce reliance on chemical
fertilizers and pesticides while mitigating climate-induced stresses such as drought, salinity, and
heavy metal toxicity. Their rapid biodegradation minimizes soil and water contamination, aligning
with sustainable agriculture and global food security goals. This review highlights their potential
as green nanotechnologies to increase crop yields, safeguard ecosystems, and support the United

Nations Sustainable Development Goals.
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Abstract

Vegetable crops are increasingly exposed to new environmental conditions, including elevated
temperatures, erratic rainfall patterns, and declining soil fertility, which threaten global food
security. Traditional synthetic fertilizers and pesticides exacerbate environmental degradation.
Chitosan, a biodegradable and non-toxic biopolymer derived from chitin, has been developed
into nanomaterials such as nanoparticles and nanofibers. These chitosan-based nanomaterials,
typically less than 100 nm in size, exhibit high biocompatibility and bioactivity, enhancing
chlorophyll content, nutrient uptake, and disease resistance in crops. Nonetheless, differences
in synthetic processes and composition may cause unstable efficacy, and field-level increase in
yield is between 5-20% in comparison with 15-25% in controlled settings. This review explores
current advances in chitosan nanomaterials for vegetable crop improvement under biotic and
abiotic stress, focusing on crops like tomatoes, potatoes, and lettuce. It critically evaluates
benefits and limitations while emphasizing nanotechnology's role in achieving higher yields

and environmental sustainability.
Keywords: Crop; Chitosan; Agriculture; Nanotechnology; Fertilizers
1. Introduction

Nanotechnology has become a disruptive technology in contemporary agriculture that allows
the use of nanoparticles with high accuracy in delivering nutrients, pesticides, or biostimulants
I. Nanotechnology ensures a higher bioavailability, decreases chemicals, and increases stress-

resistance against crops by designing materials at 1-100 nm 2. Chitosan-based nanoparticles
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31  (ChNPs) and nanofibers are unique nanomaterials since they are biocompatible, biodegradabile;:soic
32 and applicable in multifunctional applications in the promotion of plant growth and in
33  controlling pathogens 3. The vegetable crops that are very sensitive to the stresses caused by

34  climatic conditions are a major area of application of nano-chitosan technologies *.

35  Vegetable crop production faces significant challenges due to climate change, including global
36 warming, temperature increases, erratic rainfall, and soil degradation °. Due to
37  biodegradability, non-cytotoxicity, and natural chitin origin, chitosan has been developed to
38  become more sophisticated nanomaterials, such as nanoparticles and nanofibers, appropriate
39  for use in vegetable crops °. Based on the accumulated data, one can assume that opportunities
40  for enhancing the resistance of vegetable crops to various forms of stress exist in the case of
41  using chitosan-based nanomaterials 7. ChNPs are capable of raising tomatoes and lettuce
42  chlorophyll by 15-25 percent under salinity stress when used at 50-100 mg/L during 7-14 days
43 %9, Since they are cationic, they can bind to the negatively charged plant cell wall, but nutrient
44  uptake efficiency is 25-30% higher compared to the chemical fertilizers '°. For example,
45  chitosan nanofibers elicitor, as mentioned earlier, has the capability of activating systemic
46  resistance and reducing the rate of diseases such as Phytophthora that affects potatoes to a range
47  of 50-60 percent through enhancing the defense genes. Chitosan's deacetylation degree,
48  ranging from 70-95%, leads to variability in the deacetylation process outcomes !!. As a result,

49 field formulations may only achieve yield increases of approximately 10-15%.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

50  This review analyzes how chitosan-based nanomaterials enhance vegetable crop resilience

51  under various biotic and abiotic stressors, using evidence from peer-reviewed studies.
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52 2. Synthesis and Properties of Chitosan-Based Nanomaterials

53  The development of chitosan-based nanomaterials, such as chitosan nanoparticles (ChNPs), is
54  vital for improving vegetable crop resistance 2. Bottom-up methods build nanomaterials from
55  smaller units, like assembling Lego blocks. The most common is ionotropic gelation, where
56  positively charged chitosan binds with negatively charged molecules (e.g., TPP) to form tiny
57  spherical nanoparticles (50—100 nm) in a simple, water-based process '3-14. This is a relatively
58  easy method that is approximately 80% efficient on the bioactive compounds . On the other
59  hand, the bottom-up techniques such as milling and ultrasonication mainly involve the
60 mechanical breakdown of chitosan particles into particles of size in the range of 200-300 nM

61  but do not alter the morphological homogeneity of chitosan and there is only about 20-30%
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variation in particle size distribution 6. This is why the bottom-up strategies can gffer a High:oric

level of accuracy; however, these methods cannot be implemented in crop farming at a large

scale since they require some heavy mechanical energy.

Chemical synthesis approaches expand the fabrication of chitosan to a higher degree following
the chemical process where chitin is liquefied by the usage of strong acids and bases to convert
to chitosan and then in nanoscale form !’. Another conventional method of thermo-chemical
hydrolysis to get soluble and biologically active products is capable of producing an extent of
deacetylation between 70-95% the result is a non-uniform molecular size of polymer of
between 50-1000 kDa 3. Although this kind of variability is industrially feasible, it reduces the
effect in vegetable crops relative to fresh weight by up to 15-20% due to variability in
deacetylation '8, The enzymatic methods for chitin deacetylation include the use of purified
chitin deacetylase, which is found in microorganisms such as Bacillus spp., and at moderate
conditions, the degree of deacetylation aimed at 85% was achieved. However, it is reported to
be expensive and estimated to be 38—73% cheaper than chemical methods when using agro-

industrial waste such as shrimp shells or crab waste '°.

The preparation of chitosan nanomaterials through microbial fermentation and
biotechnological application of various enzymes also involves an environmental factor in the
process of microbial fermentation 2. Proteolytic microorganisms and organic acids enhance
deproteinization and demineralization, and chitosan has a low molecular weight of 100-300
KDa and a low particle size of below 150 nm 2!. By synthesizing ChNPs biologically, there is
a great potential to control plant fungal pathogens, with the example of growth inhibition of
solani's mycelium to 70-80% by the ChNPs, which is higher than the chemically synthesized
ChNPs by 10-15 22, However, there are also some limitations of this type of production, such
as the yields, which are in the range of 20%-30% lower than those of chemical synthesis, which

is due to slow fermentation 23.

According to the literature, in this method of thermo-chemical hydrolysis, the degree of
deacetylation ranges from 70-95% to increase the solubility and bioactivity of chitosan; the
polymers' non-uniformity in molecular weight of 50 to 1000 kDa. This is still industrially
possible but decreases the performance of vegetable crops since bioactivity is reduced by 15-
20% due to irregular deacetylation 4. Alternatively, an enzymatic process that employs chitin
deacetylase from microbial sources, particularly Bacillus spp, achieves at most 85%

deacetylation under gentle conditions. The high cost of the process was estimated to be 38-

3
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94 73% less expensive than that of the chemical method in utilizing agro-industrigl, waste 2 coaris

95  Therefore, there is a need to balance the improvement of real-life productive, efficient, and
96  sustainable bioprocesses that cater to the agriculture sector. However, their high surface area
97  can cause agglomeration, reduce germination by up to 80%, and impact droplet size by 10-20%

98  under field conditions unless stabilized with surfactants.

99  Further, enhanced controlled release is beneficial in the use of ChNPs as nutrient release
100  sustains for about 30-60 days, unlike the 5-10 days observed for regular fertilizers. For instance,
101 chitosan NPs encapsulated with indole-3-acetic acid enhance the hydroponic lettuce’s growth
102  rate by 20%-25% because of the duration of IAA release 2°. However, the release kinetics are
103  influenced by the particle size and pH of the environment, which shows that 50 nm is
104  marginally greater than 200 nm, which might be hypothetical and challenging to standardize.
105  This implies that there exists a large variation whereby accuracy when determined under
106  laboratory conditions differs from that of field cropping; this deserves a boost for vegetable

107 crops 2728,

108  This one can be considered as a conjugation with metals, particularly copper, as a technique of
109  ‘‘nanoengineering”’ to enhance the function of chitosan nanomaterials 2°. This biocontrol
110  system relates the chitosan’s biocompatibility with copper to control the growth of Fusarium

111 oxysporum, decreasing the growth by 85-90% in tomato crops. While Chitosan nanoparticles

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

112 organically reduce the crop growth by 70-75%. This entry on copper loading of nano-fertilizer
113  of between 5-10% w/w enhances the enzyme activation of pathogenicity and raises the defense

114 of plants by 25-30 % 3°. However, toxicity is observed at a higher concentration of copper of

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

115  more than 15% w/w because it accumulates at the soil level, at which microbial population

(cc)

116  may be reported to have been reduced by 5-10%. Often, such a trade-off is made to achieve
117  perfect coordination with the necessary potency and non-carcinogenic effect on the natural

118 environment to some extent.

119  Nano-fibering, an additional nano-engineering technique, enhances vegetable crop resilience
120 by improving structural and functional properties. Chitin nanofiber with a size ranging from
121 10-20 nm in diameter exhibits eliciting activities that enhance the defense gene expression of
122  cabbage and its resistance to Alternaria brassicicola by 60-70 % 3!. This has enhanced their
123  mechanical properties; their tensile strengths are 2-3 times those of ChNPs, hence enhancing
124  bioactivity with durability. However, the costs of fabricating covalent CNTs-TiO2

125  nanocomposites are still higher by 20—30% than the costs of nanoparticles, and this is a problem

4
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of marketability. This could be a new method of employing nanoparticles and nanofibeitd o 0me

enhance the durability of vegetable crops irrespective of the kind in question 32.

Consequently, they have the capability of achieving outstanding impacts, for example, an
increased yield by 20-40 % on the foliar applied systems because of their surface area and
controlled release 2°. The second type of improvement is nano-tailoring, which is also used
where certain areas need changes. There also needs to be strict controls in terms of quality and
the work achieved. In vegetable production, which, among many other agricultural
productions, is often affected massively by climate stressors, these nanomaterials are in a
privileged position to transform sustainable agricultural output if only the synthesis of these
nanomaterials can meet the conditions in the field. The preparation of chitosan-based
nanomaterials is fundamental to enhancing the resistance of vegetable crops since the various
synthesis leads to different properties of the nanomaterials 3. This variability is seen in Table
1; Ionotropic gelation offers 70-85% of Fusarium control in tomato at an optimal size of 50-
100 nm ChNPs, while enzyme hydrolysis gives 30-40% Ni removal in lettuce at a 1.4 cost
factor more. Table 1 presents a detailed comparison of synthesis techniques for chitosan-based
nanomaterials applied to vegetable crops, encompassing methods such as ionotropic gelation,
enzymatic hydrolysis, and chemical deacetylation. It includes columns for nanomaterial type,
vegetable crop examples, application methods, particle size, deacetylation percentage, yield
increase, pathogen control, stress mitigation, scalability score, and cost factors, offering a
comprehensive dataset derived from key studies. The purpose is to link specific synthesis
approaches to their practical outcomes in enhancing vegetable resilience, highlighting both

efficacy and scalability challenges.
3. Mechanisms of Resilience Enhancement in Vegetable Crops

Nanomaterials from chitosan, such as ChNPs , are more effective against biotic stresses, which
result in enhanced resistance of vegetable crops 4. Current research demonstrates that chitosan
nanoparticles (ChNPs) inhibit 70-85% of the mycelial growth of Fusarium oxysporum Schltdl.
In potato and tomato systems, outperforming bulk chitosan by 20-25% due to their nanoscale
size, which enhances penetration of fungal cell walls 3. This efficiency is attributed to the
cationic nature of chitosan, and it interferes with the pathogen membranes as well as being a
germination inhibitor of the spore in Phytophthora infestans by 90% 3°. However, in the case
when the size of particles varies between 50 and 200 nm, the actions are unstable; this is due

to the reasons that 10-15% action of smaller particles and at the same time the process of

5
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158  synthesis must be very accurate 37. This brings ChNPs as the green solution tp, synth&tics S oae
159  fungicides; however, the stability of these ChNPs at the field level remains a great challenge.
160  As concluded from Table 2, a test of pathogen control efficiency for lettuce with Botrytis
161  cinerea was between 60-70% while for okra it was 85-90% against Fusarium oxysporum when
162  using Ch-CuNPs. The result confirmed the role of chitosan nanomaterials in biological stress
163  management. Table 2 details the biotic stress resistance mediated by chitosan nanomaterials
164  across various vegetable crops, synthesizing data on pathogens, nanomaterials, application
165 methods, and effects such as growth inhibition and enzyme induction. Columns include
166  pathogen reduction percentages, enzyme activity increases, yield impacts, and field variability,
167  offering a comprehensive view of efficacy and challenges. The purpose is to highlight specific
168  pathogen control outcomes, facilitating comparisons across crops and nanomaterials, with

169  scalability scores reflecting practical deployment potential.

170  In addition to repelling invaders at the physical level, chitosan nanomaterials trigger the
171 biochemical defense mechanisms that would improve the ability of vegetable crops to resist
172  biotic stresses. General findings: By applying the ChNPs on the foliage of discomfort, the
173  defense enzymes and activities have been enhanced, where chitinase and peroxidase of
174  tomatoes have increased by 30- 40% in 48 h 26, This induction is in concordance with the
175 increase of the endochitinase genes to decrease Ralstonia solanacearum by 50-60%. They also

176  realized that it increased phenolic compounds by 25-35% which boosted its systemic resistance

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

177  38. There is, however, the variance of nanomaterial concentration that ranges from 50 to 75 mg

178 /L because beyond this range the efficiency drops by 10-15% due to phytotoxicity 3°. This

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

179  ability of ChNPs to be both antimicrobial and an elicitor is proving the versatility of the

(cc)

180  compound; however, the need arises for an implementation of a proper amount of the ChNPs

181  to elicit the required response 0.

182  As far as abiotic stress is concerned, the use of chitosan nanomaterials has the potential to
183  enhance the water relations of vegetable crops under drought stress. In basil, when applied as
184  afoliar spray, it was found that ChNPs reduced transpiration rates by 20-30% and, on the other
185  hand, enhanced the water use efficiency by 15-25% under water deficit conditions 4!. This
186  could be attributed to the hydrophilic characteristic of chitosan to form a layer on the surfaces
187  of the leaves This is in concordance with the findings of studies on potatoes, whereby the
188  writers observed that the amount of chitosan must be dried to 50 mg/L and increased the root

189  biomass of plants by 20-30% “?. Table 3 spells out the impact of chitosan nanomaterials on
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stress factors that affect vegetable crops, including the types of stress, the nanomatgrial USEd;soo0me

application method, and results, including water use efficiency and nutrient absorption. More
longitude columns represent stress reduction percentages, yield increase, nutrient uptake, and
field variability, so there is a good check on the efficiency and the problems encountered. The
objective is to present the effects of nanomaterials on stressors in crop plants and provide a

comparison basis among them and the approaches, with scaling scores feasibility to be utilized.

The second one, which is highly associated with the salty stress test, is only comparable to
salinity tolerance and mitigated by chitosan nanomaterials. ChNPs also have a defensive role
in lettuce to decrease the adverse impact of sodium toxicity resulting from a 25-35 %reduction
in ion leakage concentration at 100mM NaCl #3. This became a result of the enhancement of
the chlorophyll component by 15 to 20% through photosynthesis when the plant undergoes salt
stress 44, However, if the concentration of water is above 150 mM NaCl, these benefits are
reduced up to 10-15%, as OS prevails over the positive impact of the nanomaterials 4. Based
on the comparative assessment, it has been found that the nano-chitosan is comparatively 20-

25% more saline than the bulk forms, with restriction to the upper limit in saline areas 4°.

Apart from improving the nutrient intake through its ChNP-based nano-carriers, it also confers
an additional advantage of stress tolerance on the vegetables. As stated by 3° ChNPs used in
onion systems to apply NPK fertilizers enhance the nutrient uptake by 30-40 % and bulb yield
increases by between 20-25%. This is because of slow release, for it is processed gradually in
a period of about one month to two months, compared to 5-10 days for normal fertilizers 4’.
Similarly, nitrogen use efficiency has been improved by 25 to 30 % in Wheat Trials, yet the
data on vegetable production are also variable. It shows a 10 to 15% times increase, particularly
in nutrient-deficient soils “8. Such differences particularly confirm the parameter of soil type as
a constraint, the formulation of which demands the development of an effective nano-carrier

to be used in the field.

These and other biotic things of resilience supplement the abiotic aspects to demonstrate a
diverse utilization of chitosan nanomaterials, which, however, has a notable lack of research in
past literature 4°. Antimicrobial effectiveness range is 70 to 90 percent; all the microorganisms
are killed, but they can only work with a certain number of particles and in a certain fraction.
Field results of the experiments are 10 to 20 percent less than the laboratory experiments 3% 51,
Concomitant to abiotic gains of between 15-25%, the effectiveness of water also depends on

the climate, the lower being where temperatures are quite high 52. Nutrient delivery works well
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222 in controlled conditions and badly in dynamic conditions, and that is why one has to work Withsic
223  adaptive strategies . This variation implies that the ChNPs cannot be implemented as a generic

224 concept, and thus, more attention will be paid to the usage of ChNPs in vegetable crops.

225 In summing up, the theoretical construction of the “nano-mediated stress shield” may be
226  described as an attempt to expand the understanding of a means by which chitosan
227  nanomaterials enhance the firmness of this material. This model defines ChNPs to encompass
228  structures that help discourage pathogen invasions, for instance, the inability of Fusarium to
229  penetrate by 70 — 85% and signaling molecules that trigger defense response, which are
230  enzymes in the range of 30 — 40% 26. For abiotic stress, the size of the shield addresses water
231 loss (biotic and abiotic) in a range of 20-30% and nutrition lock, an improvement to nutrition
232  availability by a range of 30-40%. It occupies plant tissue to form a shield 3. However, it is
233  moderate most of the time — highest at moderate stress levels and decreases by 10-20% at

234  higher stress levels, which confirms the conditionality of the shield as provided above .

235  While biotic resistance helps in controlling pathogens, the problem with the method is that it
236  highly depends on the synthesis consistency, and it offers only 15-20% less effect if the
237  formulation is not standardized 3 °*. Monogenic abiotic stress yield loss avoidance is
238  especially profitable in low-stress zones, which can be interpreted as low-stress yield

239 improvement even such as between 20-25% in onions, in contrast to the stress zone assays in

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

240  which it is unprofitable 47. The nutrient enhancements would aid in sustainable yields;
241 nevertheless, owing to the inconsistency in the texture of the soil, there is a 10-15 % lesser

242  yield augmentation that needs calibration for the site 4%. This powerful lens establishes the

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

243  model as the basis for moving forward, thus assisting in guaranteeing that vegetable resilience

(cc)

244  enhances actual-life aspects of nanomaterial applications .
245 4. Application Methods and Delivery Systems

246  Therefore, the concept of applying Chitosan-based nanomaterials (ChNPs) to seeds as seed
247  coats could be deemed a common practice in enhancing the tolerance of vegetable crops,
248 mainly in the seedling stage 3°. The process of applying ChNP suspension is done at a
249  concentration level of 50-100 mg/L through dip or vacuum infiltration tools, depending on the
250  homogeneity in seed adhesion 3% 37, There is an increase in germination by 20-30% in chickpeas
251  and cucumbers, reducing factors such as water diffusivity and activation of enzymes, including

252  amylases, by 25-35% . It acts early It also inhibits the defensive mechanism, reducing the


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00274e

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284

Environmental Science: Advances

infection of Fusarium spp by 60-70 through antimicrobial membrane break, as sevgral authiotrs
noted 8. The problem emerges with the least coated amounts because the germination
decreases to 10-15 % for non-optimized batches; the work has to use professional instruments

such as rotary coaters *°.

Spraying the chlorides of Ni, Co, and Ni-Co mixed NPs on the foliage of the plant is a novel
technique for delivering nutrients to the plant and protecting vegetables like okra and tomatoes
from diseases and pests. The technique employed in this study is the sprayers that are used to
spray ChNP solutions, most of which are in the concentration of 50-75 mg/L singly or in
combination with nutrients such as NPK on the leaves *%. This mechanism involves the stomata
uptake and slow releasing ability, which enhances the nutrient uptake by 25-40% in 30-60 days,
in contrast to 5-10 days in foliar sprays 4’. They are expected to increase crop yield by 20-25%
at optimal timing and reduce Phytophthora infestans infection by 70-85% through the
activation of antioxidant enzymes, such as peroxidase, which exhibit up to a 30% increase in
activity 26. Nanomaterials of chitosan, used either by such means as foliar spraying, offer a
broad spectrum of advantages to vegetable crops (tomatoes, potatoes, and lettuce) improving
their growth and resistance, as shown in Fig. 1. As an example, foliar-applied ChNPs suppress
Fusarium wilt by 70-85% by being used to enhance the activity of enzymes; late blight
(Phytophthora infestans) by a factor of 50-60 by being used to systemic resistance; and nutrient
uptake in lettuce by 15-20% by being used to increase chlorophyll content. This value point
places emphasis on these crop-specific vigor increases, such as biomass increase and stress
resistance. Table 4 depicts the application methods of the chitosan nanocomposites and their
effects on vegetable crop resilience, with information about crops, the kind of nanomaterials,
and some benefits that include pathogen control, tolerance to dryness, and enhanced nutrient
uptake. Other headings are on yield increases, pathogenic control efficiency, stress effects on
yield, variability, and scalability, which allow evaluation of a delivery system's effectiveness
and potential difficulties. This is to ensure that each method can be traced to the desired
outcome around resilience and enable crop and nanomaterial comparison, with cost analysis

also considering the aspect of feasibility in terms of cost.

Foliar application’s rationale for rapid response centers on delivering nutrients and defenses
under stress. The spraying tools of ChNPs involved the use of indole-3-acetic acid growth
hormones, which enhanced okra shoot growth by 20-30%. The resistance mechanisms

embrace leaf invasion as well as systemic defensive mechanisms, which diminish Fusarium
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285  oxysporum levels down to 70-80% 3. The effects are likely to be moderate during conditions; s s
286  of relative humidity between 50 — 70 percent. Evaporation of solution nutrients costs between
287 10 and 15% of the entire nutrient application, as nutrients from the solution could soil through
288  evaporation. Plants become phytotoxic when the solution exceeds 100 mg/L concentration.
289  Researchers aim to achieve two outcomes by adjusting the solution pH between 5 and 6 and

290  developing solution 2 for better leaf retention and stability.

291 Soil incorporation’s purpose long-term support targets nutrient efficiency and soil health in
292  vegetable systems. Drip irrigation tools apply ChNPs, and the controlled release mechanisms
293  maintain nutrient accessibility within the property to result in 20-25% heavier tomato fruits
294  than the standard control 7. ChNPs exhibited equal importance in remediation by adsorbing
295  cadmium from lettuce, making it 25-35% less available to uptake . The degradation time
296  spans from 60-90 days, together with minimal functionality under acidic conditions, having a
297  pH level below 5, creates a 10-20% reduction of benefits, thus hindering broader ChNP
298  adoption °. ChNPs require a combination with organic amendments for successful
299  implementation since these organic materials maintain optimal soil pH levels and enhance the
300 release mechanism properties. Fig. 2 shows a flow diagram of the step-by-step processes of
301  chitosan nanoparticles (ChNPs) in increasing nutrient accessibility and uptake in vegetable
302  crops, including application techniques (foliar, soil, seed) and interaction processes (binding,

303  controlled release, chelation) to resulting benefits (improved yield and stress resistance) ©'. In

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

304  particular: (1) Foliar spray application can be used to rapidly deliver the product to the stomata;
305  (2) Incorporation into the soil can be used to release the product slowly over 30-60 days through

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

306  pH-triggered chelation; (3) Coating of the seed can be used to increase the rate at which the

(cc)

307  product attaches to the root; resulting in (4) Depending on the crop, either 20-25% higher
308 nutrient efficiency in tomatoes or 15-20% lower transpiration in drought-stressed potatoes This

309  brings out the aspect of nanotechnology in accurate and sustained delivery.

310 Nanomaterials of chitosan are currently being applied as edible coatings to harvested
311  vegetables in order to increase shelf life and minimize post-harvest losses 2. Applied as a
312  dipping or spray solution, chitosan films (1-2% w/v) create a semi-permeable barrier that
313  inhibits respiration, ethylene production, and microbial growth . As an example, tomatoes
314  covered with nano-chitosan coatings accelerated the loss of weight by 30-40 percent and

315  postponed the process of ripening by 7-10 days at 20 °C ¢4, Chitosan-nanoZnO films reduced
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the E. coli and L. monocytogenes by 85-95 percent in 14 days in lettuce . These applications; sorric

are in line with the zero-waste and limit the usage of artificial preservatives.

The versatile nature of chitosan nanocarriers becomes a drawback because they demonstrate
antimicrobial action and enzyme induction alongside nutrient delivery 4°. The physical defense
layer created through seed coating ranges between 50 to 100 nm in thickness, yet becomes
ineffective because of inconsistent application methods . The enzyme enhancement activities
of ChNPs applied to plant leaves reach 30% intensification, and their dose-dependent effects
open concerns about excessive plant stimulation. Soil chitosan NPs effectively remediate and
fertilize the ground while facing challenges with gradual chemical release during conditions of
high stress . The implementation of remote sensors intends to improve the performance of

techniques by adjusting application amounts through a system of measurements.

A new intelligent nano-delivery system combines sensors with the vegetable crops' stress
response, ChNPs for application. The smart nano-delivery system combines ChNPs with
embedded sensors (pH, moisture, or conductivity) that can be released only under the
conditions of sensing stress (e.g., soil moisture below 50%) ¢. As an illustration, a lowering of
the pH to less than 5.5 may trigger nutrient release within 48 hours and enhance efficiency by
15-25%, and lessen waste 3% 68, Research indicates that pathogenic levels would improve by 20
to 30 % while nutrient utilization would increase by at least 15 to 25 % without sensing
difficulties . Biodegradable polymers remain usable for designing prototype smart clothing

systems that monitor elderly health status according to .

The delivery systems containing ChNP ensure different mechanisms for seeds and soils, and
plants show significant variations, thus achieving numerous changes, including yield increases
between 20-25 % with pathogen control reaching between 60-85% 36. Smart nano-delivery
provides a solution due to its ability to address application inconsistency issues, which cause
degradation rates between 10- 20% while also resolving environmental dependency problems
as mentioned in 3. The present research explores how to optimize the positioning of ChNPs

for vegetable production harmony as a resilience strategy.
5. Crop-Specific Case Studies

Tomato (Solanum lycopersicum L.) provides an optimal example of how chitosan nanoparticles
(ChNPs) affect growth in controlled environment agriculture. The use of 50 mg/L substance

concentration leads to a 20-25% increase in shoot biomass due to enhanced photosynthesis
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347  rates, which correspond to elevated chlorophyll content levels of 15-20% #°. Plagt, putiigats qomie
348  uptake is enhanced via stomatal absorption, with efficiency improving by 25-30% compared
349  to conventional fertilizers ®. The variable elevation of 10-15% detected in randomized field
350 trials reflects the light sensitivity of this factor, which reduces its effectiveness 38. The
351  phenomenal prospects of ChNPs demonstrated earlier require precise usage when employing
352  this pest management technique, particularly within tomato horticultural applications.

353  ChNPs demonstrate excellent effectiveness as a suppressant against the bacterial wilt pathogen
354  Ralstonia solanacearum present in tomatoes. The peroxidase enzyme activity improves by 30-
355  40% after ChNPs reach a 75 mg/L concentration in the soil, according to 2°Through their SAR
356  response mechanism. British scientists found that ChNPs destroy Gram-positive bacteria by
357  crumbling their cell walls, which leads to 70-80% bacteria death in 48 hours 7°. The stability
358  of ChNP experiences a decrease of 10-15% in acidic soiling conditions with pH levels below
359 5 units 3°. The test results demonstrate the defensive role of ChNPs as the soil composition

360 remains an unmanageable factor.

361  The incorporation of chitin nanofibers into tomato plants boosts their natural resistance against
362  Fusarium wilt better than using ChNPs independently. The F. oxysporum infection rate remains
363  between 70-85% when the nanofiber treatment reaches 100 mg/L, while gene expression of
364  chitinase reaches between 40-50% levels 7!. The fibrous 10-20 nm structure of ChNPs

365  produces superior eliciting results than ChNPs according to laboratory tests by about 15-20%

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

366  72. Their high production costs, which amount to 20-30% more than ChNPs, combined with

367 50-60% reduced effectiveness in field conditions, according to 3. Represent the main

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

368 limitations for their practical use. The situation emphasizes both nanofiber resistance to

(cc)

369  Dbiological agents and cost-effectiveness, together with scalability in real-world operations.

370  The soil application of nano-chitosan shows high performance in areas with water scarcity
371  problems in drought conditions on potatoes (Solanum tuberosum L.). A 50 mg/L guttation
372  spraying results in a 20-30% decrease in transpiration rate and enhances water use efficiency
373 by 15-25% during conditions of 50% dry soil 4. It has been proven that this micro-coating
374  method increases leaf water retention, so plants produce 20-25% additional tubers #!. The
375  osmotic stress experienced during excessive dry soil conditions results in decreased benefits of
376  5-10% *. This system provides favorable drought resistance, although it functions in a specific,

377  limited time frame and needs irrigation systems to function.
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Nano-chitosan provides effective biological management of Phytophthora infestans, which
threatens potatoes as a major disease agent. The fertilization of soil at 75 mg/L ChNPs results
in minimal mycelial expansion of 70-80 percent and time-limited spore germination of 85-90
percent due to membrane breakdown processes 6. The microbiological activity of peroxidase
defense enzymes rises by 25-35% while late blight disease incidence decreases by 50-60% 33.
The current field application rate of between ten and fifteen percent reduction in efficacy stems
from the recent variation of particle size from 50 — 200 nm, which requires further improvement
in synthesis techniques 7°. Compatibility between the delivery mode and dual functionality is
established for both nanoparticles, but their performance depends heavily on developing more

accurate delivery systems to gain acceptance.

Through this study, scientists evaluated the Ni uptake capacity of lettuce (Lactuca sativa L.)
when ChNPs were incorporated into the soil used for the restoration of heavy metal-
contaminated soils. 100 mg/kg ChNPs reduced Ni concentration in leaves by 30-40% at the
molecular level because their large surface area quantity of 100 m*/g allowed better ion
interaction 0. The root growth increases up to 15-20% when hydroponic systems utilize this
mechanism, which functions through chelation 3°. The remediation capability of ChNP
treatment in clayey soil falls to a 10-15% range >°. ChNPs display remediation capabilities that
depend on the characteristics of the application setting, thus creating specific constraints for
their usage. Fig. 3 provides a schematic view of the mechanism through which the chitosan
nanoparticles (ChNPs) activate antioxidant enzymes (APX, CAT, POD, SOD) in vegetable
crops, beginning with the application and contact of cells with the nanoparticles, then ending
with results such as decreased oxidative stress and improved resilience. To newcomers: ChNPs
penetrate plant cells (e.g., through roots or leaves), which prompts signals such as calcium
bursts to activate genes; this increases enzymes such as ascorbate peroxidase (APX) and
catalase (CAT) to neutralize harmful oxygen molecules (ROS) and peroxidase (POD) and
superoxide dismutase (SOD) to protect cells against damage. This decreases oxidative stress
by 30-40 percent in tomatoes during pathogen assault or 20-30 percent in lettuce during salinity

and prevents cell death and enhances counter-shading.

This research demonstrates how ChNPs can advance hydroponic lettuce cultivation through
controlled facilities during its growth cycle. A 30-day period showed that 20-25% weight
enhancement and 30-40% nitrogen increase associated with the specified ChNP concentration

occurred due to their slow-release kinetics mechanism 47. The mechanism functions with fifty
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410  to hundred-nanometer root-bound particle adsorption to maintain nutrient concentration, I¢§g185 oo
411  better than standard five to ten-day fertilizers, according to 2°. The concentration of solution
412  above one hundred milligrams per liter leads to root clogging, which reduces the gain by 10 to
413 15 percent and therefore requires better concentration control 4. The growth enhancement
414  technique works efficiently in hydroponics, although appropriate measures need attention to
415  achieve optimal outcomes because the acceleration rate sometimes slows down, as shown in

416  Fig. 4.

417  The authors have developed a potential 'nano-resilience spectrum' to show exactly how
418 nanomaterials affect different vegetable plants. Research indicates that tomato ChNPs
419  alongside nanofibers protect plants from Fusarium (70-85%) while simultaneously boosting
420  growth through a 20-25% improvement in biomass development. Potatoes show positive
421  drought resilience characteristics between 15-25% and Phytophthora resistance at 70-80%
422  levels. Lettuce functions well at Ni reduction by 30-40% combined with 20-25% hydroponic
423  yield enhancement. The degree of variation, including field outcomes, which decreases
424  between 10-20% stems from production processes alongside environmental factors and
425  variable defense levels from strong to moderate between hydroponic systems and open fields
426  73. The novel framework adopts ChNPs as crop-differentiated tools while demanding additional

427  research to enhance the practical utilization 3.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

428 6. Comparative Advantages and Limitations

429  Chitosan nanoparticles (ChNPs) offer biodegradability benefits to the point where they have

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

430 become more suitable for application than standard agricultural chemicals. Natural raw soil

(cc)

431  completes its degradation into non-hazardous glucosamine residues within 60-90 days because
432  Chitosan nanoparticles remain degradable, while synthetic pesticide chemicals persist for years
433 75 The biodegradation efficiency of microbial action amounts to 95-100% for chitosan
434  nanoparticles, while organophosphates only achieve 20-30% degradation within the
435  corresponding periods 77. Biodegradable matter effectively reduces environmental pollution by
436  50-60% more than chemical fertilizer programs, while sustainable agriculture targets have been
437  achieved according to Calvo et al. (2014). The rate of biodegradation varies with soil pH
438  because acidic conditions (pH < 5) reduce the degradation by 10-15% hence, researchers need

439  to verify this advantage at different soil pH levels .
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The low toxicity levels found in ChNPs make them an ideal choice for applications,azQiitid; soic

vegetable crops, together with the ecosystem, instead of standard chemical fertilizers. The
seedling vigor remains unaffected when exposed to ChNPs at 50-100 mg/L concentrations, yet
the fungicides produced a seedling vigor decline by 15 to 20 percent at matching
concentrations, according to 3°. The oral LD50 of 5000 mg/kg or above-reported chitosan is
non-toxic in mammals, even when compared against chlorpyrifos pesticide with values ranging
from 300 to 500 mg/kg [21]. The low toxicity level of ChNPs enables them to reduce ecological

risks by 70-80% so they are eligible for food crop applications, including tomatoes and lettuce
36

ChNPs show resistance against biotic stress elements as a primary factor that gives them market
superiority over alternative treatments 78. The antifungal action of ChNPs against F oxysporum
exceeds the limited effect of carbendazim in tomatoes due to the nanoscale entry of ChNPs,
which stimulates enzyme activity?®. The antimicrobial and elicitor behavior of ChNPs enables
them to suppress Phytophthora infestans in potatoes by 70-80% while metalaxyl action declines
to 55-65% 38. Under trial conditions, the efficacy reached rates of 20-25% better than chemical
control yields or when applied in controlled environments 4’. Actual field deployments reduce
the aforementioned advantages by 10-15% because environmental uncertainties between the

weather and soil lower the effectiveness of ChNPs in real-life applications 3°.

Current data demonstrate that ChNPs handle abiotic stress with superior capability than
traditional methods under certain conditions 4. Application of ChNPs through potato foliage
leads to a 15-25% improvement (in water use efficiency) for drought resistance compared to
the 5-10% enhancement achieved with humic acid, because both transpiration and water
consumption are reduced 7°. Lettuce plants absorb higher amounts of fertilizer when treated
with ChNP nano-carriers, reaching 30-40% instead of granulated fertilizers, which only result
in 10-20% uptake 3°. The beneficial outcomes of using ChNPs become less effective at stress
levels higher than 60% moisture deficiency, since their useful range declines 3. Specific
applications should be considered when using ChNPs because this context-dependency

partially reduces their advantages.

The heterogeneous materials used in nanotechnology create significant problems since they
diminish the stability of ChNPs in the process. The observed deacetylation levels between 70-
95% resulted in a 15-20% variation of solubility and bioactivity between different production

batches, yet higher deacetylation negatively affected pathogen inhibition. The effectiveness of
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472  nanomaterials between 50-200 nm increases by 10-15% but the synthesis implementafiofis S r:
473  becomes more difficult 8. The variability in tomato Ralstonia control drops from 60 percent to

474 45 percent when using unstandardized formulations, according to 2¢. The implementation

475  suitability of ChNPs requires strict quality checks to achieve their complete laboratory-scale

476  potential.

477  Problems associated with scalability factors prevent ChNPs from evolving beyond small-scale
478  green production to vegetable manufacturing. Manufacturing processes during industrial
479  production decrease output by 20-30% because of higher costs and equipment requirements 47.
480  Simultaneously, laboratory platforms generate 50-100 g/L productivity. Enzymatic synthesis,
481  while eco-friendly, produces 20-30% fewer ChNPs than chemical methods, with costs 20-40%
482  higher per kg 73. Nanobiotechnology application at field locations results in a 10-20% reduction
483 in effectiveness because spraying across extensive areas becomes inconsistent 8. The
484  challenges between potential customers and manufacturing capabilities emerge from
485  technological advancements, which create barriers for performing successful supply and

486  demand operations.

487 Insufficient guidelines about ChNPs result in multiple production limitations, including
488 unreliability of experimental results across different vegetable cultivation methods. The

489  recommended amounts for soil application exceed 100mg/kg, and foliar spray approaches 50

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

490 mg/L, although crop-specific and stress condition changes may influence these rates and result
491  in output decreases up to 10-15% 3°. Current reaction parameters are inconsistent regarding pH

492  and temperature conditions because minimal deviations below 5-10% have been reported to

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

493  reduce bioactivity. The effectiveness of Ni reduction in Lettuce lies between 30-40% using

(cc)

494  different ChNP sizes; however, it falls within the 10- 15% range °. Lack of standardization
495  guides the management of ChNPs because their registration systems require a standardized
496  framework to boost reliability.

497 A novel approach for boosting ChNP manufacturing and vegetable defense capability exists
498  under the label of "nano-standardization framework." The nano-standardization framework
499  proposes:

500 1. Deacetylation: 80—85% (via enzymatic or mild chemical methods)
501 2. Particle size: 50-100 nm (verified by DLS)

502 3. Application rates: 50 mg/L (foliar), 100 mg/kg (soil)

503 4. Quality checks: Zeta potential >+30 mV, PDI <0.3
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Additions to standardize ChNP production include deacetylation limits of 80-85% and patticle; .o s

dimensions from 50 to 100 nm, together with testing application rates of 50 mg/L for foliage
and 100 mg/kg for soil usage >. Research indicates this method can boost effectiveness by 15-
20% for Fusarium control in tomatoes from 70 to 85-90% and it will lower production prices
by 20-30% through process enhancements 7. The establishment costs for ChNPs remain in

place even after the initial investment, due to the challenges indicated by 8!.
7. Future Directions and Conclusion

Future development of chitosan-based nanomaterials to enhance vegetable crop resilience
depends on three key elements: nanomaterial-vegetable study research, large-scale field
experiments, and innovative agriculture platforms incorporating chitosan-based nanomaterials.
The current research indicates Fusarium control achieves success rates between 70-85% for
tomatoes, yet lettuce demonstrates nutrient sorption levels between 30-40% and the analysis of
stomatal uptake kinetics and root absorption rates remains poorly investigated, showing

variations between 10-20% 39.

The laboratory-scale results of increased potato growth from 20-25% to 10-15% showed
decreased effectiveness when field conditions, including soil pH and humidity, were
considered 3¢. The 70-95% deacetylation range in moderate synthesis degree requires specific
protocol development because it affects bioactivity by 15-20% 3°. The sensor-based "nano-
delivery" system utilizes ChNPs in smart agriculture to boost performance at the stress stage
(e.g., 50% moisture deficit) by 15-20% 38. Better environmental impact assessments can be
achieved by studying the current degradation rates spanning from 95-100% over 60-90 days,
yet reducing to 10-15% under acidic soil conditions 7®. The innovative strategies implemented
in laboratory conditions should be applied towards pilot-scale testing of diverse large-scale
oils, while a 10-20% reduction in field effectiveness occurs; enzymatic manufacturing costs
20-30% more than conventional methods, but requires a cost-benefit evaluation 7. To facilitate
widespread adoption, policymakers should integrate chitosan-based nanomaterials into
agricultural frameworks by providing subsidies for farmers to offset initial costs and
establishing guidelines for government agencies to support scalable production and
standardized application protocols. These policies could incentivize sustainable practices,
ensuring that the environmental and yield benefits of ChNPs are accessible to smallholder and

large-scale farmers alike. Nanoscale research on chitosan would establish its role as an
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535  effective, sustainable agriculture method since it meets international standards.for, gtectis s s

536  agriculture *.

537  Research proves that nanomaterials built with chitosan represent an innovative defense tool
538 that provides many advantages over normal agrochemical practices and may transform current
539  agricultural methods. The application of chitosan-based nanomaterials supports Sustainable
540 Development Goal 2 (Zero Hunger) by enhancing crop yields and resilience, thereby
541  contributing to food security. Additionally, their biodegradability and low environmental
542  impact align with SDG 15 (Life on Land), promoting sustainable land use and reducing
543  chemical pollution in agricultural systems. There are two significant characteristics of chitosan-
544  based nanomaterials, which include their capability to control 60-90 % Phytophthora and
545  Fusarium pathogens in tomatoes and potatoes, and okra, and their ability to increase yield by
546  15-25 % and reduce chemical fungicide usage by 15-25 %. Additionally, they demonstrate 30-
547 40 % efficacy against drought and Ni toxicities in chill peppers and lettuce. Environmental
548  impact following the use of post-heritage release pesticides would decrease up to 70%-80%
549  because microbial breakdown reaches 95 to 100% while hazardous measures surpass LD50
550 >5000 mg/kg. Such challenges, including 10-15% variability across fields and scaling
551  obstacles (e.g., enzymatic costs rise 1.4 times), need resolution before establishing the “nano-
552  standardization framework,” which addresses particle size (50-100 nm) and application rates

553  (50-100 mg/L). Nanoparticles demonstrate unequaled practicality for heavy metal removal

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

554  from soil by reducing their absorption levels at an average rate of 30-40%. Additionally, they

555  exhibit 30-40% effectiveness in recovering hydroponic nutrients. Nanomaterials act as

Open Access Article. Published on 28 November 2025. Downloaded on 1/13/2026 10:54:27 PM.

556  antimicrobial agents and nutrient delivery, and elicitor mechanisms to produce chitinase from

(cc)

557  tomatoes with efficiency reaching between 40-50%. Smart technologies will be integrated into
558  future developments to integrate efficient yield with sustainable soil health through the main

559  component use of chitosan nanomaterials in crop sustainability 8.
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