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Life cycle inventory data for critical mineral mining:
recommendations and new U.S. data compendium
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and Jennifer B. Dunn

2 Daniel Zitomer,” Natalia Gutiérrez Rodriguez®
*ac

Production and pollution data and information for United States critical mineral mines are heavily fragmented
across numerous databases and sources, such as government emissions reports and company documents.
These disintegrated data complicate fair and consistent analyses and communities’ understanding of mine
operations and impacts. For 19 active critical mineral mines in the United States, we aggregated location,
production, and emissions data and developed an interactive data compendium map and data set. We
calculated the ecotoxicity, human health cancer, and human health non-cancer life-cycle impacts of the
emissions from these mines. Further, we analyzed the proximity of these mines to disadvantaged
community tracts identified by the Justice40 initiative and found all mines are within 29 miles of
a disadvantaged tract. We defined a methodology to develop probability distribution functions for mining
pollution data to support robust mining life cycle inventory data. Finally, we discussed next steps to expand
the data compendium to additional critical minerals and other countries like Australia and Chile. Reducing
fragmentation in mine emissions data is important because aggregated or old data masks unique features
of individual mines including geology, hydrology, and geography. Furthermore, given changes in time in
ore grade and mining technology, recent data best capture the contemporary impacts of an individual mine.

Mining is the foundation of the critical mineral supply chain that feeds into the manufacturing of lithium-ion batteries. Mineral demand is surging and

understanding, quantifying, and mitigating the environmental effects of mining is essential. Life cycle assessment (LCA) is a key tool in this process, but a major

challenge remains: the lack of reliable data to support comprehensive critical mineral mining LCAs. Commonly used data sources for mining LCA are often

outdated and not geographically representative. Generating recent, geographically-representative data is challenging, however, because data are often frag-

mented across multiple sources. To address these gaps, we have launched a data compendium for copper, lithium, and nickel critical mineral mines in the U.S.

to provide essential data for more accurate LCAs. We also provide guidance on how to address uncertainty in mining pollutant emissions data for use in LCAs.

Introduction

analyses that account for the environmental effects of every
stage of a product's life cycle. Producing insightful LCA results

The energy transition, which aims to advance cleaner and less
carbon-intensive energy sources than conventional fossil fuels,
involves scale up of many minerals-dependent technologies
including lithium-ion batteries, solar panels, and wind
turbines. Many of these decarbonization technologies use crit-
ical minerals,* like copper, lithium, cobalt, and nickel. Life cycle
assessments (LCA) that conclude these technologies reduce
fossil fuel consumption and greenhouse gas (GHG) emissions
have generally served to justify the environmental benefits of
these decarbonization technologies.>® LCAs are holistic
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requires robust and reliable life cycle inventory data that
quantifies energy and material flows, including emissions to
air, water, and land, for each life cycle stage.*® LCAs of minerals-
dependent technology, however, often lack high quality data for
the minerals mining stage.®

Data quality is a key consideration in LCA. Weidema (1998)’
proposed a data quality matrix to guide data choices for life cycle
inventories that includes five indicators. The first indicator
assesses the reliability of the source. The most reliable data is
based on measurements whereas the most complete data is
generated from numerous sites over a period substantial enough
to even out typical fluctuations. In the context of mining, high
quality emissions data should therefore be measured at multiple
mining sites over a period that would capture variations in
emissions that arise from normal process variations. Per Wei-
dema,” high-quality data should also be less than three years old,
from the region of study, and should be from the same type of
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industrial processes that the LCA aims to capture. Obtaining
high-quality data for minerals mines is challenging but impor-
tant.>® Notably, environmental impacts of mines can depend
greatly on location because of several factors: the stringency of
local environmental regulations, choice of technology and
management practices within a mining operation, ore grade, and
others. Furthermore, mining technology is evolving to reduce
water and energy consumption.***>

Critical mineral LCI data in LCA models and databases

In existing peer-reviewed literature, the quality and sources of
data used to conduct critical mineral mining LCAs varies. Yet,
no open-source database with contemporary, location-specific
environmental impact data from critical minerals mining
exists to improve the underlying quality of life cycle inventory
data that underpins LCAs. Based on our recent literature
review,® under half (40%) of critical mineral mining LCAs use
primary data from mines. Primary data are essential for devel-
oping accurate LCAs that best reflect an individual mine and its
localized impacts. Others use common databases like Ecoinvent
(37%) and the Greenhouse Gases, Regulated Emissions, and
Energy Use in Technologies (GREET) model* (1%) while many
draw LCA parameters from the literature (19%). Given the
prominence of Ecoinvent as a data source, understanding the
provenance of data for minerals in this database is essential for
determining the quality of these LCA results. We examined
several examples in Ecoinvent to consider strengths and weak-
nesses of mining life cycle inventory (LCI) data it contains. One
example is the reference product “copper mine operation and
beneficiation, sulfide ore.” This product's data includes nine
country-specific datasets and one dataset representative of rest-
of-world (RoW). The nine countries with specific datasets are:
Australia, Canada, Chile, China, Indonesia, Kazakhstan, Russia,
United States, and Zambia. These datasets do not include
material and energy flows or pollutant emissions from indi-
vidual mines. LCI data at the country-level is generated by
scaling LCI data of beneficiation reagents (e.g., lime and sodium
cyanide), electricity, and water consumption from Classen et al.
(2009)** based on the country's average ore grade, a method
outlined by Northey et al.*® Copper concentrate refining data are
based on pyrometallurgical copper production and anode
sliming.'® However, pyrometallurgical processing only accounts
for about 80% of copper production."” The remaining 20% is
from hydrometallurgical processing.”” While Ecoinvent states
that these datasets are temporally, geographically, and techno-
logically representative, two of the datasets are more than 10
years old, geographical representation is derived from
a national-average average ore-grade, not a specific mine ore
grade, and the data may not be representative for mines that
undergo hydrometallurgical processing. Notably, most of the
underlying data sources in Classen et al.** are from sources that
are years older (e.g., Kraufd et al. (1999)'® and Ayres et al
(2002)*). Given that Ecoinvent's home is Switzerland, the
background data often includes data from European or Swiss
sources, even for processes that occur outside of Europe. For
example, the production of copper concentrate from sulfide
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dataset that is labeled as geographically representative for
Australia uses chemical agent data from Switzerland or Europe.
This mismatch is present for the other eight countries, too.

Ecoinvent's data for “cobalt production” is another dataset
with low temporal and spatial representativeness. Eight major
cobalt producers were surveyed in 2012 to collect primary, site-
specific data to build the inventory and document emissions.
Ecoinvent users must use this global average data set. It is not
possible to refine cobalt LCI data based on location of mine,
technology in use at mine, or other factors. Because these
producers and their locations were not disclosed, it is difficult
to understand data provenance and to be confident in the global
representativeness of the data set. Global representativeness
may not be as relevant for cobalt as it is for copper given that
one country dominates cobalt production. In 2012, the Demo-
cratic Republic of Congo (DRC) accounted for just over 53% (ref.
20) of global production. In 2024, the DRC produced over 75%
(ref. 21) of cobalt globally. The global average dataset for cobalt
production in Ecoinvent has a system boundary from cradle-to-
gate and encompasses mining, beneficiation (i.e., production of
concentrate and/or raffinate solution), primary extraction and
further concentration of cobalt, and refining into cobalt metals.
The dataset details that its emissions were obtained directly
from the sites. Additionally, the “cobalt production” docu-
mentation page lists the representativeness at 30%, but does
not define how this value was determined. For comparison, the
representativeness for “copper mine operation and beneficia-
tion, sulfide ore” is 80% RoW and 95% for each specific country.
Again, Ecoinvent documentation does not disclose the method
used to calculate these values. Importantly, Ecoinvent does
evaluate the quality of values in its LCI by scoring from its data
quality pedigree based on Weidema.” Ecoinvent also provides
the uncertainty distribution and squared geometric standard
deviation (GSD2) for its LCI data.” This transparency around
underlying data quality and uncertainty can help users evaluate
the relevance and utility of a dataset.

Another option for obtaining critical mineral mining LCI data
is to use the GREET model,** an open-source, large LCA model that
emphasizes the United States. LCI data for minerals in GREET do
address international aspects of the supply chain to some extent.
For example, the model contains data for lithium carbonate
production in Chile. Nickel LCI data vary with ore grade, but the
share of energy provided from electricity versus diesel is fixed
regardless of level of energy consumption. The electricity energy
and emission factors are based on the global production-weighted
average for nickel. No mine-specific data are included in the
model. A thorough review of technical reports and publications
that document data sources in the model can be required to fully
understand data provenance in this model. GREET documenta-
tion has not adopted the Weidema’ framework for documenting
data quality, so users who aim to use that framework to charac-
terize data quality must do that independently if they choose.

Our review of these two models indicates that analysts seeking
to use them may be generating LCA results with relatively low-
quality data for the minerals supply chain. In a time of
increasing importance of minerals in addressing challenges in
decarbonization, communications, and defense technologies,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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among others, these data quality challenges are pressing.
However, to acquire site-specific, recent LCI data for mines is
time-consuming. For data to be publicly available, either industry
must voluntarily provide these data or must be required to report
them to government agencies that then place these data in the
public domain. When documentation of the environmental
effects of critical mineral mines does exist, it is often decentral-
ized and fragmented. Data from different companies or agencies
frequently exist in many locations, in multiple databases, and in
different forms (i.e., hard-copy or electronic). For example, the
U.S. maintains numerous databases and source of information
about domestic mines, but these resources are isolated and not
centralized. Plus, some data are confidential, proprietary, or
require a subscription to access.

The need for an open-source data compendium

We argue that there is an urgent need for recent, open-source,
location-specific life cycle inventory data for mines, including
for the U.S. Data needs for U.S. mining historically have not
been a priority because the U.S. has not been a major partici-
pant in the minerals supply chain. There is a large push,
however, for the U.S. to onshore the critical mineral supply
chains for energy and material resilience and independence
from other countries. For example, an executive order® from
March 2025 called for expediting critical mineral mining
permitting processes and for prioritizing mineral production
and processing on federal lands. U.S. mining LCI data is
therefore increasingly important.

In response to this urgent need, we have established a data
compendium for critical mineral mines. The compendium, in
the form of an interactive map and downloadable data,
currently contains centralized location, production rate, and
emissions data for active U.S. copper, nickel, and lithium
mines. In a first-of-a-kind analysis, we use the data gathered in
the compendium to compare environmental impacts across
mines in the U.S., assessing the importance of temporal and
spatial aspects of life cycle inventory data quality. In our recent
literature review, which reaches back to 2009, no critical
mineral mining LCA explored how the age of data influenced
results and most do not address emissions aside from GHG
emissions because of data gaps.® The compendium we created
can help fill these gaps. The compendium can be updated with
new data for the U.S., expanded to include additional minerals,
and expanded to include data from other countries.

To the best of our knowledge, this data compendium is the
only free and publicly available resource that can enable LCAs of
critical mineral mines in the U.S. that use recent and local
emissions data. These LCAs can in turn permit comparison of
mines' environmental performance, which can stimulate
informed policies to promote sustainable mineral supply
chains domestically and abroad.

Methods

We began with selecting minerals for inclusion. We wanted to
emphasize minerals that are central to decarbonization

© 2025 The Author(s). Published by the Royal Society of Chemistry
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technologies and are considered to have supply chain risks or
be classified as “critical.” For our data compendium, we inves-
tigated mines of critical minerals used in electric vehicle
batteries and defined as “critical” by the USGS* or the DOE.>*
These criteria limited our scope to copper, lithium, and nickel
and the active mines who produce these elements in their
primary products. Graphite, cobalt, and manganese are also
important critical mineral components of electric vehicle (EV)
batteries, but there are no active mines for these minerals in the
U.S.*® Active mines are the those in production as of June 2025.

We relied on the Mineral Resources Online Spatial Data from
the USGS and the Mine Data Retrieval System from the Mine
Health and Safety Administration (MHSA) for locations and
status of mines. Environmental emission data were pulled from
the Toxic Releases Inventory (TRI) and the National Emissions
Inventory (NEI) from the Environmental Protection Agency
(EPA). The data in the TRI are facility self-reported annually and
capture land, water, and air emissions.?® The NEI data, gathered
every three years, are primarily collected by state, local, and
tribal agencies rather than facilities and these data only repre-
sent air emissions of criteria air pollutants (CAPs) and green-
house gas emissions (GHGs) and optionally, hazardous air
pollutants (HAPs).>* Some overlap exists in the air emissions
data for HAPs, but the TRI includes other toxic air chemicals
beyond HAPs. Production data were extracted from publicly
available permitting documents and technical reports from
individual mines. All data and databases used to construct the
data compendium are free and publicly available.

We also calculated some of the impacts of critical mineral
mining emissions in the US as life cycle analysis impact cate-
gories (IC). We translated the TRI and NEI emissions to the
LCIA ICs of ecotoxicity (EC), human health-cancer (HHC), and
human health-noncancer (HHNC) ICs using the Tool for
Reduction and Assessment of Chemicals and Other Environ-
mental Impacts (TRACI).”” TRACI is an environmental impact
assessment tool which provides characterization factors for
chemical emissions to air, water, and land in urban and rural
environments. We standardized LCIA results per ton of mineral
equivalent (i.e. payable or embedded mineral amount in
a product) per year. Section S1 details the methodology for LCIA
calculations. Calculating these ICs provides a lens into localized
impacts of critical mineral mines in the US and can help esti-
mate increased impacts with increased mining. Fig. 1 repre-
sents a schematic of data sources used to document mine
production, emissions, and impacts.

Additionally, we overlaid environmental justice (EJ) indica-
tors onto the mines to probe the spatial relationship between
mineral extraction and disadvantaged communities. We used
EJ data from the Climate and Economic Justice Screen Tool,*®
which highlights communities that are environmentally and/or
economically disadvantaged.

Results and discussion

All data were compiled into a single database and visualized in
an interactive map (see Fig. 2).** The database excludes
proposed and closed mines as neither are actively producing
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Fig. 2 Screenshot of interactive data compendium? (https://github.com/jenmbdunn/Critical_Mineral_Mines_Database).

minerals. It is important to note that closed mines might still
release emissions through rain runoff or other methods,* but
these emissions are not reported in the NEI or the TRI.

As of June 2025, the United States has 19 active critical
mineral mines (17 copper; 1 nickel; 1 lithium). Most copper
mines are in Arizona. The lone nickel mine, Eagle Mine, resides
in Michigan's Upper Peninsula. The only operating lithium
mine is Silver Peak Mine in Nevada. Silver Peak Mine histori-
cally was a silver mine but switched to lithium production in the
1960s. Annually, these mines produce 4.28 billion metric tons of
mineral equivalent. A mineral equivalent is the amount of
critical mineral contained in a product (e.g. the amount of

Environ. Sci.. Adv.

copper embedded in a copper concentrate). More than 99% of
this production is copper. The nickel and lithium annual
production levels are significantly lower: 17 200 and 5000 metric
tons of mineral equivalent, respectively.

The production of 4.28 billion metric tons of mineral
equivalents emitted 225 million kg of pollutants into the envi-
ronment, most of which were released into the soil (70%). These
emissions also included 5.64 million tons of carbon dioxide
equivalents (CO,e), the standard unit for measuring global
warming potential of GHGs. We estimate the largest impacts of
critical mineral mine emissions are to ecotoxicity, ranging
between 0.05 and 1.43 trillion CTUeco per year. CTU stands for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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comparative toxic unit. The impacts to HHNC and HHC were
much lower, 22 to 28 thousand CTUnoncancer or CTUcancer
per year. HHNC and HHC results are similar because most of
the chemicals that the mines emitted and are included in
TRACI had the same characterization factor for noncancer and
cancer effects per kg of pollutant.

To understand the magnitude of these effects, we compared
the effects of emissions from these mines to those from Dow
Chemical's Freeport Plant in Freeport, TX. This chemical plant
is the largest in the US and the 3rd largest globally.>* We
calculated the EC, HHNC, and HHC for this plant's emissions.
globally.** We used the average of the IC ranges we calculated
for mining activity as described above to reflect the impact of
the mines in the compendium. The impacts of the critical
mineral mines are equivalent to 1160 plants for EC, 2190 plants
for HHNC, and 1490 plants for HHC. In this calculation, HHNC
and HHC differ because many releases from the Freeport
Chemical Plant had different characterization values for HHNC
and HHC. These results indicate that the mining operations
within the scope of this analysis contribute substantially to
environmental pollution. Interestingly, the total GHGs emitted
by the mines are only 1% of what the Freeport Plant emitted.
The chemical industry, in general, relies on fossil fuels to create
its products and often burns them to provide energy for their
production, releasing large quantities of GHGs.*

Insights into the importance of recent, geographically-
representative data

Given commonly-used LCI data sets generally use older data
that may not be geographically representative, we explore data
available for U.S. mines to assess the importance of the year and
location data was acquired. Fig. 3 illustrates pollutant emis-
sions to land per ton of copper from four mines. These mines —
Bagdad, Morenci, Safford, and Sierrita - are copper mines in
Arizona owned by Freeport-McMoRan. These mines all have
a similar ore grade of approximately 0.3%.** The Miami mine,
also in Arizona and owned by Freeport-McMoRan, was excluded
from this analysis because ore extraction has stopped and only
concentration and refining occur at the site. Out of emissions to
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30,000
25,000
20,000
15,000

10,000

(kg/metric ton copper)

Morenci 5,000

safford ® @ 0

Released land emissions

Size of dots do not represent mine size or production, nor city size or population

/

2014 2015 2016 2017 2018 2019 2020 2021
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air, land, and water, Fig. 3 only contains emissions to land
because 99% of emissions from these mines were to land.

Except for the Safford mine, the relative emissions to land of
each mine varied sizably from year to year. The annual emis-
sions to land per ton of copper from Bagdad in 2023 were over
five times greater than those from 2014, and nearly three times
greater than those from 2018. The higher emissions - driven by
emissions of lead compounds - were not an anomaly, but sus-
tained starting in 2021. Production levels were consistent
between 2020 and 2023, so the sharp uptick is not attributable
to changes in mine throughput. Discerning the underlying
source of lead emissions increases is difficult with only publicly
available information at hand. Overall, the variations in
pollutant emissions in Fig. 3 demonstrate risks associated with
using outdated data. Using mining emissions data from 2020,
as an example, might not be representative of emissions in
2023.

Further, the differences between emissions in Fig. 3 validate
the need for spatially resolved data. In 2023, the Sierrita mine
had twice as many emissions to land per ton of copper
compared to the Morenci and Safford mines. The emissions
from the Bagdad mine were double those of the Sierrita mine.
Though these mines are in the same state, their relative emis-
sions are undoubtedly site-specific, so the emissions data from
one of these mines are not representative for the rest. Accord-
ingly, there is also a risk in using datasets that aggregate data
from a handful of mines and characterize the data as regionally
or globally representative. This approach is currently very
common in the LCA literature but is likely inadequate. In the
case of this U.S. dataset, even at a more localized level (e.g.,
state), one or two mines cannot represent the others.

Methodological considerations in using limited emissions
data

A key methodological question arises when considering the
data in Fig. 3. What should the spatial and temporal resolution
be for LCI data used in LCAs of copper mining? In our view, this
depends on the audience for the results. If the objective is to
carry out an LCA of an individual mine for corporate use in

(b)

Morenci
Safford

2022 2023
Year

Fig. 3 Locations of Bagdad, Morenci, Safford, and Sierrita copper mines (a) and TRI land emissions per metric ton of copper produced (b).
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reducing the environmental effects of hotspots, including in the
supply chain to the mine, generating annual results (e.g., use all
LCI data for 2025) can be ideal. Alternatively, if the audience is
the LCA community who need high quality LCI data for copper
mining to be used as inputs to a host of LCAs of deca-
rbonization, communications, or other technology, using an
LCI data time series to generate probability distribution func-
tions (PDF) for key parameters that reflects year-on-year fluc-
tuations is likely more useful. Having access to annual (or more
frequent) data allows the LCA community to develop these
functions and incorporate them into LCA with Monte Carlo
analysis or other means of incorporating the statistical char-
acteristics of the data set to assess uncertainty.

The data gathered in the compendium can be used to
develop probability distribution functions of emissions that can
serve as recent, U.S.-specific inputs to Monte Carlo-based LCAs
of mining in the U.S. For example, following the guidelines of
Feng et al. (2024)* in establishing probability distribution
functions based on relatively scarce data, an analyst could
create a triangular distribution function for each of the mines in
Fig. 3 which have 10 data points each. Feng et al.** recommend
this distribution type for data sets with between 5 and 20 values
and to use the minimum, maximum, and average as the
minimum, maximum, and most probable values that define the
distribution. If we wanted to create a probability distribution
function for all Freeport-McMoRan Arizona copper mines, we
could, per the Feng et al.** guidelines, use the 5th, 50th, and
95th percentiles from the data set for these values (Fig. 4).
Choosing a triangular PDF using data from all four mines will
capture the full spread of values from the mines, but if the
Bagdad mine were not included in generating the PDF, the
range of values in the function would be narrower and the LCA
results would exhibit lower emissions.

Analysts could choose a different distribution function
besides the triangle distribution based on characteristics of the
data and statistical tests. For example, the log-normal

8,500-17,000

4,700 - 22, 600

Probability Density (x104)

0 5,000 10,000 15,000 20,000
Released land emissions

(kg/metric ton copper)

25,000

Fig. 4 Triangular distributions for the lead compound emissions to
land per metric ton of copper for the Bagdad, Morenci, Safford, and
Sierrita copper mines and for all four mines together. The dashed lines
represent the range between the 5th and 95th percentiles.
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distribution is an additional PDF option. Log-normal distribu-
tions can be appropriate because emissions data are intrinsi-
cally positive and often highly skewed from large, but
uncommon, emissions releases.**?® The normal distribution is
an option if an analyst does not know if outliers will be higher or
lower than average. A normal distribution could, for example,
be established by setting the minimum or maximum value three
or four standard deviations away from the mean. However, it is
important to note that a normal distribution does not intrin-
sically include only positive values. Depending on the standard
deviation and mean, negative values can exist in the distribu-
tion. From an emissions viewpoint, this is illogical. As a final
example, when many data are present, goodness-of-fit tests can
be used to select a PDF. Wang et al.?” determined that a Weibull
distribution was the best fit for nitrous oxide (N,O) emissions
from corn farming in the ethanol supply chain after collecting
N,O conversion rates from 70 studies and applying goodness-of-
fit tests to multiple distribution function options. When
choosing a distribution, we urge analysts to consider how many
data points exist. If there are less than 20 values, we echo Feng
et al.'s recommendation of a triangular distribution.* If there
are more than 20 values, we urge analysts to carry out goodness-
of-fit tests to elect a distribution. Overall, data sets used to
generate PDFs should be sufficiently temporally and spatially
representative to address an LCA's goal and scope.

Given the drive to expand mining in the U.S. we sought to
determine if we could estimate future impacts of new mines by
investigating the correlations between production rates, total
emissions, and emissions impacts (see Section S2). Initially, we
found no correlation between production rate and emissions,
nor between production rate and impacts. Excluding outliers,
there are very weak positive correlations between these variables
(Table S2). The lack of correlation emphasizes the locality and
uniqueness of the impacts of each mine. There are hundreds of
proposed critical mineral mines in the U.S.;*® particularly
lithium, copper, rare earths, nickel, and zinc mines. It is very
unlikely that all mines will come into operation. Only about
45% of mineral discoveries convert to mines and begin
production.®**® Undoubtedly, any new mines will emit pollut-
ants, but the lack of correlation between production rate and
emissions of the mines in the compendium signifies that we
cannot predict the extent of these emissions and pollution.

Mines' effects on communities

Most active critical mineral mines are in the West. Eagle Mine is
the only active critical mineral mine east of the Mississippi
River. Extractive industries often situate themselves near low-
income and/or disadvantaged communities because these
areas offer the “path of least resistance”, which frequently
embodies less costly land and communities with limited power
in decision making processes.*»** This pattern arises in the
mines we have included in the compendium. 60% of the mines
are in disadvantaged community tracts, 5% are in partially
disadvantaged tracts, and 50% of mines located outside
disadvantaged tracts are still within eight miles of a disadvan-
taged tract. 100% of mines are within 29 miles of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a disadvantaged tract. Previous research has shown that some
mining effects, such as deforestation, can extend up to 31 miles
from a mine.* Communities near mines face a variety of envi-
ronmental and health impacts, but the impacts are often uni-
que to each community or area. For example, the communities
near the Freeport-McMoRan copper mines in southern Arizona
face elevated projections of wildfire and flood risk. Further,
most of the communities near these mines are among the
poorest in the nation in terms of income. 14 mines are within
communities where income levels are at or below the national
average. Proposed critical mines are scattered across the
contiguous US and Alaska, but are disproportionally concen-
trated near Indigenous Reservations and traditional lands. In
fact, the majority of critical mineral resources and reserves
(97% nickel, 89% copper, 79% lithium, and 68% cobalt) in the
US are located within 35 miles of Tribal Nations.***

Limitations

Our data compendium serves as an interactive aggregation of
critical mineral mining data in the U.S. However, it is important
to note that there are data limitations and gaps. For one, TRI
data are released annually, but NEI data are released every three
years. Our data compendium relied on 2023 TRI data, but on
2020 NEI data. The air emissions reflected from the 2020 NEI
may not be fully representative of 2023 emissions. Another
limitation lies within the TRACI database. Not all chemical
compounds emitted from mines had corresponding character-
ization factors in TRACI. For example, particulate matter has no
entries in TRACI, though it is known to affect ecosystems and
human health.*® Even if a chemical compound is included in
TRACI, it may not have characterization factors for EC, HHNC,
and HHC. For example, ammonia has a characterization factor
for acidification, but none for EC, HHNC, and HHC. When
these values were unavailable for ammonia or other chemical
compounds, we assumed characterization factors of zero. It
could be true that there is no impact of ammonia, or other
chemicals lacking characterization factors, on EC, HHNC, and
HHC, but this cannot be verified without additional toxicity
studies. With these gaps, our work is likely an underestimate of
the total impacts of mining emissions. For example, eight
mines reported ammonia releases in the 2023 TRI, ranging
from 270 to 7070 kg emitted into the air, but we assumed the
impacts of these emissions had no detrimental effects due to
lack of characterization factors. The compendium does not
include values for energy or water consumption which compa-
nies are not required to report. Undoubtedly, a full LCI for an
individual or representative set of mines would require these
data. Pollutant emissions, however, are an essential yet often
overlooked component of mining LCAs although communities
near mines likely place a high value on reducing pollutant
emissions which may even supersede energy consumption as
a concern. Moreover, as in Ecoinvent and GREET, energy and
water consumption can be estimated based on engineering
models whereas pollutant emissions are more dependent on
pollution control technology and management practices that
may be site-specific. NEI and TRI data capture these differences.
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Despite its limitations, the data compendium is a first-of-a-
kind, valuable tool for researchers and communities.
Researchers can leverage the data to explore additional trends
between mining communities, emissions, impacts, and envi-
ronmental justice. The data compendium can support local and
tribal communities by providing centralized data sources and
transparency about mining emissions.

Challenges in expanding the compendium beyond the U.S.

The data compendium currently only includes mines in the U.S.
that produce critical minerals in EV batteries, namely, copper,
lithium, and nickel. Expanding this data compendium to
a global scale could guide increased transparency and scrutiny
of the global critical mineral supply chain. However, under-
taking a global critical mineral data compendium will
undoubtedly be challenging. For one, there is no universal
standard that outlines how mining data should be reported,
what types of data should be included, and who reports these
data. Adding data from other countries will require extensive
investigation of data sources, understanding how these data are
structured and reported, and scrutiny of the data quality within
these sources. This process is lengthy and time-consuming.
However, advances in artificial intelligence, machine learning,
and large-language models could help expedite data collection.
These challenges, however, assume that the data exist. Maus
and Werner (2024)* report that over half of the world's mines
are undocumented. There are many reasons a mine may be
deemed undocumented. For one, artisanal and small-scale
mining (ASM) is common practice in many countries - such
as the Democratic Republic of Congo*® and Peru.* However,
ASM is often poorly regulated, or not regulated at all, which can
result in lax data collection and documentation.®® Another
reason could be illegal mining. Illegal mining is unregulated
and often conducted in areas with poor environmental and
labor protocols.* If the mines themselves are not documented,
their emissions and pollution are likely not measured either.
We note that sustainability reporting standards for the
mining industry do not fill the LCI data gap for mines around
the world. Two of the most relevant and popular standards are
Copper Mark and the Initiative for Responsible Mining Assur-
ance (IRMA). Copper Mark is an assurance framework to
promote responsible mining practices across copper, molyb-
denum, nickel, and zinc supply chains.” IRMA independently
assesses social and environmental performance at mine sites.”
Whereas Copper Mark is limited to four mineral types, IRMA
can be used by any mining company. Participation in Copper
Mark or IRMA is completely voluntary. Mines that do participate
in either program undergo an annual assessment. Environ-
mentally, these assessments consider GHG emissions, air and
water pollution, and water and waste management. For IRMA,
GHG emissions must be publicly available either from the
mine-site or at the corporate level. For Copper Mark, companies
must calculate and disclose average scope 1, 2, and 3 emissions
at the site-level. Pollution is an important consideration for
both programs. IRMA has criteria relating to air and water
quality. The chemical, biological, and physical conditions of
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surface water and groundwater and the changes to water
quantity must be monitored and reported annually. There are
no guidelines on monitoring frequency. IRMA tabulates water
concentration limits and criteria for different water end-use (e.g.
recreational, irrigation, etc.). For air quality, however, IRMA only
requires that a mine's air quality management plan and
compliance documentation is up-to-date and publicly available.
Compliance documentation may include air quality monitoring
data, but this is subject to environmental regulations of the
country or region of the mine. A mine seeking IRMA certifica-
tion can either use the European Union's air quality and rates
standards or those determined by the host country. Pollution
reporting for Copper Mark focuses more on risk assessment.
Mines are required to establish baseline data for different
pollutant emissions, such as those to air (particulate matter,
sulfur oxides, etc.), water (oil and machinery fluids, waste
runoff, etc.), soil and land (oil, fuel, and hazardous chemical
spills), light, noise, and visual. With these baseline data, mines
must publicly disclose risks and planned action to mitigate
these emissions. In general, for both IRMA and Copper Mark,
their environmental criteria do not require public reporting of
the emissions. Often, communities must request that these
data be released. Moreover, IRMA and Copper Mark do not
house data. Analysts must go through company or mine-specific
websites and dig through annual, financial, or other reported
documentation to find environmental performance data.

Emerging methods to support mining sustainability
standards and LCA

Emerging methods and technologies can capture real-time,
localized emissions and impact data that could automate
pollution data in support of mining sustainability standards
and LCI data collection, especially for new mines. Satellite
imagery processed with machine learning and artificial intelli-
gence (AI) algorithms, for example, can provide insights into
pollutant levels in the environment near mines. For example,
Rowley and Karakus® developed a model that can predict
nitrogen dioxide, ozone, and particulate matter (PM;,) atmo-
spheric concentrations from satellite imagery. PM;, emissions
can be a substantial burden on communities near mines. The
large, open-pit Morenci mine released nearly 3000 metric tons
of PM;, in 2020. This mine sits a mere 10 miles away from the
San Carlos Apache Indian Reservation. Nitrates can also be
problematic releases from mines. For example, the Continental
Mine in Montana and the Robinson Mine in Nevada emitted
over 128 and 69 metric tons of nitrate compounds into water
sources in 2023, respectively. Lioumbas et al. (2023)** offer
a means to quantify nitrogen concentrations in water. They
leveraged various models, such as algorithms and correlations
over Sentinel-2 Multispectral Imagery bands, to estimate chlo-
rophyll concentration in large bodies of water. These concen-
trations can arise from eutrophication driven by elevated
nitrogen (such as nitrates) and phosphorus levels. Their
method can also assess turbidity and hydrocarbon presence in
water, both which could occur because of mines releasing
pollutants. Satellite imagery can be collected at a higher
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frequency than reporting to governments or organizations like
IRMA which can support near-term evaluations of mine's
impacts that are not outdated. In addition, assessing historic
imagery can help establish baselines of environmental quality,
especially if imagery exists before a mine does.

Conclusion

LCA is touted as a tool to inform decision making in technology
and policy development. Yet, using LCA in decision making
requires the use of high-quality LCI data. Our development of
a data compendium for the environmental effects of mining for
copper, nickel, and lithium was motivated by our assessment of
existing, commonly-used data sets for the raw material extrac-
tion phase of EV batteries, which revealed relatively low quality
LCI data. These data were somewhat outdated and did not offer
geographically representative pollutant emissions. The data
compendium we have launched can fill this data gap. The data
we compiled illustrates that temporal and spatial factors can
strongly influence mines’ emissions to water, land, and air. It is
incumbent upon LCA practitioners to address these factors and
account for them to the extent possible. Other areas of LCA,
including those examining the effects of providing electricity for
EVs based on local grid characteristics,**® have undertaken very
detailed examination of temporal and spatial factors. The raw
material extraction phase should receive the same amount of
attention and care.

Importantly, compiling these data in an open-access
compendium can serve the needs of communities near mines.
Ecoinvent access can cost thousands of dollars per year. Other
large databases that host mineral production and operation
data, such as S&P Capital IQ Pro or Bloomberg Terminal, also
require costly subscriptions. These for-pay databases are
exclusive to those that can afford them, often shutting out the
general public and affected communities from understanding
mineral production, operation, and impacts that are reported in
these databases.

Open access to these data is essential for an informed public,
especially because disadvantaged communities often bear
disproportionate amounts of pollution from mining. Accessible
data can support communities in engaging in permitting and
other decision-making processes.

With the compendium's methodology and structure in place,
we will expand the compendium to include data for other
minerals mined in the U.S. and for other major mining coun-
tries including Chile (top producer of copper, second-leading
producer of lithium)* and Australia (top producer of
lithium)** that have public records.*”*® Due to extensive mining
in Chile and Australia, communities have voiced concerns
about pollution, water availability, and other environmental
impacts from critical mineral mining.** Plus, many mineral
mines and deposits in Chile and Australia reside on or near
traditional or Indigenous lands.®*** Analogous to the argument
for the U.S. data compendium, it is imperative to maintain up-
to-date and transparent databases of mineral production and
pollution to inform surrounding communities on the impacts
they may face. Additionally, we plan to update the data

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00188a

Open Access Article. Published on 22 December 2025. Downloaded on 1/15/2026 11:56:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

compendium as new mines begin production in the U.S. and
with newly released TRI and NEI data.

Beyond supporting communities and other stakeholders, the
availability of the compendium can ease the inclusion of
pollution data into industrial and national strategies to reduce
the environmental effects of the decarbonization technology
supply chain. One example of this type of strategy is the Euro-
pean Union's Battery Passport. Currently, this program requires
the reporting of a carbon footprint calculation for rechargeable
industrial batteries with a capacity greater than 2 kWh® starting
in February 2027.* The carbon footprint must be calculated and
verified by a third-party agency and must include the four life
cycle stages (raw material acquisition and pre-processing; main
product production; distribution; and end-of-life and recycling).
The use of company-specific data is mandatory for main
product production, which embodies the assembly of battery
cells and assembly of batteries with the battery cells and the
electric components.** Company-specific data are not required
for the other phases including raw material extraction despite
the influence this stage can have on the overall sustainability of
batteries. The existence of this compendium could help regu-
latory instruments like Battery Passport more easily include the
raw material stage.

A second national strategy example lies in the Inflation
Reduction Act (IRA),* passed in 2022. The status of this policy is
in flux at the time of writing but overall, the intention of battery
supply chain provisions in the IRA as passed helped motivate
a domestic U.S. minerals supply chain by offering tax credits for
electric vehicles with batteries that met mineral content criteria.
Specifically, obtaining the tax credit required 80% of the
market-value of minerals in the EV's battery to have been
extracted or processed in the U.S. or with U.S. free trade part-
ners or recycled in North America by 2027.°° The IRA did not
include any sustainability criteria, but supply chain sustain-
ability data availability could support the expansion of this type
of policy to quantitatively address supply chain environmental
effects.

Finally, industry may opt to pursue more quantitative
sustainability standards than currently offered by Copper Mark
or IRMA and follow a path that the natural gas industry is
pioneering. Specifically, this industry is building the structure
to differentiate the market value of natural gas produced with
lower life-cycle GHG emissions.®” It is possible to envision
a future in which minerals that are produced with low pollutant
releases, low water consumption, and reduced energy
consumption and GHG emissions compared to competitor
minerals could secure a higher market value. This type of
differentiation, however, requires the types of data the
compendium gathers and would be best served by continued
expansion of the compendium and its supporting data.
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DRC  Democratic Republic of Congo

EC Ecotoxicity
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EPA Environmental Protection Agency

EV Electric vehicle

GHG  Greenhouse gas

GREET Greenhouse Gases, Regulated Emissions, and Energy
Use in Technologies

GSD2  Squared geometric standard deviation

HAP Hazardous air pollutants

HHC  Human health cancer

HHNC Human health non-cancer

IC Impact category

IRA Inflation Reduction Act

IRMA Initiative for Responsible Mining Assurance

LCA Life cycle assessment

LCI Life cycle inventory

MSHA Mine Health and Safety Administration

N,O Nitrous oxide

NEI National Emissions Inventory

PDF Probability distribution functions

PM10 Particulate matter, 10 microns or less in diameter

RoW  Rest of World

TRACI Tool for Reduction and Assessment of Chemicals and
Other Environmental Impacts

TRI Toxic Releases Inventory

U.S. United States

USGS  United States Geological Survey

Author contributions

Jenna N. Trost: data curation, formal analysis, methodology,
project administration, software, visualization, writing. Daniel
Zitomer: data curation, formal analysis, methodology, software,
visualization, resources. Natalia Gutiérrez Rodriguez: data
curation, methodology, resources. Jennifer B. Dunn: conceptu-
alization, funding acquisition, methodology,
writing.

supervision,

Conflicts of interest

There are no conflicts to declare.

Data availability

All data used in this study are available on GitHub at https://
github.com/jenmbdunn/Critical_Mineral_Mines_Database.
This study used publicly available data from the Mine Data
Retrieval System at https://www.msha.gov/data-and-reports/
mine-data-retrieval-system, National Emissions Inventory at
https://www.epa.gov/air-emissions-inventories/2020-national-
emissions-inventory-nei-data, the Tool for Reduction and
Assessment of Chemicals and Other Environmental Impacts
at https://www.epa.gov/chemical-research/tool-reduction-and-
assessment-chemicals-and-other-environmental-impacts-traci,
and from the Toxic Releases Inventory at https://www.epa.gov/
toxics-release-inventory-tri-program/tri-toolbox.

Environ. Sci.: Adv.


https://github.com/jenmbdunn/Critical_Mineral_Mines_Database
https://github.com/jenmbdunn/Critical_Mineral_Mines_Database
https://www.msha.gov/data-and-reports/mine-data-retrieval-system
https://www.msha.gov/data-and-reports/mine-data-retrieval-system
https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-data
https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
https://www.epa.gov/toxics-release-inventory-tri-program/tri-toolbox
https://www.epa.gov/toxics-release-inventory-tri-program/tri-toolbox
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00188a

Open Access Article. Published on 22 December 2025. Downloaded on 1/15/2026 11:56:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Advances

Supplementary information (SI): information on underlying
assumptions, statistical correlations, and example calculations.
See DOI: https://doi.org/10.1039/d5va00188a.
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