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ey drivers of Bitcoin's emissions

Gamze Alkan *a and Halil Özekicioğlu b

This study examines the environmental impact of blockchain technology operating under the Proof-of-

Work (PoW) algorithm, with a focus on Bitcoin's (BTC) carbon footprint. Utilizing a comprehensive

dataset comprising 2895 daily observations from 2014 to 2021, we analyze key mining-related

variables—miner efficiency, miner revenues, total BTC mined, mining difficulty, and hash rate—through

the application of a Bayesian Vector Autoregression (BVAR) model to evaluate their effects on CO2

emissions over time. The primary objective is to identify the main determinants influencing BTC's carbon

footprint within the current mining landscape. Our results indicate that BTC CO2 emissions and mining

difficulty are the most significant factors affecting carbon emissions. As mining difficulty increases—

typically due to the entry of more miners and the deployment of more powerful hardware—profit

margins decrease. High-cost, energy-intensive rigs may temporarily cease operations, leading to

a reduction in output and a shift towards more efficient equipment. These findings reinforce and expand

upon previous research by elucidating both the causal and time-varying dynamics of mining in relation

to environmental outcomes. The results underscore the necessity for policies and industry practices that

promote the adoption of more energy-efficient mining hardware and encourage the use of renewable

energy sources in cryptocurrency mining. Supporting technological innovation and sustainable energy

integration is essential for mitigating the environmental footprint associated with PoW-based blockchain

systems such as BTC.
Environmental signicance

BTC mining, operating under the PoW algorithm, signicantly contributes to the increasing global CO2 emissions due to its substantial energy demands. This
study offers a comprehensive quantitative assessment of the primary factors inuencing BTC's carbon footprint, particularly focusing on mining difficulty and
energy consumption. Utilizing a Bayesian VAR model applied to an extensive dataset, the research identies the correlation between rising computational
demand and increased reliance on fossil fuel-based energy sources. The ndings underscore the urgent need for a transition to more efficient mining tech-
nologies and renewable energy alternatives. As BTC continues to gain economic prominence, addressing its environmental impact is essential to align with
global climate objectives and sustainable development pathways.
Introduction

Following the introduction of BTC, blockchain technology has
been adopted across various domains, including international
trade nancing, supply chain and logistics, and energy.
However, it is essential to consider consensus mechanisms to
ensure the security and integrity of the blockchain across these
platforms. It is well-documented that platforms utilizing the
PoW consensus mechanism exhibit signicant energy
consumption.1,2 The PoW mechanism is fundamentally
dependent on mining activities, which entail substantial energy
expenditure in the generation of BTC. Consequently, the high
energy consumption associated with BTC raises critical envi-
ronmental concerns due to its carbon footprint. Previous
studies have underscored the extent of energy consumption and
ningen, Groningen, The Netherlands

istics, Akdeniz University, Antalya, Turkey

the Royal Society of Chemistry
the associated carbon footprint issues related to BTC. This
excessive energy usage and carbon footprint, particularly
stemming from fossil fuel reliance in generation, contribute to
pressing global challenges such as the climate crisis and the
sustainability of energy sources. In light of these concerns,
this study seeks to address the following research question:
What are the key determinants of BTC's carbon footprint in
PoW-based blockchain technologies, and how can the envi-
ronmental impacts arising from the PoW algorithm be
assessed in the context of existing literature? To guide the
empirical analysis and provide a testable framework for
answering this research question, we propose the following
hypotheses:

H1: it is expected that increases in mining difficulty reduce
miners' prot margins and thereby inuence energy
consumption, which may affect overall CO2 emissions.

H2: a higher hash rate is expected to increase CO2 emissions
due to the greater computational power required.
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H3: improvements in miner efficiency (generating more
output per unit of energy) are expected to decrease CO2

emissions.
H4: increases in miner revenues are expected to encourage

greater mining activity, leading to higher CO2 emissions.
H5: higher levels of BTC mined and greater activity intensity

are expected to raise energy demand and, in turn, CO2

emissions.

BTC and PoW algorithm

The rst sector to adopt blockchain technology was BTC.
Following the introduction of BTC, blockchain technology has
been applied across various domains, including international
trade nancing, supply chain and logistics, and energy. In these
areas, consensusmechanisms play a crucial role in ensuring the
security and integrity of the blockchain. Platforms that employ
the PoW consensus mechanism are noted for their high energy
consumption. This mechanism relies on mining activities, and
the signicant energy demands associated with mining
contribute to an increase in carbon footprint.

The PoW consensus algorithm is a prominent and widely
recognized mechanism, particularly in conjunction with BTC.
For a transaction to be considered valid within the BTC block-
chain, a supermajority consensus must be achieved through
votes cast by the system's participants, facilitated by this
mechanism. PoW provides a framework that rewards individ-
uals, or miners, who solve complex cryptographic puzzles,
thereby verifying transactions and creating new blocks. Two
critical factors inuence this system: processing power and the
number of miners. The algorithm is theoretically more secure
as both processing power and the number of miners increase.
PoW is specically designed to mitigate denial-of-service
attacks, spam, and Sybil attacks.3 The underlying hash algo-
rithms of PoW cryptocurrencies are essential in determining the
efficiency of mining operations. However, the current PoW
mechanism poses signicant environmental sustainability
challenges due to its substantial energy consumption. While
alternative consensus mechanisms, such as Proof of Stake
(PoS), offer reduced environmental impacts, PoW continues to
Gamze Alkan (g.alkan@rug.nl) completed her PhD in International
Trade and Logistics at Akdeniz University in August 2023. In 2024,
she was accepted as a postdoctoral researcher at the University of
Groningen with a TUBITAK (The Scientic and Technological
Research Council of Turkey) scholarship. Her research focuses on
sustainability, environmental issues and blockchain technology.
She has published papers in these areas.

Halil Özekicioğlu (hozekicioglu@akdeniz.edu.tr) is an Associate
Professor at Akdeniz University. His research focuses on energy,
sustainability and international trade. He completed his PhD on
“Energy and Economy Relationship in the Framework of Hydrogen
Alternative Implementation Iceland and Turkey Implementation”
and his academic contributions underline his expertise in these
areas.
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be widely utilized and is associated with considerably higher
carbon emissions than PoS,4 making its environmental impli-
cations a critical concern.

The environmental impacts of BTC have sparked discussions
regarding blockchain mining technologies, particularly those
employing PoW consensus. To identify the factors contributing
to BTC's carbon dioxide (CO2) emissions, this study examined
the effects of predetermined variables associated with BTC
mining on its carbon footprint. Accordingly, we evaluated BTC
mining and its environmental implications. We analyzed
selected variables related to BTC mining, comprising 2895 daily
frequency data points collected between January 1, 2014, and
December 11, 2021, using a Bayesian Vector Autoregression
(VAR) model.

Based on a cryptographic framework, BTC can be under-
stood as a system operating within blockchain technology. In
essence, it is a decentralized cryptocurrency designed for effi-
cient, low-cost, and secure cash transfer transactions. Key
features of the BTC system are outlined below:5

� Facilitates decentralized transactions, eliminating the
need for a trusted third party.

� Does not permit reversible or alterable transactions.
� Signicantly lowers transaction fees due to inherent cost

advantages.
� Effectively prevents double-spending.
� Ensures user anonymity.
BTC guarantees the security of transactions through block-

chain technology. Furthermore, it serves as a payment tool that
minimizes transaction costs, facilitates swi payments, and
ensures condentiality in the international market.6
BTC mining

BTC is a peer-to-peer (P2P) digital exchange platform that
facilitates decentralized transactions through a distributed
system.5 BTCminers, responsible for verifying the processing of
BTC transfers to the global ledger on the blockchain, are
rewarded with cryptocurrency.7

BTC is generated not from a centralized source, but through
the processing power of volunteer computers within a decen-
tralized global network. Its open-source nature enables anyone
who joins the BTC network to participate in the generation of
Bitcoin. BTC mining occurs when miners solve complex
encrypted mathematical problems, with the miner who
successfully solves the problem receiving a reward of BTC.8

There are two primary sources of mining rewards for BTC. The
rst is the transaction fee component. The total transaction fee
is always greater than the fee transferred to the recipient's
account, and the difference is awarded to miners as a transfer
reward fee. On average, miners on the BTC network discover
a new solution approximately every 10 minutes, which veries
the validity of the preceding 10 minutes' transactions, resulting
in rewards of new BTC. Additionally, each new block includes
an inherent coin reward—brand new BTC—until the total
supply reaches 21 million coins. This reward is halved every 210
000 blocks,9 meaning that the total number of BTC is pro-
grammed to asymptotically approach a maximum of 21 000
© 2026 The Author(s). Published by the Royal Society of Chemistry
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000.10 The halving process will continue until the nal block is
mined. Given that the average time to mine and save each block
is 10 minutes, it is estimated that the last block will be mined by
the year 2140.

The following outlines key information essential to mining:
PoW: in the BTC system, a new block is generated approxi-

mately every 10 minutes through the calculation of its difficulty
value using the PoW protocol and the SHA-256 encryption
algorithm. The creation of these blocks necessitates that
computers perform complex mathematical calculations and
execute transfer operations associated with the proposed
blocks. Consequently, individuals who successfully validate
these transactions are rewarded with BTC and receive a transfer
fee for each block.5 BTC employs the PoW consensus mecha-
nism to mitigate the risk of double spending and to prevent
manipulation within the blockchain.11

Hash rate: the hash rate, dened as the total computational
power dedicated to mining, serves as a critical indicator of the
signicance of BTC mining. Specically, a rate of 1 terahash per
second (1 Th s−1) equates to 1 trillion calculations per second.12

The escalating difficulty of the BTC algorithm necessitates
greater mining power, which in turn contributes to rising
operational costs.51 Fig. 1 illustrates the progression of the hash
rate from 2019 to 2022. Consequently, the upward trend in the
hash rate over these years suggests that the energy requirements
for BTC mining are likely to continue increasing.

Difficulty: difficulty is dened as the effort required vali-
dating a block within the blockchain. More specically, it
represents the probability of solving the hash function.12 Addi-
tionally, difficulty serves as a measure of the time required to
compute the hash value of a specic node in relation to the
target value. However, the rapid inux of new miners into the
system is signicantly increasing the difficulty level across the
network.13 Currently, an average of one block is mined
approximately every 10 minutes, based on the existing difficulty
value.

Mining return: this is the value derived frommultiplying the
daily amount of BTCmined, inclusive of transaction fees, by the
current market value.14 Factors inuencing mining returns
primarily include the price of BTC, halving events, elevated
transaction fees, and mining difficulty.15
Fig. 1 Hash rates between 2019 and 2022. *Source: Nasdaq Hash
(2023).

© 2026 The Author(s). Published by the Royal Society of Chemistry
Efficiency is dened as the hash power—the total opera-
tional speed of the mining rigs used to generate BTC—divided
by the energy consumed.14 Sustainable mining operations
depend on affordable energy sources and efficient practices.15

As the number of processors contributing to the network
continues to grow, computing power is expanding signicantly.
Initially, Bitcoin mining was conducted using CPU mining,
which was protable in the early years when rewards could
reach 50 BTC. However, the reward has since decreased to 6.25
BTC, and CPU mining has become inefficient, as the energy
consumed in relation to the BTC earned is now greater.
Consequently, GPU mining utilizing advanced graphics cards
has emerged as a more advantageous and efficient method.16,17

Nonetheless, the continually increasing difficulty level necessi-
tates the use of specialized devices, such as next-generation
ASIC miners designed specically for mining, indicating that
technology will need to evolve consistently to enhance the effi-
ciency and sustainability of mining operations.17
BTC and environment

BTC should be regarded as more than merely a digital currency.
It is produced through blockchain technology, which entails
signicant electricity consumption, cooling expenses, and
a complex algorithm.18 Nakamoto (2008)5 highlighted the
ongoing improvements in mining hardware efficiency as
a means to mitigate high electricity consumption. However,
since 2013, the costs associated with energy, maintenance of
cooling facilities and infrastructure, as well as the acquisition
and upgrading of mining hardware, have continued to rise due
to increasing computational challenges and the necessity for
specialized mining equipment.4

Anticipating global actions against climate crises, the Paris
Agreement highlights that the existing BTC system poses
a signicant threat to the implementation of international
agreements.19 Despite its potential as a transformative tech-
nology across various sectors, the excessive energy consumption
and carbon footprint associated with cryptocurrencies appear to
exacerbate global warming. It is estimated that BTC alone could
contribute to a 2 °C increase in global temperatures over the
next 30 years.20 Additionally, numerous studies examining the
impact of BTC's CO2 emissions on climate change have
emerged in recent years, identifying several factors that mediate
BTC's environmental effects. Stoll et al. (2019)11 calculated that
BTC's annual electricity consumption was 45.8 TWh, with
annual CO2 emissions ranging between 22.0 and 22.9 million
tons as of November 2018. These estimates suggest that emis-
sions from BTC are roughly equivalent to those generated by
countries such as Jordan, Sri Lanka, and even Canada. De Vries
(2019)16 asserted that BTC's energy consumption in 2018
resulted in a carbon footprint of between 19.0 and 29.6 million
tons of CO2 (475 g CO2 per kWh). He further assessed that the
average carbon footprint per transaction varied between 233.4
and 363.5 kg CO2. In comparison, the average carbon footprint
for a VISA transaction is approximately 0.4 g of CO2, while
a Google search generates a carbon footprint of about 0.8 g of
CO2.
Environ. Sci.: Adv., 2026, 5, 239–256 | 241
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Fig. 2 BTC electricity consumption between 2010 and 2021.

Fig. 3 BTC CO2 emissions between 2010 and 2021.
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Sarkodie et al. (2022)25 observed that while an increase in
BTC trade volume could elevate both BTC's carbon footprint
and energy consumption by 24% in the long term, a dynamic
shock in trade volume could contribute to these variables by
46.54%. In a separate study, Kohli et al. (2022)23 stated that BTC
consumes as much energy as Sweden. Furthermore, it was
revealed that BTC's CO2 emissions nearly align with those of
Greece. Jungblut (2019)48 concluded that cryptocurrencies are
signicant contributors to the global carbon footprint, noting
that the energy consumed by a single BTC account is approxi-
mately equivalent to the energy consumption of a refrigerator
over eight months. Gallersdörfer et al. (2020)28 assessed the
energy consumption of cryptocurrencies and BTC based on the
algorithms specied in their study, current hash rates, and
mining devices. They concluded that BTC accounts for two-
thirds of the total energy consumption. As illustrated in Fig. 2
Table 1 Regional distribution of PoW energy sourcesa

Energy sources Asia-Pacic Europe

Renewable energy sources
Hydroelectric 65% 60%
Wind 23% 7%
Solar 12% 13%
Jeotermal 8% 0%
Nuclear 12% 7%

Fossil fuels
Natural gas 38% 33%
Coal 65% 2%
Petrol 12% 7%

a Source: Blandin et al., 2020.21

242 | Environ. Sci.: Adv., 2026, 5, 239–256
and 3, both electricity consumption and carbon footprint data
for BTC have shown an upward trend over the years. Addition-
ally, Das and Dutta (2019)40 argue that BTC mining is not
sustainable without the implementation of efficient mining
practices and access to inexpensive electricity sources.

The reliance on fossil fuels for BTC mining, combined with
signicant energy consumption, raises concerns about the
sustainability of this practice. A study4 conducted by Cambridge
University examined the environmental impacts of PoW mining
to assess the extent of renewable energy utilization in mining
operations and the proportion of total energy consumed from
these sources. The 2020 report indicated that 76% of miners
utilize renewable energy sources; however, only 39% of the
energy consumed in mining activities is derived from renew-
ables. The report highlighted that approximately 29% of BTC
mining is powered by renewable energy sources. Table 1 illus-
trates the variety of energy sources employed in PoW mining
across different geographical regions. Notably, hydroelectric
energy is the predominant source, accounting for 60% of usage,
while the adoption of low-cost renewable energy sources, such as
solar and wind, remains limited. Nonetheless, as reported by the
BTC Mining Council,47 58.4% of BTC mining activities utilized
renewable energy sources in 2022, marking a 59% increase in the
adoption of sustainable energy compared to the previous year.
These ndings suggest that the sector is experiencing a positive
shi towards greater sustainability. Furthermore, the 59%
increase in the utilization of sustainable energy in BTC mining
compared to the prior year indicates progress in mitigating the
environmental impact of mining activities.

The transition from conventional, non-renewable energy
sources to sustainable and environmentally friendly alterna-
tives in mining operations will result in reduced fossil fuel
consumption and a subsequent decrease in the carbon foot-
print of BTC mining. These advancements can be viewed as
a positive progression towards fullling the environmental
responsibilities associated with BTC mining.
Literature review

The literature review analyzed studies on BTC's energy
consumption and carbon footprint, as detailed in Table 2.
Latin America and the Caribbean North America

67% 61%
0% 22%

17% 17%
0% 6%
0% 22%

17% 44%
0% 28%

33% 22%

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Previous research on BTC energy consumption and carbon footprint

Author(s), year Research objective(s) Findings/conclusions

Bajra et al. (2024)4 This study investigates the environmental
impact of cryptocurrency blockchains—
focusing on Bitcoin (PoW) and Ethereum
(PoS)—by examining how consensus
mechanisms relate to carbon footprint; it also
explores post-China relocation patterns, halving
dynamics, and policy implications for future
sustainability

The analysis nds a strong positive link between
Proof-of-Work (PoW) adoption and carbon
emissions, while Proof-of-Stake (PoS) is
associated with much lower emissions per
transaction
The relocation of mining from China to the U.S./
Europe is not sufficient on its own to reduce
emissions; real reductions require a transition
to veriable low-carbon electricity. It also notes
that halving events are expected to increase
network difficulty and energy needs,
underscoring the need for responsible
innovation, transparent report
Research method: instrumental variables
regression

Stoll et al. (2023)22 This study provides empirical evidence on the
extent and energy sources of Bitcoin mining in
the U.S., measures the share that had shied to
the U.S. and Canada by end-2022, and assesses
miners' carbon intensity and annual emissions
using disclosures from publicly listed rms

This study shows that aer 2021, a substantial
share of Bitcoin mining shied to North
America—especially Texas—turning it into
a new hub. Grid data and simultaneous changes
in network activity conrm this relocation.
However, moving operations to the U.S./Canada
alone does not reduce emissions, because
miners typically draw electricity with a carbon
intensity close to the grid average. To mitigate
the climate impact, the sector needs a veried
transition to low-carbon electricity (e.g.,
renewables) alongside clear, standardized
reporting

Kohli et al. (2022)23 This study compared the energy consumption
and carbon footprints of cryptocurrencies
between countries and with centralized
transaction methods (e.g., Visa). Moreover, it
attempted to identify cryptocurrency-related
problems and identify solutions to help reduce
the energy consumption and carbon footprints
of these currencies

The results revealed that BTC and Ethereum
consume as much energy as Sweden and
Romania. Additionally, the CO2 emissions of
BTC and Ethereum almost overlap with those of
Greece and Tunisia, respectively. In addition,
Visa was found to bemuchmore energy efficient
and has a lower carbon footprint per transaction
compared to the cryptocurrencies discussed in
this review. The research concluded that wind
and solar energy may be the best alternative
energy sources for blockchain networks. Using
such renewable energy sources would make the
excessive energy consumption of PoW
cryptocurrencies more environmentally
friendly. The researchers also recommended
that countries with high cryptocurrency mining
invest in renewable energy
Research method: conceptual

Sarkodie and Owusu (2022)24 The authors collected 4158 daily frequency data
on the annual carbon footprint to assist
prospective researchers in varying disciplines

The paper offers 4158 pieces of daily frequency
data generated on BTC's annual carbon
footprint between July 7, 2010 and December 4,
2021. The data consisted of annual carbon
footprints of 12 variables (e.g., coal, oil, and gas)
and were collected from three sources. BTC's
carbon footprint data are presented in kg/CO2

based on emission factors for electricity
generation from the IEA World Energy Outlook.
The data are believed to contribute to
multidisciplinary research on cryptocurrency in
the elds of, for example, environment, energy,
and economics

© 2026 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2026, 5, 239–256 | 243
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Table 2 (Contd. )

Author(s), year Research objective(s) Findings/conclusions

Sarkodie et al. (2022)25 This research adopted various empirical
techniques to examine the relationships
between nancial indicators and BTC's energy
consumption and carbon footprint

The ndings showed that while an increase in
BTC trade volume could increase both BTC's
carbon footprint and energy consumption by
24% in the long run, a dynamic shock in trade
volume could contribute to these variables by
46.54%. The authors suggested a signicant
relationship between the nancial indicators
addressed in the study (e.g., market value,
market price, and trading volume) and BTC's
energy consumption and carbon footprint
Research method: dynamic autoregressive
distributed lag (ARDL) simulations and general-
to-specic VAR estimation

Yılmaz & Kaplan (2022)26 These scholars scrutinized the multifaceted
effects of cryptocurrency mining operations on
environmental sustainability, global warming,
and climate change

The ndings demonstrated that the alarming
amounts of energy consumed by cryptocurrency
mining and the CO2 emissions and resulting
electronic waste have signicant adverse
environmental effects (e.g., global warming,
climate change, and air pollution) and that both
cryptocurrency markets and environmental
sustainability may be ruined unless these effects
are attenuated. To reduce such effects and boost
the efficiency of the hardware designed for
crypto mining, relevant parties should take
innovative steps to introduce new legal
regulations, utilize different proof protocols,
and encourage the use of renewable energy
sources in mining
Research method: conceptual

Koch (2021)27 A critical requirement for sustainability is not to
strain natural resources to a great extent for the
sake of blockchain technology but to maintain
ecological balance. It is also claimed that
blockchain technology has led to increased CO2

emissions and, therefore, environmental
problems. In this study, the authors addressed
the ecological effects of blockchain technology
and pinpointed how it can be evolved to help the
environment and sustainable development with
supplementary measures

The energy required to perform blockchain
transactions from coal and thermal power
plants results in increased CO2 emissions,
contributing to global warming, air pollution,
and even mortality. Considering the measures
against global warming and climate change
specied in the Paris Agreement, this study
proposes the impact of blockchain technology
on recycling, energy functionality,
environmental agreements, collaborations with
non-prot organizations, CO2 emission tax, and
changing incentive mechanisms
Research method: conceptual

Polemis et al. (2021)14 This research aimed to reveal the driving forces
behind BTC's carbon footprint

The ndings conrm a causal relationship
between BTC use and CO2 emissions in terms of
increased energy load. The researchers also
concluded a negative signicant correlation
between BTC miner revenues and CO2

emissions. Overall, this study recommends that
a strategy focusing on the use of renewable
energy sources as well as energy-efficient mining
hardware would reduce BTC's carbon footprint
Research method: Bayesian cointegration
analysis

Gallersdörfer et al. (2020)28 This study investigated the energy consumption
of 19 mineable cryptocurrencies as well as BTC

Based on the algorithms set used in the study,
current hash rates, and suitable mining devices,
the authors concluded that while BTC accounts
for 2/3, the remaining cryptocurrencies
addressed represent 1/3 of the total energy
consumption
Research method: conceptual

244 | Environ. Sci.: Adv., 2026, 5, 239–256 © 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 (Contd. )

Author(s), year Research objective(s) Findings/conclusions

Köhler & Pizzol (2019)29 This study aimed to measure the environmental
impacts of mining BTC, the most widely known
blockchain-based cryptocurrency, and
contribute to debates on the excessive energy
consumption and carbon footprint that
blockchain technology is thought to create

Given the methods to calculate carbon
footprint:
� Stoll et al.11 calculated carbon footprint by
multiplying average emission factors in each
country by their electricity consumption
� Digiconomist asserted that 70% of miners are
located in China, and about 30% are powered by
renewable energy with a zero-carbon footprint.
It reached this conclusion by multiplying the
average emission factor in China by 0.7
� McCook identied emission factors using
different global and specic energy sources to
calculate the carbon footprint
Research method: life cycle analysis and
comparison of previous research

Stoll et al. (2019)11 This study offered empirical data on BTC's
carbon footprint. The results are thought to help
policymakers set relevant rules for the
reasonable adoption of blockchain technology

The verication process of BTC is known to
require large amounts of electricity
consumption. The analysis showed that BTC's
annual electricity consumption was 45.8 TWh
and that its annual CO2 emissions varied
between 22.0–22.9 MT CO2 as of November
2018. In this sense, these estimated gures
imply that BTC-led emissions are almost
equivalent to the amount generated in Jordan,
Sri Lanka, and even Canada
Research method: BTC's carbon footprint was
calculated by multiplying the average emission
factors in each country by their electricity
consumption
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These studies evaluated the environmental impacts of crypto-
currencies, addressing signicant issues such as global warm-
ing, climate change, and air pollution. The research
underscores the necessity for innovative solutions to mitigate
these impacts.

There are two signicant gaps in the existing literature.
Firstly, while the majority of studies focus on quantifying the
electricity consumption associated with BTC mining, they oen
overlook the examination of causal relationships and time-
varying effects. Secondly, there are relatively few studies that
concurrently address the primary determinants of BTC's carbon
footprint—such as mining difficulty, hash rate, and miner
revenue—within a multivariate framework. In this study, we
utilize a comprehensive time-series dataset comprising 2895
days from 2014 to 2021 and employ a Bayesian VAR model to
analyze not only the contemporaneous effects of individual
variables but also the inuence of their past and present values
on each other and on carbon emissions over time.
Data and methodology

In this quantitative research, we incorporated secondary data
obtained from the sources outlined in Table 4. We identied the
following variables to analyze the driving forces behind BTC's
CO2 emissions: miner efficiency (eff), miner revenues (rev), the
total number of Bitcoinmined daily in circulation (transactions;
tran), difficulty as a measure of the effort required to verify
© 2026 The Author(s). Published by the Royal Society of Chemistry
a block in blockchain technology (difficulty), and the estimated
computational power per second utilized in mining within the
Bitcoin network (hash rate; Table 3).
Model selection

We utilized a Bayesian VAR (BVAR) model to examine the factors
inuencing CO2 emissions from BTC mining. BVAR models
facilitate exible modeling of dynamic relationships among
variables and help alleviate issues related to over-
parameterization, particularly when dealing with limited data-
sets. Model selection was conducted using the Schwarz criterion,
a widely recognized method known for its effectiveness with
larger samples. Additional technical details regarding prior
selection and estimation procedures can be found in Appendix A.
Bayesian VAR model and methodology

VAR models were popularized by Sims (1980)52 and are now
extensively utilized for multivariate time series analysis30 and
forecasting studies31 in macroeconomics, nance, and other
pertinent elds.32

In classical statistics, unknown parameters are treated as
constant values. In contrast, Bayesian statistics regard these
parameters as random variables, each characterized by its own
distribution. The posterior distribution of the parameters is
derived using this prior distribution alongside sample
information.33
Environ. Sci.: Adv., 2026, 5, 239–256 | 245
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Table 3 Variable descriptions

Variables Description Formula Source

Dependent
variable

CO2 (BTC CO2 emissions) Estimated CO2 emissions for
BTC mining in kg CO2eq.
per kWh per day: electrical
load (ELE) × average
emission factor (AVEF)

CO2 = ELE × AVEF Stoll et al. (2019);11 Polemis
et al. (2021)14

Energy consumption (EC)
[kWh] × coal/gas/oil CO2

emissions (EF) [kg CO2 per
kWh]

CF = EC × EF Stoll et al. (2019);11 Sarkodie
and Owusu (2022)24

Independent
variables

Eff (miner efficiency) Calculated by the ratio of
hash generated per second
to electricity consumption

EFF = HASH/ELE Li et al. (2019);49 Polemis
et al. (2021)14

(Hash: total operating speed
of mining devices used to
generate BTC)

Efficiency/Watt

Rev (miner revenues) Daily miner revenue in USD
and equal to the
multiplication of (the
number of BTC mined per
day + transaction fees) by the
market price

REV = (TRAN + FEES)
× RET

Stoll et al. (2019);11 Polemis
et al. (2021)14

Tran (transactions) The total number of BTC
mined daily in circulation

Stoll et al. (2019);11 Polemis
et al. (2021)14

Hash rate (computational
power per second used when
mining)

Estimated computational
power per second used when
mining in the BTC network
(trillions of hashes per
second)

Expert Opinion

Difficulty The measure of the effort
exerted to verify a block in
blockchain technology. Its
main objective is to
maintain the 10-minute
mining interval between two
blocks

Expert Opinion
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The prior distribution, likelihood function, and posterior
distribution are fundamental components of Bayesian statistics
and econometrics. The prior distribution is informed by rele-
vant parameter information, whereas the likelihood function is
derived from sample data. By applying Bayesian theory, one can
derive the posterior distribution of the parameters by inte-
grating the prior distribution with the sample information.34

The detailed mathematical derivations of the BVAR model
are provided in Appendix D.
Table 4 Data sources

Variables

Dependent variable CO2 (BTC CO2 emissions)
Independent variables Eff (miner efficiency)

Rev (miner revenues)
Tran (transactions)
Hash rate
Difficulty

246 | Environ. Sci.: Adv., 2026, 5, 239–256
Unit root test

The primary requirement for time series data is that the series
must exhibit stationarity. Specically, stationarity implies that
the means and variances of the variables remain constant over
time. However, many time series are oen identied as non-
stationary; therefore, it is essential to conduct tests to assess
the stationarity of the data.7 Stationarity in time series can be
evaluated using unit root tests.

In the relevant literature, the Dickey–Fuller (DF) test for unit
roots is oen the most widely utilized method for assessing
Source

Sarkodie and Owusu (2022)24

EFF: HASH/ELEELE: Sarkodie and Owusu (2022)24

HASH: Nasdaq Hash (2023)53

Nasdaq Rev (2023)54

Nasdaq Tran (2023)55

Nasdaq Hash (2023)53

Nasdaq Difficulty (2023)56

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Distribution of variables with logarithmic transformations after
taking first differences.

Table 5 ADF test results

Critical values of test statistics
(tau)

Test statistics1pct 5pct 10pct

CO2
a −3.96 −3.41 −3.12 −23.564

EFFa −3.96 −3.41 −3.12 −22.123
DIFFICULTYa −3.96 −3.41 −3.12 −12.686
HASH RATEa −3.96 −3.41 −3.12 −28.745
REVa −3.96 −3.41 −3.12 −37.338
TRANa −3.96 −3.41 −3.12 −28.744

KPSS test statistics

Level p-Value Trend p-Value

CO2
b 0.0057 −>0.1 0.0057 −>0.1

EFFb 0.0277 −>0.1 0.0048 −>0.1
DIFFICULTYb 0.011 >0.1 0.0092 >0.1
HASH RATEb 0.008 >0.1 0.004 >0.1
REVb 0.014 >0.1 0.0148 >0.1
TRANb 0.039 >0.1 0.0131 >0.1
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stationarity. As previously noted, the condition of stationarity is
characterized by the constancy of the mean and variance of
a time series over time.50 However, it is important to recognize
that the DF test may be insufficient in certain circumstances.
For instance, in the presence of autocorrelation in the error
terms, the DF test may not provide an accurate assessment in
the context of Vector Autoregressive (VAR) models.44 Conversely,
this issue can be addressed by incorporating lagged values. To
this end, the Augmented Dickey–Fuller (ADF) test was devel-
oped, which includes the lagged values of the dependent vari-
able as independent variables within the DF test framework.

Basic equations and hypotheses of the ADF test:

DY ¼ a0DY ¼ a0 þ a1 tþ gYt�1 þ bi

Xm

i¼1

DYt�i þ mt

D represents the difference that species the operator, while m
indicates the lag length. The variable t is utilized to capture the
time trend, and Yt−1 denotes the lagged dependent variable,
Pm

i¼1
DYt�i representing the sum of the lagged differences. The

parameter a0 is the model's intercept, a1 is the coefficient
associated with the time trend, and g is the coefficient for the
lagged dependent variable. The notation bi refers to the coeffi-
cients of the lagged differences, and mt represents the error
term.

H0: a unit root exists; the series is not stationary g = 0.
H1: a unit root does not exist; the series is stationary g < 1.
The relevant test indicated that the series was non-stationary

at I(0) and exhibited an autocorrelation issue. Consequently, we
applied logarithmic transformations to the CO2, rev, difficulty,
tran, eff, and hash rate series, and subsequently took differ-
ences at I(1). The distribution graphs of the series aer the
logarithmic transformations are presented in Fig. 4. We then
assessed the stationarity of the series by examining the distri-
bution graphs depicted in Fig. 5 and the results from the ADF
test. The ndings from the unit root tests demonstrated that the
series were stationary at I(1). The degrees of stationarity are
summarized in Table 5.

In addition to the ADF unit root test, we conducted the KPSS
stationarity test to further assess the robustness of our results.
While the ADF test's null hypothesis posits the presence of
Fig. 4 Distribution of the series following logarithmic transformations.

© 2026 The Author(s). Published by the Royal Society of Chemistry
a unit root (indicating non-stationarity), the KPSS test operates
under the null hypothesis of stationarity. The KPSS test results
for the rst-differenced, log-transformed series corroborated
Phillips–Perron (PP) unit root
test (Z-tau)

Test statistics1pct 5pct 10pct

CO2
c −3.436 −2.863 −2.568 −70.565

EFFc −3.436 −2.863 −2.568 −77.393
DIFFICULTYc −3.436 −2.863 −2.568 −49.129
HASH RATEc −3.436 −2.863 −2.568 −133.761
REVc −3.436 −2.863 −2.568 −103.722
TRANc −3.436 −2.863 −2.568 −85.184

a For the ADF test, we chose the trend model, adopted the Schwarz
information criterion, and considered the maximum lag length to be
12. b For the KPSS test, both level (with intercept) and trend (with
intercept and trend) models were applied. c For the PP test, the Z-tau
statistic is reported for the rst-differenced series using the intercept
(m) specication.
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Table 6 Optimal lag length

Lag AIC(n)/10 HQ(n)/10 SC(n)/9 FPE(n)/10

1 26.502 26.533 26.589 3.232562 × 1011

2 26.036 26.094 26.197 2.029256 × 1011

3 25.748 25.833 25.984 1.521059 × 1011

4 25.596 25.708 25.906 1.306399 × 1011

5 24.506 24.645 24.891 4.394150 × 1010

6 17.828 17.994 18.288 5.529535 × 107

7 17.516 17.709 18.050 4.047357 × 107

8 17.333 17.552 17.941 3.369597 × 107

9 17.253 17.499 17.936a 3.111693 × 107

10 17.188a 17.461a 17.945 2.915504 × 107a

a FPE: nal prediction error; AIC: the Akaike information criterion; SC:
the Schwartz information criterion; HQ: the Hannan–Quinn
information criterion.
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the ndings of the ADF test, revealing that all variables were
stationary under both level and trend specications (all KPSS p-
values > 0.1). Consistently, Phillips–Perron (PP) tests (Z-tau,
intercept) applied to the rst-differenced series also rejected
the unit-root null for all variables, further reinforcing this
result. A summary of the KPSS and Phillips–Perron statistics is
presented in Table 5 alongside the ADF test results. These
ndings provide compelling evidence for the stationarity of the
differenced series utilized in our empirical analysis.
Calculation of lag length

Criteria such as the Akaike Information Criterion (AIC), the
Schwarz Information Criterion (SC), and the Hannan–Quinn
Information Criterion (HQ) can be employed to determine the
appropriate lag length. Previous studies in the literature
frequently adopt the smallest lag length and/or the SC
criterion35–39 as the basis for lag selection. Consequently, we
Table 7 Descriptive statistics and correlation matrix of the variables

A:

Variables Mean Median Min

Dependent variable
CO2 0.11 0.77 −168.59

Independent variables
REV 0.09 0.00 −69.73
TRAN 0.06 −0.62 −56.06
HASH RATE 0.34 0.00 −54.85
DIFFICULTY 0.34 0.00 −24.28
EFF 0.22 −0.88 −170.46

B: Correlation matrix

Variables CO2 DIFFICULTY

CO2 1
DIFFICULTY 0.023 1
EFF −0.884 −0.013
HASH RATE −0.03 −0.03
REV −0.04 −0.09
TRAN −0.01 −0.04

248 | Environ. Sci.: Adv., 2026, 5, 239–256
identied the SC criterion, with the smallest lag length, as 9,
based on the data presented in Table 6.
Descriptive statistics and correlation matrix

Table 7 presents the descriptive statistics and correlation matrix
for the variables included in the analysis. Notably, the variable
“difficulty” exhibits the lowest standard deviation (SD; 2.14)
among the sample variables. The variable “Rev” shows a nega-
tive skewness (−0.186), while its high kurtosis indicates a lep-
tokurtic distribution (4.55 > 3). Consistent with previous
research, the analysis conrms the rejection of normality for all
variables.14,40–42 Furthermore, the correlation matrix in Section B
of Table 7 indicates that none of the independent variables are
highly correlated, suggesting an absence of potential
multicollinearity.
Johansen cointegration test

Aer assessing the stationarity of the time series and deter-
mining the appropriate level at which the series is stationary, we
proceeded to analyze the potential existence of any cointegra-
tion relationships among the series. Series that are stationary at
the same level can be incorporated into the Johansen integra-
tion analysis. Conversely, any series that does not meet this
criterion cannot be included in the analysis. Furthermore, if the
series is found to be non-stationary at level I(0) based on unit
root tests (i.e., the p-value is not signicant at the specied
level), the series will be re-evaluated by applying logarithmic
transformations or differencing to achieve stationarity at I(d).43

The Johansen cointegration test is fundamentally based on
VAR. When the dataset comprises two or more time series, this
test offers distinct advantages over the Engle–Granger and
Phillips–Ouliaris tests, as it can estimate multiple cointegration
Max SD Skewness Kurtosis

168.35 22.17 −1.90 24.96

65.53 14.71 −0.118 4.55
55.85 12.23 0.33 4.18
59.43 11.63 0.07 4.20
23.24 2.14 3.88 47.4

175.53 24.97 1.28 16.85

EFF HASH RATE REV TRAN

1
0.02 1

−0.01 −0.29 1
−0.02 −0.14 0.31 1

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Johansen cointegration test results

Null hypothesis Alternative hypothesis Test statistics 10% 5% 1% Result

Jtrace test
r # 5 r > 5 348.52 7.52 9.24 12.97 H0 rejected
r # 4 r > 4 869.10 17.85 19.96 24.60 H0 rejected
r # 3 r > 3 1512.49 32.00 34.91 41.07 H0 rejected
r # 2 r > 2 2172.37 49.65 53.12 60.16 H0 rejected
r # 1 r > 1 4257.86 71.86 76.07 84.45 H0 rejected
r # 0 r > 0 18 272.37 97.18 102.14 111.01 H0 rejected

Jmax test
r = 5 r = 6 348.51 6.50 8.18 11.65 H0 rejected
r = 4 r = 5 520.58 12.91 14.90 19.19 H0 rejected
r = 3 r = 4 643.39 18.90 21.07 25.75 H0 rejected
r = 2 r = 3 659.88 24.78 27.14 32.14 H0 rejected
r = 1 r = 2 2085.49 30.84 33.32 38.78 H0 rejected
r = 0 r = 1 14 014.49 36.25 39.43 44.59 H0 rejected
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relationships.44 The Johansen cointegration test advocates for
the application of trace and maximum eigenvalue analyses
through sequential cointegration testing.

As presented in Table 8, we concluded that cointegrated
equations exist between the variables at both the 0.05 and 0.01
signicance levels, based on their trace and eigenvalues. In
practical terms, the presence of cointegration implies that any
short-term deviations among the series are corrected over time,
restoring their long-run equilibrium relationship. Therefore,
incorporating the cointegration structure into the VAR frame-
work ensures that our modeling strategy captures not only
short-term dynamics but also stable long-term relationships
among the variables included in the study and CO2 emissions.
We formulated hypotheses regarding the existence of cointe-
grating vectors between the series.

H0 = there are no cointegrations between the series (r = 0).
H1 = there are cointegrations between the series (r + 1).

Estimated BVAR model

We identied the priors for the model and conducted model
estimation using the Hierarchical BVAR model developed by
Kuschnig and Vashold (2021)32 within the R programming
Fig. 6 Maximum likelihood (ML) trace and density plots of the hier-
archically treated hyperparameters.

© 2026 The Author(s). Published by the Royal Society of Chemistry
environment. The analysis included a dataset comprising 2885
observations, 6 variables, and 9 lags spanning the years 2014 to
2021. The identied Bayesian VAR model was executed for 20
000 iterations, with a thinning period of 5 and a burn-in period
of 5000.

Simulations utilizing Bayesian methods are signicantly
dependent on the convergence of models, particularly in the
context of hierarchical models. The convergence of a BVAR
model is assessed through the Markov Chain Monte Carlo
(MCMC) Geweke identication test.45 Additionally, convergence
Fig. 7 Lambda plot.

Fig. 8 Geweke plot of single-unit-root (SUR) prior.
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Fig. 9 Geweke plot of sum of coefficient (SOC) prior.
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can be evaluated using trace and density graphs. The results of
the model tests are illustrated in Fig. 6–10.

The coefficients presented in Table 9 appear to indicate an
economic trend. Furthermore, all variables in this table were
identied as having signicant effects on BTC's CO2 emissions.
The coefficients for difficulty in periods two and three (difficulty
(−2)–(−3)) were negative, indicating that difficulty contributed
to an increase in BTC's CO2 emissions aer these periods.
Additionally, it can be asserted that the hash rate did not have
a signicant short-term impact on BTC's CO2 emissions, but it
exhibited a reducing effect on emissions values in the medium
term, with an increasing effect observed in the long term. While
the coefficients for miner efficiency in periods one and three (eff
(−1)–(−3)) were negative, they were positive for periods four and
ve (eff (4)–(5)). Thus, miner efficiency had an increasing effect
on BTC's CO2 emissions in the short term, but a reducing effect
in the medium term. Moreover, miner revenues exhibited
Fig. 10 Residual plot of the adjusted BVAR model data.

250 | Environ. Sci.: Adv., 2026, 5, 239–256
a uctuating impact on BTC's CO2 emissions over different
periods. Lastly, transactions had a negative effect on BTC's CO2

emissions in the short term.

Descriptive tests of the BVAR model

The convergence of a Markov chain can be assessed using trace
and density plots. In this context, the absence of trends or
signicant uctuations in the trace plot suggests a lack of
convergence, indicating that the target distribution has been
reached. Another method for evaluating the chain's conver-
gence is the Geweke identication test.45 This test primarily
relies on a comparative score between the initial and nal
segments of the chain, with default values typically set at 10%
and 50%, respectively. Ultimately, the chain is deemed
convergent if the averages of these segments are closely aligned.

Fig. 6 illustrates the trace and density plots of the hierar-
chical BVAR model. The sample exhibits oscillations across
a broad range, centering around the mean. The bell-shaped
appearance of the posterior probability density distributions
of the parameters indicates convergence. Additionally, conver-
gence can be assessed using the Geweke identication test.
Fig. 7–9 present the Geweke plots for MCMC comparisons of
hyperparameters, utilizing the “CODA” package in R. The z-
scores fall predominantly within the acceptable range; however,
one z-score for the Lambda parameter and two z-scores for the
SOC parameter exceed the range with a p-value of 0.01. There-
fore, we can assert that the MCMC draws from the hierarchical
BVAR model demonstrate satisfactory convergence. Further-
more, the residual plot reveals a few outliers in the model
(Fig. 10).

Impulse response analysis and variance decomposition table

In both Bayesian and standard VAR models, the analysis that
illustrates how the dependent variable responds to a sudden
shock applied to an independent variable is referred to as
impulse response analysis. Fig. 11 presents plots depicting the
responses of BTC CO2 emissions to a “one standard error”
shock of the variables presumed to inuence mining, as indi-
cated in the impulse response functions. Utilizing the Monte
Carlo simulation technique to derive the standard errors,
condence intervals were computed for the point estimates in
the impulse response functions over 20 000 iterations. In this
context, the dark gray areas in the plots represent the “one”
standard error condence intervals, while the solid lines indi-
cate the point estimates. As a general guideline, results may be
considered unreliable when one condence interval lies within
the positive range while the other remains within the negative
range.46

Upon examining BTC's CO2 responses to one-standard-
deviation shocks in the selected variables, we observe that
a shock to mining DIFFICULTY reduces emissions up to
a horizon of four (e.g., horizon 2: median = −0.086, 95% CI
[−0.110, −0.048]; horizon 3: median = −0.115, 95% CI [−0.140,
−0.078]; see Appendix B). Following the removal of outliers and
winsorization (refer to Appendix C), this short-term effect
diminishes, and at longer horizons, the credible bands
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 9 Estimated BVAR model for BTC's CO2 emissions

Bayesian VAR

Prior type: Litterman/Minnesota

Diagonal Var

Hyper-parameters: m1: 1, L1: 0.1, L2: 0.99, L3: 1

(Standard error)

[t stat.] a

CO2 DIFFICULTY HASH RATE EFF REV TRAN

CO2(−1) 0.260331 0.004343 0.155293 −0.179156 −0.033549 0.072531
(0.02337) (0.00139) (0.01172) (0.03408) (0.01505) (0.02072)
[11.1384] [3.13470] [13.2506] [−5.25650] [−2.22909] [3.50124]

CO2(−2) 0.064837 −0.016004 0.009189 −0.026262 −0.017123 −0.037708
(0.02442) (0.00145) (0.01224) (0.03561) (0.01572) (0.02164)
[2.65527] [−11.0577] [0.75052] [−0.73754] [−1.08895] [−1.74228]

CO2(−3) 0.353873 −0.004531 −0.019261 −0.468320 0.030512 −0.075591
(0.02484) (0.00147) (0.01246) (0.03623) (0.01600) (0.02202)
[14.2440] [−3.07680] [−1.54610] [−12.9269] [1.90723] [−3.43287]

CO2(−4) −0.183605 −0.001068 −0.263746 0.175153 0.072016 −0.041167
(0.02508) (0.00149) (0.01257) (0.03657) (0.01615) (0.02223)
[−7.32210] [−0.71874] [−20.9759] [4.79002] [4.45992] [−1.85227]

CO2(−5) −0.332210 0.005272 −1.027.879 0.303445 0.006946 0.058102
(0.02435) (0.00144) (0.01221) (0.03550) (0.01568) (0.02158)
[−13.6449] [3.65307] [−84.1946] [8.54685] [0.44304] [2.69245]

CO2(−6) 0.027656 0.003908 0.265152 −0.266951 0.142256 0.117969
(0.04383) (0.00260) (0.02198) (0.06392) (0.02822) (0.03885)
[0.63097] [1.50414] [12.0643] [−4.17660] [5.04010] [3.03662]

CO2(−7) 0.041007 −0.011136 0.181441 −0.013546 −0.136086 0.099970
(0.04383) (0.00260) (0.02198) (0.06392) (0.02823) (0.03885)
[0.93557] [−4.28658] [8.25543] [−0.21193] [−4.82147] [2.57331]

CO2(−8) 0.379758 −0.006719 −0.368810 −0.651830 0.182989 −0.018713
(0.04183) (0.00248) (0.02097) (0.06099) (0.02693) (0.03707)
[9.07923] [−2.71033] [−17.5845] [−10.6867] [6.79379] [−0.50477]

CO2(−9) −0.048292 −0.017962 −0.347853 0.317110 −0.045127 −0.002027
(0.04299) (0.00255) (0.02156) (0.06269) (0.02768) (0.03810)
[−1.12336] [−7.04936] [−16.1369] [5.05846] [−1.63013] [−0.05320]

a t statistics greater than 1.8 are interpreted as the signicant impact of the specied variable on the dependent variable.

Fig. 11 Impulse response functions.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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frequently encompass zero, indicating an uncertain and non-
robust long-term effect (e.g., horizon 6: median = 0.007, 95%
CI [−0.018, +0.044]). In contrast, the other shocks do not
demonstrate clear or robust effects. HASH RATE: regarding
hash rate, the credible bands generally include zero (e.g.,
horizon 3: median = −0.006, 95% CI [−0.009, −0.002]). TRAN:
for transactions, the effect is negative in the baseline (horizon 3:
median = −0.201, 95% CI [−0.315, −0.027]) but disappears
aer outlier removal and winsorization. REV: miner revenue
shows a positive effect only at horizon 2 (median = 0.202, 95%
CI [0.100, 0.357]), which is not signicant elsewhere. EFF: effi-
ciency presents somemid-horizon increases (horizon 4: median
= 1.530, 95% CI [1.243, 1.958]); however, these are sensitive to
specication and not robust in further checks. Therefore, we
conclude that only the difficulty variable and the independent
variable itself signicantly inuenced BTC CO2 emissions.

The detailed median and 95% credible intervals for the
impulse-response estimates of CO2 emissions in response to
Environ. Sci.: Adv., 2026, 5, 239–256 | 251
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Table 10 Variance decomposition analysis for BTC's CO2 emissionsa

Period 1 2 3 4 5 6 7

CO2 100.00 95.19 93.12 90.81 86.73 87.01 86.54
DIFFICULTY 0.00 2.51 2.54 3.37 6.63 6.19 6.15
EFF 0.00 2.24 2.96 3.09 2.96 2.91 3.36
HASH RATE 0.00 0.02 0.18 1.31 1.64 1.78 1.83
TRAN 0.00 0.05 0.38 0.64 0.70 0.66 0.67
REV 0.00 0.002 0.83 0.79 1.33 1.45 1.45
S. E. 5.73 6.37 6.46 6.73 6.90 7.14 7.16

a Cholesky ordering: CO2, DIFFICULTY, EFF, HASH RATE, TRAN, REV.
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a one-standard-deviation shock to each explanatory variable
over a seven-period horizon are provided in Appendix B. To
evaluate the robustness of these ndings, Appendix C presents
the corresponding estimates aer excluding outliers and
applying winsorization, along with graphical illustrations of the
impulse responses. As shown in Appendix C, when outliers are
excluded and winsorization is applied, the short-term negative
effect of difficulty on CO2 emissions decreases in magnitude
(for example, at horizon 2 the median declines from −0.086 to
−0.048). This indicates that the effect becomes weaker and
more uncertain. Therefore, while the nding that difficulty
shocks may reduce emissions in the short run is preserved, the
effect does not appear to be persistent in the long run.

The variance decomposition analysis indicated that 100% of
the responses of the independent variable (BTC's CO2 emis-
sions) to a unit standard error shock attributed to itself are
accounted for by the variable in the rst period. By the
conclusion of the seventh period, 86% of the response remains
attributable to itself, with contributions of 6.15% from diffi-
culty, 3.36% from eff, 1.83% from hash rate, 0.67% from tran,
and 1.45% from rev (see Table 10). This high share suggests that
BTC's CO2 emissions are largely self-driven and path-
dependent, meaning past emission levels are the dominant
predictor of future emissions, while other mining-related
factors play only a secondary role.
Results

Our research examined the key factors inuencing the carbon
footprint of BTC generated through mining using the PoW
algorithm. The variables selected for this analysis included
miner efficiency, miner revenues, transactions (the total
number of BTC mined daily), mining difficulty, and hash rate.
We conducted relevant estimations using a BVAR model in R.
The impulse response analysis indicated that our dependent
variable, BTC's CO2 emissions, was signicantly inuenced by
both its own past values and mining difficulty. Specically, the
difficulty variable exhibited a decreasing effect on BTC's carbon
footprint up to the fourth period, beyond which the long-term
impact remained uncertain, with credible intervals frequently
encompassing zero. Additionally, we observed that a one stan-
dard deviation shock to the BTC CO2 emissions variable had
a negative effect on itself. However, the other variables did not
demonstrate a signicant impact on BTC's CO2 emissions.20,27
252 | Environ. Sci.: Adv., 2026, 5, 239–256
The variance decomposition analysis revealed that 100% of the
responses of the dependent variable (BTC's CO2 emissions) to
a unit standard error shock from itself were accounted for in the
rst period. It is expected that BTC's CO2 emissions would
respond immediately to a unit shock from their own values.
Nonetheless, BTC's CO2 emissions are projected to have
cumulative effects over the long term, potentially contributing
to rising global carbon levels. Consequently, it is reasonable to
conclude that ongoing mining activities and increased BTC
utilization could lead to a progressive rise in emissions, align-
ing with evidence suggesting that mining operations may
exacerbate global warming. By the end of the seventh period,
86% of the variance in BTC's CO2 emissions was attributed to its
own past values, with 6.15% explained by mining difficulty,
3.36% by miner efficiency, and 1.83% by hash rate. Thus,
mining difficulty and hash rate emerged as signicant factors
inuencing miners' energy consumption, beyond electricity
usage, during the analyzed periods. The mining devices utilized
and the number of miners within the system are critical
contributors to the increasing difficulty level. Difficulty is
recognized as one of the determinants of mining revenues,
alongside BTC price, halving events, and elevated transaction
fees.

Our ndings are consistent with those of Polemis et al.
(2021),14 who investigated the carbon footprint of BTC utilizing
Bayes and CQVAR models. They established a causative rela-
tionship between BTC energy consumption and CO2 emissions,
based on data from 50 countries spanning from July 2, 2016, to
November 30, 2018. Their research also revealed a negative
correlation between miner revenues and BTC's carbon foot-
print. However, our study builds upon their work by incorpo-
rating additional mining-related variables and analyzing a more
comprehensive dataset, encompassing 2895 days of time-series
data from 2014 to 2021. In contrast to Polemis et al. (2021),14 we
identied BTC's own value and difficulty level as the primary
determinants of its carbon footprint, while other variables did
not exhibit a signicant impact.

Furthermore, while Stoll et al. (2019)11 presented annual
aggregate estimates of Bitcoin's carbon footprint using hard-
ware data and regional energy assumptions, their study did not
examine the causal relationships among variables or their
interactions over time. In contrast, our Bayesian VAR approach
enables a comprehensive modeling of the interdependencies
among multiple mining variables—such as difficulty, hash rate,
miner revenue, and total Bitcoin mined—alongside their effects
on carbon emissions, both in the present and with time lags.

In this context, increases in difficulty exert pressure on
miners' prot margins. In the short term, high-cost, energy-
intensive rigs may cease operations, prompting operators to
transition to more efficient hardware, which may temporarily
reduce electricity consumption and CO2 emissions. Consistent
with this mechanism, our BVAR impulse-response functions
indicate a short-term decline in CO2 following a one-standard-
deviation difficulty shock (horizons 1–4; see Appendix B).
Subsequently, aer outlier removal and winsorization
(Appendix C), the effect diminishes, and the credible bands for
© 2026 The Author(s). Published by the Royal Society of Chemistry
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the longer term frequently include zero, suggesting an uncer-
tain long-term impact.

Discussion

The primary factors contributing to difficulty in mining are the
number of miners and the computational power of the devices
integrated into the network. While increased difficulty inher-
ently elevates the computational demands, our ndings suggest
a short-term decrease in CO2 emissions following a difficulty
shock. This reduction is likely attributable to the temporary
cessation of high-cost rigs and the accelerated replacement of
inefficient hardware. However, the long-term effects are less
consistent. Energy sourcing is a critical element; enhanced
reliance on renewable energy and the adoption of more efficient
equipment can signicantly diminish the carbon footprint of
mining activities.13,23,26 Consequently, policies that promote the
use of energy-efficient hardware and facilitate the integration of
renewable energy sources are expected to alleviate the envi-
ronmental impacts associated with PoW systems. Additionally,
empirical research indicates that difficulty is a key determinant
of CO2 emissions on PoW platforms. Variations in difficulty
levels directly inuence the long-term sustainability of BTC
mining operations. As difficulty increases, miners are required
to provide greater computational power; however, the overall
emissions response is not consistently upward. In the short
term, high-cost, energy-intensive rigs may temporarily shut
down, prompting operators to transition to more efficient
hardware, which can lead to reductions in total electricity
consumption and CO2 emissions. Over extended periods, the
impact remains uncertain and is inuenced by energy prices,
the dynamics of miner entry and exit, and advancements in
hardware efficiency. By employing appropriate mining hard-
ware and implementing a more efficient validation and block
generation mechanism, the environmental impact of PoW
consensus-based blockchain platforms can be effectively
minimized.

The utilization of renewable energy in mining is demon-
strating a consistent upward trend annually. Kohli et al. (2022)23

concluded that wind and solar power represent the most viable
alternative energy sources for blockchain networks. The adop-
tion of these renewable sources has the potential to render PoW
algorithm-based blockchain networks, which are typically
characterized by high energy consumption, more environmen-
tally sustainable. Looking ahead, the shi towards lower-cost,
renewable, and clean energy sources, as opposed to fossil
fuels, is expected to play a signicant role in reducing envi-
ronmentally harmful emissions. The majority of mining activ-
ities currently occur in China, and the nation's future energy
transformation strategy aims to decrease fossil fuel reliance to
35% by 2050. This shi suggests that hydroelectric, solar, and
wind power will increasingly contribute to energy supply for
mining operations. Furthermore, it is essential to implement
cleaner, sustainable systems—such as energy-efficient equip-
ment, materials with a reduced carbon footprint, and low-
carbon waste management—to optimize energy generation
from renewable sources and further mitigate the mining
© 2026 The Author(s). Published by the Royal Society of Chemistry
industry's carbon footprint. Policymakers should also prioritize
straightforward, measurable incentives that reward miners for
utilizing veriable low-carbon electricity and promote invest-
ment in additional low-carbon capacity to achieve enduring
emissions reductions. Additionally, targeted tax measures, such
as carbon pricing, may be considered, tailored to specic
countries and timeframes where the carbon cost of mining is
elevated.

Conclusion

We investigate the environmental impact of BTC mining, with
a particular emphasis on the carbon footprint associated with
the PoW algorithm. Our ndings indicate that an increase in
mining difficulty correlates with a short-term decline in BTC's
CO2 emissions. Mining difficulty is inuenced by the number of
miners and the performance of mining hardware. Although
higher difficulty inherently increases the computational
burden, it can prompt the shutdown of high-cost, energy-
intensive rigs in the short term, thereby facilitating the
replacement of less efficient hardware. This phenomenon helps
to explain the observed temporary reduction in emissions. In
the long term, however, the net effect remains uncertain and is
likely inuenced by factors such as energy prices, miner
dynamics in terms of entry and exit, and advancements in
hardware efficiency. To address environmental concerns, it is
essential to adopt more efficient mining devices and transition
towards renewable energy sources. Renewable energy options,
such as wind and solar, provide a sustainable alternative to
fossil fuels, while enhancements in validation and block
production processes can further improve energy efficiency and
mitigate the environmental footprint of PoW-based systems.

Our ndings are directly relevant to PoW platforms that
exhibit similar consensus mechanisms and operational
dynamics to BTC, including difficulty adjustment, hardware-
driven efficiency gains, and miner entry and exit behavior.
Given these conditions, the qualitative patterns we have iden-
tied are likely to generalize to other PoW chains; however, the
magnitudes may differ based on factors such as algorithm,
hardware, market structure, and, notably, the underlying energy
mix. In particular, the heterogeneity of regional energy mixes
plays a crucial role. For instance, mining activities concentrated
in regions dominated by hydropower (e.g., Sichuan, Yunnan)
are associated with substantially lower CO2 emissions
compared to coal-heavy grids (e.g., Xinjiang, Inner Mongolia).
This implies that while the overall patterns we identify are
generalizable, their environmental magnitude depends strongly
on the local electricity mix, as also highlighted in the 3rd Global
Cryptoasset Benchmarking Study.21

Recent studies provide supporting evidence for our ndings.
For instance, Bajra et al. (2024)4 demonstrate that PoS systems
reduce energy consumption substantially compared to PoW,
which conrms our result that increasing mining difficulty and
hash rate drive higher emissions under PoW. Similarly, the
evidence presented by Stoll et al. (2023)22 on the migration of
mining to the United States shows that geographic relocation
alone does not reduce emissions, as miners largely remain
Environ. Sci.: Adv., 2026, 5, 239–256 | 253
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dependent on carbon-intensive grids. Taken together, these
studies indicate that while technological transitions such as PoS
offer an effective pathway to emission reduction, BTC's continued
reliance on PoW and the limited effectiveness of geographic shis
in mining to reduce emissions highlight the urgency of stricter
regulatory frameworks and policies promoting renewable energy
integration. Among such regulatory measures, the introduction of
targeted electricity taxes on mining operations could serve as
a form of carbon pricing, discouraging fossil-fuel-based mining
activities. At the same time, tax incentives and subsidies could be
designed to encourage miners to relocate to regions with abun-
dant renewable energy resources. In this way, mining operations
could shi away from carbon-intensive regions while simulta-
neously adopting more efficient technologies and integrating
renewables, as illustrated by pilot projects directly linked to solar
or wind power plants. Furthermore, regulatory frameworks could
promote grid-balancing services and foster investment in clean
energy infrastructure, thereby enhancing the sustainability of the
sector.

While this study represents a signicant advancement in
understanding the environmental impacts of BTCmining, it does
possess certain limitations. The analysis focuses on a limited
number of variables and does not consider other potential
inuencing factors. Future research should aim to broaden this
analysis by incorporating a wider array of variables that may affect
energy consumption and carbon emissions. Furthermore, given
that the VAR framework treats all variables as endogenous,
subsequent studies could benet from employing structural
identication methods, such as SVAR, to derive clearer causal
inferences. Additionally, the BVAR model utilized in this study
fails to account for structural breaks, such as the 2021 China
mining ban, when Bitcoin's global hash rate dropped by more
than 50% within weeks.21 This sharp decline was accompanied by
a temporary reduction in electricity use and emissions, before
mining activity relocated mainly to the U.S. and Kazakhstan,
where the hash rate and emissions gradually recovered. A more
comprehensive investigation into the impact of renewable energy
sources in mining operations is also warranted. Future studies
should focus on developing policies and strategies to promote the
adoption of renewable energy within mining activities.
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I. Kotuliak, On transition between PoW and PoS,
International Symposium ELMAR, IEEE, 2018, pp. 207–210,
DOI: 10.23919/ELMAR.2018.8534642.

2 A. A. Maei, A. Lavric, A. I. Petrariu and V. Popa, Blockchain
For Internet of Things: A Consensus Mechanism Analysis, in
2023 13th International Symposium on Advanced Topics in
Electrical Engineering (ATEE), 2023, pp. 1–5.

3 K. Zhang, X. Liang, R. Lu and X. Shen, Sybil Attacks and
Their Defenses in the Internet of Things, IEEE Internet
Things J., 2014, 1, 372–383, DOI: 10.1109/JIOT.2014.2344013.

4 U. Q. Bajra, E. Rogova and S. Avdiaj, Cryptocurrency
blockchain and its carbon footprint: Anticipating future
challenges, Technol. Soc., 2024, 77, 102571, DOI: 10.1016/
j.techsoc.2024.102571.

5 S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
2008 http://fastbull.dl.sourceforge.net/project/bitcoin/
Design\Paper/bitcoin.pdf/bitcoin.pdf. (accessed:
01.04.2023).

6 M. Çetiner, Bitcoin (Kripto Para) ve Blok Zincirin Yeni
Dünyaya Getirdikleri, Ist. J. Soc. Sci., 2018, 20, 1–16.

7 U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu
and R. Brooks, A Brief Survey of Cryptocurrency Systems, in
2016 14th Annual Conference On Privacy, Security and Trust
(PST), IEEE, 2016, pp. 745–752, DOI: 10.1109/PST.2016.7906988.
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Dengesi Ilişkisi, EKOIST J. Econom. Stat., 2005, 2, 11–29.

47 Bitcoin Mining Council(2022), https://
bitcoinminingcouncil.com/bitcoin-mining-council-survey-
conrms-year-on-year-improvements-in-sustainable-power-
mix-and-technological-efficiency/(accessed: 7.11.2024).

48 S. I. Jungblut, Our Digital Carbon Footprint: What's The
Environmental Impact of the Online World? Reset Org.,
Environ. Sci.: Adv., 2026, 5, 239–256 | 255

https://doi.org/10.1002/ijfe.2496
https://doi.org/10.1016/j.resconrec.2021.105901
https://doi.org/10.1016/j.resconrec.2021.105901
https://doi.org/10.1016/j.cosust.2017.04.011
https://doi.org/10.1016/j.cosust.2017.04.011
https://doi.org/10.1016/j.erss.2018.06.009
https://doi.org/10.1038/s41558-018-0321-8
https://doi.org/10.2139/ssrn.3700822
https://doi.org/10.1016/j.dcan.2022.06.017
https://doi.org/10.1016/j.dib.2022.108252
https://doi.org/10.1016/j.frl.2022.102977
https://doi.org/10.1016/j.frl.2022.102977
https://doi.org/10.53478/TUBA.978-605-2249-97-0.ch06
https://doi.org/10.53478/TUBA.978-605-2249-97-0.ch06
https://doi.org/10.1016/j.joule.2020.07.013
https://doi.org/10.1021/acs.est.9b05687
https://doi.org/10.1198/073500107000000016
https://doi.org/10.1080/07350015.1986.10509491
https://doi.org/10.18637/jss.v100.i14
https://doi.org/10.31466/kfbd.910703
https://doi.org/10.1080/02522667.1998.10699378
https://doi.org/10.1016/S0040-1625(01)00142-1
https://doi.org/10.1007/s40953-015-0019-y
https://doi.org/10.35683/jcm21035.122
https://doi.org/10.1016/j.econlet.2019.108530
https://doi.org/10.1016/j.econlet.2017.06.023
https://doi.org/10.1016/j.econlet.2018.03.021
https://bitcoinminingcouncil.com/bitcoin-mining-council-survey-confirms-year-on-year-improvements-in-sustainable-power-mix-and-technological-efficiency/
https://bitcoinminingcouncil.com/bitcoin-mining-council-survey-confirms-year-on-year-improvements-in-sustainable-power-mix-and-technological-efficiency/
https://bitcoinminingcouncil.com/bitcoin-mining-council-survey-confirms-year-on-year-improvements-in-sustainable-power-mix-and-technological-efficiency/
https://bitcoinminingcouncil.com/bitcoin-mining-council-survey-confirms-year-on-year-improvements-in-sustainable-power-mix-and-technological-efficiency/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00143a


Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 2
:1

0:
42

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2019, https://en.reset.org/our-digital-carbon-
footprintenvironmental-impact-living-life-online-12272019/,
(accessed: 07.01.2023).

49 J. Li, N. Li, J. Peng, H. Cui and Z.Wu, Energy Consumption of
Cryptocurrency Mining: A Study of Electricity Consumption
in Mining Cryptocurrencies, Energy, 2019, 168, 160–168,
DOI: 10.1016/j.energy.2018.11.046.

50 G. S. Maddala and I. M. Kim, Unit Roots, Cointegration, And
Structural Change, United Kingdom at the University Press,
Cambridge, 1998.

51 M. Thum, The Economic Cost of Bitcoin Mining, in Cesifo
Forum (München: ifo Institut-Leibniz Institut für
Wirtschasforschung an der Universität München e.V.), 2018,
vol. 19, pp. 43–45.

52 C. A. Sims, Macroeconomics and Reality, Econometrica, 1980,
48, 1–48, DOI: 10.2307/1912017.
256 | Environ. Sci.: Adv., 2026, 5, 239–256
53 Nasdaq Hash, Bitcoin Hash Rate, 2023 https://
data.nasdaq.com/data/BCHAIN/HRATE-bitcoin-hash-rate.
(accessed: 30.01.2023).

54 Nasdaq Rev, Bitcoin Miners Revenue, 2023 https://
data.nasdaq.com/data/BCHAIN/MIREV-bitcoin-miners-
revenue. (accessed: 30.01.2023).

55 Nasdaq Tran, Bitcoin Number of Transaction, 2023 https://
data.nasdaq.com/data/BCHAIN/NTRAN-bitcoin-number-of-
transactions. (accessed: 30.01.2023).

56 Nasdaq Difficulty, Bitcoin Difficulty, 2023 https://
data.nasdaq.com/data/BCHAIN/DIFF-bitcoin-difficulty.
(accessed: 30.01.2023).

57 G. Alkan, Daily Bitcoin mining and carbon emissions database
(2014–2021), Zenodo, 2025, DOI: 10.5281/zenodo.17085697.
© 2026 The Author(s). Published by the Royal Society of Chemistry

https://en.reset.org/our-digital-carbon-footprintenvironmental-impact-living-life-online-12272019/
https://en.reset.org/our-digital-carbon-footprintenvironmental-impact-living-life-online-12272019/
https://doi.org/10.1016/j.energy.2018.11.046
https://doi.org/10.2307/1912017
https://data.nasdaq.com/data/BCHAIN/HRATE-bitcoin-hash-rate
https://data.nasdaq.com/data/BCHAIN/HRATE-bitcoin-hash-rate
https://data.nasdaq.com/data/BCHAIN/MIREV-bitcoin-miners-revenue
https://data.nasdaq.com/data/BCHAIN/MIREV-bitcoin-miners-revenue
https://data.nasdaq.com/data/BCHAIN/MIREV-bitcoin-miners-revenue
https://data.nasdaq.com/data/BCHAIN/NTRAN-bitcoin-number-of-transactions
https://data.nasdaq.com/data/BCHAIN/NTRAN-bitcoin-number-of-transactions
https://data.nasdaq.com/data/BCHAIN/NTRAN-bitcoin-number-of-transactions
https://data.nasdaq.com/data/BCHAIN/DIFF-bitcoin-difficulty
https://data.nasdaq.com/data/BCHAIN/DIFF-bitcoin-difficulty
https://doi.org/10.5281/zenodo.17085697
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00143a

	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions

	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions
	Identifying the key drivers of Bitcoinaposs emissions


