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Ferroelectric Devices as Physical Reservoirs: Enabling Nonlinear 
Dynamics and Memory in Neuromorphic Systems
Moonseek Jeong,†a Da Hyun Kim,†a Su In Hwang,b Taegyu Kwon,a Jung Ho Yoon*b and Min Hyuk Park 

*acd

Reservoir computing (RC) provides a training-efficient alternative to recurrent neural networks by fixing recurrent weights 
and training only a linear readout. In hardware, physical reservoirs harness intrinsic device dynamics to supply the three 
requisites for temporal computation: nonlinearity, short-term memory, and resulting high-dimensional state richness. This 
review summarises RC fundamentals and maps device requirements onto materials properties including domain nucleation, 
hysteresis, depolarisation-driven volatility, and multiscale relaxation. We survey representive ferroelectric platforms, 
including hafnia-based ferroelectric field-effect transistors (FeFETs), ferroelectric tunnel junctions (FTJs), and ferroelectric 
thin-film transistors (FeTFTs), together with their antiferroelectric variants. These devices inherently support nonlinear 
input–state mapping, tunable fading memory, and rich intermediate states. Implementation strategies include multiplexing 
and single-device reservoirs, evaluated against metrics for memory capacity and energy–latency–accuracy. Emphasis is 
placed on complementary-metal-oxide-semiconductor compatible HfO2 for scalability, fast switching, and low-voltage 
operation. Reliability and variability are reframed as resources through interface and defect engineering. Ferroelectrics 
emerge as energy-efficient reservoirs for robust temporal inference at the edge. 

1. Fundamentals of Reservoir Computing 
 In this section, we address the concept and fundamental 
principles of reservoir computing (RC), followed by a discussion 
of the essential characteristics required for its device-level 
implementation. PRC devices are expected to exhibit intrinsic 
nonlinearity, short-term memory, and state richness, which are 
critical attributes to effectively perform computational tasks 
such as time-series processing, pattern recognition, and 
prediction. Beginning with the origin and operational principles 
of RC, this section summarizes the physical requirements 
strongly correlated with key material properties for physical 
reservoir computing (PRC) devices and extends the discussion 
to the operation mechanism responsible for generating the final 
output.

1.1 Fundamental principles of RC

 Traditionally, machine learning (ML) systems have been 
employed to learn from pre-observed datasets in order to 
predict future trends or classify objects. However, such 
approaches are highly dependent on the availability of data and 

often require considerable computational resources and 
extended training time, which poses inherent limitations. RC, a 
paradigm within ML, was introduced in the early 2000s as a 
novel computational framework to overcome the structural 
difficulties associated with training recurrent neural networks 
(RNNs). In RNNs, neurons are interconnected through recurrent 
connections, enabling the history of input signals to be encoded 
into the internal states of the network, thereby implementing 
short-term memory functionality. 1, 2 Despite this advantage, 
the training of conventional RNNs is generally challenging and 
computationally demanding. These issues were effectively 
addressed by the advent of RC, which was independently 
proposed by Jaeger3 and Maass4. Jaeger approached the 
concept from a machine learning perspective, leading to the 
development of echo state networks (ESNs), while Maass, 
motivated by neuroscience, introduced liquid state machines 
(LSMs) based on biologically realistic spiking neurons. Although 
derived from different motivations, both approaches share the 
same operational principle: the recurrent internal weights of a 
complex dynamical system remain fixed, and only the output 
layer is subject to training. This simplification of the training 
process unified the two approaches under the common 
framework of RC.5 a.Department of Materials Science and Engineering & Inter-University 
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In RC, the term reservoir refers to the recurrent structure that 
maps input signals into a high-dimensional nonlinear dynamical 
space. Prior to a detailed comparison of RC and RNN 
architectures, it is instructive to first establish the underlying 
mathematical structure fundamentally shared by both models. 
In both approaches, the internal state at the next step is 
determined by applying a nonlinear function to a weighted sum 
of the current input and previous state, while the network 
output is computed as a linear transformation of these internal 
states: 𝑟𝑖(t + Δt) = f(𝑊𝑖𝑛𝑥𝑖

𝑖𝑛(t) + ∑𝑁
𝑗=1 𝑊𝑖𝑗(𝑡)𝑟𝑗(t)), 𝑟𝑜𝑢𝑡(𝑡)

= 𝑊𝑜𝑢𝑡𝑟𝑖(𝑡), where 𝑟𝑖(t)denotes the internal state of the 𝑖-th 
recurrent node at time t, 𝑥𝑖

𝑖𝑛(t) represents the input signal 
coupled to node 𝑖 and 𝑟𝑜𝑢𝑡(𝑡) is the readout output. Here, 
𝑖 = 1,2, …, 𝑁 and 𝑁 is the total number of nodes in recurrent 
layer.  𝑊𝑖𝑛, 𝑊𝑖𝑗and 𝑊𝑜𝑢𝑡represent input, recurrent (from node 
𝑗 to 𝑖), and output weight matrices, respectively, and f(.) is a 
nonlinear activation function. These equations provide a unified 
mathematical foundation for both RC and RNN, highlighting a 
common framework from which differences in their learning 
strategies can be further discussed.6 In general, the reservoir 
can be regarded as a variant of a RNN consisting of a large 
number of interconnected nodes, where each node generates 
nonlinear and dynamical internal states in response to external 
inputs. A defining feature of RC is that the internal weights of 
the reservoir remain fixed during training. Consequently, the 
reservoir itself is not the object of learning but functions as a 
static dynamical medium that responds diversely to input 
stimuli. When input signals are injected into the reservoir, they 
are transformed into complex internal states that reflect the 
temporal continuity and patterns of the input stream. These 
states can accumulate or decay over time, thereby encoding the 
history of prior inputs and enabling short-term memory 
functionality. As a result, the internal states preserve the 

temporal and nonlinear characteristics of the original input 
while projecting them into a higher-dimensional space.

Considering an RNN composed of N nodes, as schematically 
illustrated in Figure 1(a), each node is fully connected and 
receives external inputs 𝑥𝑖

𝑖𝑛(𝑡)(𝑖 = 1, …, 𝑁)(If the 𝑖-th node 
does not receive input, then 𝑥𝑖

𝑖𝑛(𝑡) = 0.) Each node maintains 
an internal state 𝑟𝑖(t), which evolves in time according to the 
following relation: 𝑟𝑖(t + Δt) = f(∑𝑁

𝑗=1 𝑤𝑖𝑗(𝑡)𝑟𝑖(t) + 𝑥𝑖
𝑖𝑛(t)), 

where 𝑤𝑖𝑗 represents the synaptic weight and 𝑓(⋅) typically 
denotes a nonlinear activation function such as sigmoid or tanh. 
In this framework, the RNN can be trained with a prescribed 
number of output nodes 𝑁𝑜𝑢𝑡 to generate the desired target 
outputs 𝑇𝑎𝑟𝑔𝑒𝑡𝑖(𝑡) (𝑖 = 1,… , 𝑁𝑜𝑢𝑡) in response to input xin(t). 
The training objective is to adjust the internal weights 𝑤𝑖𝑗 so 
that the output states match the target signals. The simplest 
approach involves randomly initializing all weights and then 
minimizing an error function, for example through linear 
regression. However, this training procedure often suffers from 
severe numerical problems arising from the recurrent dynamics 
of the RNN, which remain a major challenge. 6, 7

In the case of RC, the internal weights 𝑤𝑖𝑗 are randomly initialized 
and remain fixed during operation, unlike in conventional RNNs 
where the weights are updated through training. As illustrated in 
Figure 1(b) and Figure 2(a), the set of nodes defined by the RNN 

dynamics, 𝑟𝑖(t + Δt) = f(∑𝑁
𝑗=1 𝑤𝑖𝑗(𝑡)𝑟𝑗(t) + 𝑤𝑖𝑛𝑥𝑖

𝑖𝑛(t))   (𝑤𝑖𝑗:
connection weight from node 𝑗 to node 𝑖,  𝑖 = 1,2, …, 𝑁 which is the 
total number of nodes in reservoir.) is regarded as the reservoir. An 
additional 𝑁𝑜𝑢𝑡 readout units are then introduced, and the activity 
𝑟𝑖

𝑜𝑢𝑡(𝑡) of each output node is obtained as a linear combination of 
the reservoir states, 𝑟𝑖

𝑜𝑢𝑡(𝑡) = ∑𝑁
𝑗=1 𝑤𝑜𝑢𝑡

𝑖𝑗 𝑟𝑗(t), (𝑖 = 1, 2,…,𝑁𝑜𝑢𝑡). In 

Fig. 1 Learning architectures in (a) recurrent neural network (RNN) and (b) reservoir 
computing (RC)

Fig. 2 Structure of (a) conventional reservoir computing (RC) and (b) physical reservoir 
computing (PRC)
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this framework, training is performed solely on the output weights 
𝑤𝑜𝑢𝑡

𝑖𝑗 , which are not fed back into the reservoir. Since the reservoir 
itself remains unchanged during training, the numerical problems 
inherent in conventional RNN learning are fundamentally 
eliminated.8

Following the initial proposal of RC, early studies primarily 
relied on software-based implementations. With the 
subsequent emergence of PRC, however, this concept has been 
extended to utilize a variety of physical systems as 
computational substrates. 9-11 By utilizing the intrinsic 
nonlinearity and dynamical responses of physical systems, PRC 
has attracted considerable attention as a next-generation 
computational platform that can simultaneously achieve 
training efficiency and energy efficiency. Today, RC is being 
actively investigated not only as a theoretically well-established 
framework but also as a practically computational model, 
particularly in the development of device-based neuromorphic 
systems and hardware-oriented artificial intelligence circuits. 

1.2. Requirements for physical reservoir devices

 PRC extends the core concept of conventional software-
based RC to physical systems, in which real-world dynamical 
processes, rather than simulated virtual networks, are 
employed as the reservoir.12  As illustrated in Figure 2, unlike 
conventional RC, PRC utilizes the intrinsic nonlinear dynamics of 
materials during computation, thereby offering advantages 
such as low power consumption, high-speed operation, and 
inherent parallelism. Since the process of input handling 

inherently incorporates the memory effects of the physical 
system in an analog form, PRC can also be regarded as a form of 
in-memory computing. Given that the essential functionality of 
RC is based on mapping input data into a high-dimensional 
nonlinear space and performing computation and prediction 
within that space, the physical devices or systems serving as 
reservoirs must satisfy specific requirements to enable PRC 
implementation.13 

As illustrated in Figure 2, moreover, physical reservoir computing 
(PRC) realizes computation within a fixed, recurrent dynamical 
system—the reservoir—whose transient responses are sampled as a 
set of high‑dimensional “virtual nodes”. In hardware, the reservoir 
function can be embodied by a single compact device (or a small 
number of devices) by exploiting intrinsic state variables together 
with spatiotemporal multiplexing and feedback. Unlike the 
conventional RC shown in Figure 2(a), where computation is 
achieved through complex mathematical operations and numerous 
inter-node connections, PRC illustrated in Figure 2(b) utilizes the 
intrinsic nonlinear and time-dependent physical dynamics of each 
device to naturally map input signals into a high-dimensional feature 
space. Because this mapping arises from internal physics of the 
device rather than explicit numerical computation, PRC can operate 
with low power consumption and high speed. Consequently, PRC can 
achieve the same computational functionality as conventional RC 
systems using only a single or a few compact devices, without 
requiring a large artificial network. 

Fig. 3 Schematical illustrations of three key attributes are required for physical reservoir computing (PRC) devices: the high-dimensional state richness originating from (a) large 
number of available physical states, (b) nonlinear modulation of physical states by electrical inputs, and (c) Time dependent changes of physical states. (d) Comparison of time-
series prediction accuracy and classification performance of PRC systems with and without high-dimensional state richness.
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PRC performs computation by mapping input information into a 
high-dimensional space through the complex nonlinear dynamics of 
the reservoir, followed by processing this information in the readout 
layer.3, 4 In this framework, the reservoir remains a fixed dynamical 
system during training, and learning is limited to the output layer. 
The primary function of the readout layer is to take the reservoir 
state vector as input and compute a weighted summation to 
generate the desired output. In ESN structures, these output weights 
are typically trained by linear regression,3 most often implemented 
in software.14

In conventional neuromorphic systems, synaptic devices play 
a key role by finely tuning their conductance in response to 
input pulses and stably storing the trained weights. Such devices 
are typically expected to exhibit linearity, symmetric 
conductance modulation, high state precision, and long-term 
retention characteristics.15-20 In contrast, the device 
characteristics required for RC systems are fundamentally 
different.
 The reservoir, as the core component of RC systems, 
transforms input sequences into high-dimensional dynamical 
states, while training is carried out only at the readout layer, 
where the output weights are updated.3, 14 In this architecture, 
the crucial requirement for the device is not self-learning or 
precise retention of weights, but rather the ability to generate 
a rich and distinguishable state space in response to input 
stimuli. Accordingly, three key attributes are required for PRC 
devices: the high-dimensional state richness originating from 
(1) large number of available physical states, (2) nonlinearity 
between physical states and electrical inputs, (3) short-term 
memory.21 These three essential features are schematically 
summarized in Figure 3, which illustrates how available number 
of physical states, nonlinearity, and short-term memory govern 
the performance of PRC systems. First, as illustrated in Figure 
3(a), a physical system intended for PRC must provide (i) a 
multiplicity of accessible material-intrinsic physical states and 
(ii) corresponding device electrical states that are tightly 
governed by those material states. Because device 
miniaturization is essential for practical PRC hardware, this 
state multiplicity must persist under scaling, such that a rich, 
high‑dimensional state space is retained even at nanoscale 
dimensions. To this end, it is advantageous to exploit physical 
states rooted in the intrinsic properties of the active material 
and to ensure strong coupling of those states to electrical 
observables, such as conductance.

A variety of material state variables can be harnessed, 
including—by way of example—the number and geometry of 
conductive filaments in resistive‑switching media, the degree of 
crystallinity in phase‑change materials, polarization 
configurations in ferroelectrics, and magnetization states in 
ferromagnets. These material platforms, widely explored as 
emerging non‑volatile memories, are well established to 
support multiple stable or metastable states at the nanoscale. 
When implemented in two‑terminal or three‑terminal device 
architectures such that electrical stimuli elicit multiple, 
well‑resolved output levels, these state variables furnish the 
substrate upon which nonlinearity and short‑term (fading) 

memory—discussed below—collectively yield the 
high‑dimensional state richness required for effective reservoir 
computing.

Second, nonlinearity is the most fundamental requirement 
for a reservoir element.4, 12, 14 A linear system cannot adequately 
capture interactions among input signals or separate higher-
order features. Therefore, the reservoir must exhibit nonlinear 
dynamics. In the reservoir dynamics equation 𝑟𝑖(t + Δt) = f(
∑𝑁

𝑗=1 𝑤𝑖𝑗(𝑡)𝑟𝑗(t) + 𝑥𝑖
𝑖𝑛(t)) the function 𝑓 must be nonlinear to 

transform the combinations of 𝑥𝑖
𝑖𝑛(t) into high-order features. 

With this nonlinear basis, even a linear relation in the readout 
such as 𝑟𝑜𝑢𝑡(𝑡) = 𝑊𝑜𝑢𝑡𝑟(𝑡) can yield complex time-series 
predictions, since the reservoir has already transformed the 
input history into a nonlinear, high-dimensional 
representation.14, 22 If the reservoir were purely linear, the 
entire system would struggle to separate intricate patterns with 
a linear readout alone. Therefore, nonlinearity is essential for 
mapping diverse inputs into a high-dimensional feature space. 
As illustrated in Figure 3(b), a nonlinear PRC transforms input 
signals into a high-dimensional representation through 
nonlinear responses of the device. This  requires not only simple 
linear responses but also critical transitions, saturation 
behaviors, and hysteretic characteristics. 12, 23, 24 From a physical 
perspective, such nonlinearity can be realized through various 
mechanisms, including tunneling or Schottky nonlinearities, 
ferroelectric hysteresis, trap charging/discharging saturation, 
and threshold-type ionic drift phenomena.23, 24

When a nonlinear device receives an input 𝑢, the reservoir 
state can be expressed as 𝑟 = 𝑓(𝑢) ≈ 𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3 +…(𝑟 
: reservoir state) where higher-order terms such as 𝑢2 and 𝑢3 
appear in addition to the linear term.22 As a result, the original 
signal is not represented solely by its amplitude but is expanded 
into multiple composite features. In PRC, these state values are 
directly sampled to construct the state matrix, and only the 
output weights are trained linearly to approximate the target 
function as a weighted combination of these complex features. 
When employing a saturation regime, in which the response 
becomes less sensitive as the input amplitude increases, signals 
with the same average intensity can generate different outputs 
depending on their amplitude patterns—being highly sensitive 
to small signals but insensitive to large ones.25 This property 
simultaneously enables outlier suppression and feature 
separation, such that PRC can utilize these distinctions in its 
state space to classify different classes or sequences using only 
the readout layer. Similarly, when a nonlinear threshold regime 
is employed, the response remains nearly unchanged for |𝑢|
< 𝜃(𝜃:threshold value that determines the onset of nonlinear 

activation), but distinct features are generated once the input 
exceeds the threshold, functioning as an on/off marker. 26, 27 
These event features are then recorded in the reservoir state as 
information about how many times the threshold was crossed 
and at what points in time. The PRC framework can exploit 
these temporal and sequential differences through a simple 
linear readout for classification or regression tasks. In summary, 
nonlinearity in PRC serves as a mechanism to efficiently 
transform input signals into higher-dimensional 
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representations, with the physical system itself functioning as a 
nonlinear operator capable of generating complex responses.

Third, short-term memory or time dependence is an essential 
attribute for processing temporal input streams.28-30 Since RC 
fixes the internal connections and trains only the readout, the 
reservoir states should not merely respond to the 
instantaneous input or preserve traces indefinitely. Instead, 
they must exhibit fading memory characteristics to generate 
state dynamics that reflect the temporal order of inputs.3 
Mathematically, this can be described as 𝑟𝑡 ≈ ∑𝜏≥0 𝐾(𝜏)𝑢𝑡―𝜏  ,12 
where 𝐾(𝜏) is the memory kernel that defines how past inputs 
influence the present state with time-dependent weighting. As 
𝜏 increases, i.e., for inputs further in the past, the contribution 
gradually fades. If 𝐾(𝜏) decays too quickly, the system cannot 
effectively retain information from previous inputs. On the 
other hand, if the decay is too slow, residual signals from earlier 
inputs overlap with past ones, leading to correlated states and 
reduced separability.26, 29, 31 Therefore, PRC devices must 
achieve an appropriate balance in relaxation such that recent, 
intermediate, and older inputs are all reflected in a properly 
balanced property. In actual devices, the response often follows 
a multiscale decay behavior, expressed as 𝐼(𝑡)≅ ∑𝑖 𝐴𝑖𝑒―𝑡/𝜏𝑖 , 
where 𝐼(𝑡) denotes the device response, 𝐴𝑖 represents the 
weighting of each component, and 𝜏𝑖 is the characteristic decay 
constant. If a wide distribution of 𝜏𝑖 values exists, the device can 
respond to the same input across multiple time scales, enabling 
the readout to access a broad range of temporal 
dependencies.23, 24, 32

However, if the memory duration is excessively short or too 
long, the system suffers from information loss or overfitting, 
respectively. Thus, optimal memory properties with 
appropriate 𝜏𝑖

 values are required for effective PRC operation.24, 

32 As illustrated in Figure 3(c), depending on the characteristics 
of the task to be processed, there exists an optimal decay time, 
and the system performance can vary significantly according to 
decay time of the device. As shown in Figure 3(c), when the 
decay time is appropriately tuned, the system can effectively 
retain and reflect the order of input sequences. Therefore, to 
handle a wide range of tasks, it is desirable to intentionally tune 
the relaxation time within a single device to achieve the optimal 
value for each task.33-35 This can be realized mainly by 
electrically modulating parameters such as polarization 
relaxation, trap time constants, and relaxation of ionic drift, 
which effectively control the temporal dynamics of the device.

Finally, high-dimensional state richness, which is the 
outcome of the combination of the aforementioned large 
number of available physical state, nonlinearity between 
physical states and electrical inputs, and short-term memory, is 
a critical factor that determines the quality of the internal states 
generated by the reservoir, 25, 36 requiring that distinct inputs 
produce sufficiently distinguishable dynamical responses. 4, 22 
Since the readout is linear, overall performance strongly 
depends on the diversity of responses generated by the 
reservoir. Even for identical inputs, different nodes or devices 
should generate distinct reactions to ensure a high-dimensional 
representation. This diversity enables input patterns to become 
linearly separable and allows regression processes to achieve 

generalization with relatively small weights. Consider the RC 
readout relation 𝑦 ≈ 𝑋𝜔 , where 𝑦 is the predicted output, 𝑋 is 
the state matrix, 𝜔 is the output weight vector. By definition, 𝑦

 always lies within the column space of 𝑋, denoted as col(𝑋), 
which represents the entire span of results achievable through 
the readout.37 Training then corresponds to selecting the 𝑦 
within col(𝑋) that is closest to the target 𝑦. In this context, the 
prediction error ||𝑦 ― 𝑦||is equivalent to the distance between 
the target 𝑦 and col(𝑋). To minimize this distance, col(𝑋) itself 
must be sufficiently broad and diverse. State richness 
effectively broadens col(𝑋) by ensuring that the columns of 𝑋 
are numerous and mutually distinct, thereby enabling the target 
𝑦 to fall close to col(𝑋). As a result, prediction errors are 
reduced, and accurate approximation can be achieved with 
relatively small weights.12, 14, 22, 37 

Figure 3(d) compares the performance of PRC systems 
depending on whether high-dimensional state richness is 
present. When such state richness exists, the column space 
becomes broader, allowing more accurate and reliable 
approximations. As shown in the figure, this leads to improved 
performance in various tasks, including time-series prediction 
and digit classification. In practice, strong state richness 
requires reproducible responses for repeated identical inputs 
while ensuring clear distinction between different inputs. 
Various physical mechanisms have been explored in PRC to 
achieve this property, including ferroelectric hysteresis and 
partial switching, threshold switching and excitability in VO2, 
multi-timescale fading memory arising from ionic drift–
diffusion in oxide memristors, and multimode interference and 
distributed delay in silicon photonics.27, 31, 32, 38-43 These 
mechanisms enable the same input to generate multiple 
distinct state variations, thereby enhancing the separability of 
the reservoir states. Consequently, identical inputs yield 
consistent responses, whereas different inputs produce clearly 
distinguishable outcomes, allowing for low-error and stable 
generalization even with small output weights.

In summary, nonlinearity provides the foundation for 
information mapping, short-term memory governs the 
temporal dynamics of states, and state richness  ensures that 
different inputs lead to distinct outputs.4, 12, 14, 22, 31 These three 
characteristics represent essential requirements for physical 
reservoirs to function as computational systems and must be 
considered when evaluating physical devices for PRC 
implementation. From this perspective, unlike conventional 
synaptic devices, PRC devices are not primarily designed for 
highly stable weight storage but rather for generating rich 
dynamical responses and nonlinear spatiotemporal behavior. 
Consequently, synaptic devices for reservoir computing should 
be designed not only as weight storage units, but as history-
dependent, state-rich dynamic mapping engines that transform 
input sequences into high-dimensional internal states. 

In recent years, a variety of physical devices including 
memristors44, 45, resistive random access memory(ReRAM)46, 
phase-change memory(PCM)47, and other devices have been 
experimentally implemented as reservoir platforms in PRC. 
Each hardware system achieves nonlinear and temporal 
dynamics through its own characteristic physical mechanisms, 
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thereby demonstrating the versatility of the PRC concept and 
the diversity of device engineering strategies available. Among 
these, ferroelectric devices distinguish themselves by 
combining strong nonlinearity, short-term memory effects, and 
rich internal state dynamics, a set of features that directly 
address key requirements for effective reservoir computing. In 
contrast to platforms where nonlinearity emerges from 
complex mechanism, ferroelectrics offer a well-defined, 
electrically controllable mechanism that enables robust and 
interpretable reservoir function. As a result, ferroelectric-based 
reservoirs provide an efficient and physically grounded platform 
for realizing high-dimensional and energy-efficient 
computation. The specific advantages and implementation 
strategies of ferroelectric reservoirs are examined in further 
detail in Sections 2 and 3.

2. Ferroelectric Materials and Device Physics

This section discusses the fundamental properties of 
ferroelectric materials, devices and explains how these features 
can be utilized in the context of RC. Ferroelectrics exhibit 
inherent characteristics such as nonlinearity and multi-level 
states, which play a central role in realizing short-term memory, 
state richness, and dynamic responses required for RC.48-50 
Here, we provide a systematic overview of ferroelectricity, 
including its historical development, intrinsic properties, 
representative device structures, and features that can be 
exploited for RC applications.

2.1. Overview of ferroelectricity

The history of ferroelectricity continues more than a century, 
marked by continuous discoveries and innovations that have 
shaped modern applications. Ferroelectricity was first reported 
in 1920 by Valasek, who observed a hysteresis loop in Rochelle 
salt (NaKC4H4O6·4H2O). 51 In 1935, KH2PO4 was discovered, 
offering stability across a wide temperature range, 52 and the 
discovery of BaTiO3 in the 1940s triggered extensive research 
into perovskite ferroelectrics such as PbZrxTi1-xO3 (PZT).53 In 
subsequent decades, a variety of ferroelectrics were identified, 
including PVDF, 54 although many of these materials suffered 
from severe fatigue and limited complementary metal-oxide-
semiconductor(CMOS) compatibility.

A major turning point occurred in 2011 with the discovery of 
ferroelectricity in doped HfO2 thin films.55 This breakthrough 
demonstrated excellent ferroelectric properties together with 
outstanding compatibility and scalability in existing 
semiconductor processes, addressing long-standing challenges 
such as thickness scaling and integration. As a result, research 
in ferroelectric materials was renewed. More recently, two-
dimensional ferroelectrics such as CuInP₂S₆56 and WTe₂57 have 
been reported, further broadening the application prospects of 
ferroelectrics, ranging from neuromorphic computing to 
flexible electronics. The development of ferroelectric materials 
reflects the dynamic interplay between fundamental science 
and technological demand. Today, ferroelectrics continue to 
play a central role in the advancement of memory and logic 

devices, and ongoing innovations are expected to contribute to 
the progress of energy-efficient electronic systems.58

Ferroelectrics are distinguished from ordinary dielectrics by 
their spontaneous polarization, which is retained even after the 
external electric field is removed, and can be reversed by 
applying an opposite electric field.59 This phenomenon arises 
from the lack of spatial inversion symmetry within the crystal 
lattice, where a relative displacement between the centers of 
positive and negative charges generates a permanent electric 
dipole.60 The inherent nonvolatility of ferroelectrics thus 
provides a fundamental basis for next-generation memory and 
neuromorphic devices.15

The most common method for identifying ferroelectric 
properties is the quasi-static measurement of polarization–
electric field (P–E) hysteresis loops. When bipolar trigonal 
pulses are applied, the ferroelectric material periodically 
switches between two stable polarization states. At low electric 
fields, the existing polarization state is maintained, whereas 
once the field exceeds the coercive field (𝐸𝑐), dipoles realign, 
leading to an abrupt change in polarization. With further 
increase in the electric field, the polarization gradually 
approaches the saturation polarization (𝑃𝑠).

Such polarization originates from the domain dynamics of 
ferroelectrics. Domains are regions within the material where 
dipoles are aligned in the same direction, and each domain is 
separated by a domain wall, which can be displaced under an 
external electric field.61 Polarization reversal does not occur 
uniformly across the entire film but proceeds through the 
nucleation and growth of oppositely oriented domains.62 
Depending on whether domain switching is fully or partially 
controlled, ferroelectrics can support both digital (binary) 
operation and analog (multi-level) operation. Recent studies 
have highlighted the importance of intermediate polarization 
states formed during partial domain switching. These states are 
stable and nonvolatile, and they resemble the gradual 
modulation of synaptic weights observed in biological synapses. 
As a result, ferroelectric thin films are considered promising 
candidates for synaptic devices in neuromorphic computing.15

Antiferroelectrics, in contrast, exhibit antiparallel dipole 
alignment at zero external field, resulting in a net polarization 
of zero. 63 When an electric field above a certain threshold is 
applied, they undergo a transition into the ferroelectric phase, 
and upon removal of the field, they return to the original 
antiferroelectric state, again yielding zero net polarization. This 
field-induced transition gives rise to a characteristic double 
hysteresis loop in the P–E curve.64

In summary, ferroelectrics, owing to their nonvolatile 
behavior, reversible dipole switching, and dynamic domain 
characteristics, have emerged as promising candidates for next-
generation memory and computing devices. 
2.2. Representative device structures

Ferroelectric materials have enabled the development of 
various nonvolatile devices, among which ferroelectric random-
access memory (FeRAM), ferroelectric Field-Effect Transistor 
(FeFET), and ferroelectric tunnel junction (FTJ) are the most 
representative. Each structure exploits ferroelectric 
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polarization to realize memory and computational functions as 
schematically illustrated in Figure 4.

FeRAM is based on a ferroelectric capacitor (FeCAP) with a 
metal–ferroelectric–metal (MFM) configuration. The capacitor 
is typically integrated with a select transistor in a 1T–1C 
architecture to form a FeRAM cell.65 Data are stored by 
switching the polarization state of the ferroelectric layer. As 
shown in Figure 4(a), FeRAM exhibits a characteristic P–V 
hysteresis loop corresponding to bistable polarization states. 
FeRAM provides advantages such as fast switching, high 
endurance, and low power consumption, but it still has the 
drawback of destructive readout.66 

 The  FeFET is a transistor in which the gate insulator of a 
conventional MOSFET is replaced with a ferroelectric layer, 
generally adopting a metal–ferroelectric–insulator–
semiconductor (MFIS) structure.67 As shown in figure 4(b), the 
polarization state of the ferroelectric layer modulates the 
threshold voltage of the transistor, thereby enabling nonvolatile 
memory operation. Due to its ability to store both digital 
information and analog weights, the FeFET has emerged as a 
promising device for next-generation computing applications 
such as logic-in-memory and neuromorphic systems. 68, 69 

The  FTJ consists of a thin ferroelectric layer, typically only a 
few nanometers thick, sandwiched between two metallic 
electrodes. The polarization direction changes the tunneling 
barrier height, thereby producing distinct high- and low-

resistance states.70 As shown in Figure 4(c), the FTJ exhibits 
nonlinear I–V characteristics, where the ON and OFF states 
correspond to opposite polarization orientations. FTJs feature 
non-destructive readout, structural simplicity, and excellent 
scalability. In addition, their ability to support multi-level states 
makes them suitable for emulating synaptic behavior in 
neuromorphic computing. 71 

2.3. Operational characteristics 

Ferroelectric materials exhibit unique electrical properties, 
making them suitable for a wide range of memory and 
computing applications. Key operational characteristics such as 
nonlinear P-E relation, nonlinear P-t relation, retention, and 
endurance are decisive factors that define the performance of 
ferroelectric devices considered for PRC.

Ferroelectrics exhibit P-E nonlinearity because polarization 
reversal occurs only when the applied voltage exceeds the 
coercive voltage. This property allows ferroelectric devices to 
remain stable in the “off” state and switch sharply to the “on” 
state only in response to signals above the threshold voltage.72 
Such nonlinear switching behavior enables devices such as 
FeFETs and FTJs to reliably store and process digital information.

Each unit cell of displacive ferroelectric materials has two 
different polarization states originating from two energetically 
stable arrangements of ions. As a result, a finite volume of 
ferroelectric materials can have numerous polarization states 
by modulating the relative fraction of the domains with 
different polarization states, which is a fundamental 
requirement for the PRC with high-dimensional state richness. 
The relative fraction of the domains and resulting P state can be 
modulated by applying E. Typically, nonlinear relation between 
the P and E is observed in ferroelectric materials. To describe 
the nonlinear P-E relation, two different tanh functions are 
frequently utilized for the two branches of the typical P-E 
hysteresis of ferroelectric materials. It should be noted that 
tanh is one frequently used function to show nonlinearity 
required for reservoir computing as mentioned previously in 
this review. It implies that the FeCAP or FeRAM with 1T-1C cell 
can show nonlinear P-V relations for PRC applications.  
Moreover, such nonlinear P-E relation can results in the current-
voltage nonlinearity of FeFETs or FTJs. 

Nonlinear P-t relation arising from their switching kinetics 
describe the rate and dynamics of polarization reversal in 

ferroelectric materials. The switching time, i.e., the time 
required to change the polarization state, is a critical factor in 
determining the operating speed of memory devices such as 
FeRAM. Optimizing switching kinetics is essential to reduce 
power consumption and improve overall device performance. 
Theoretical models such as the Kolmogorov–Avrami–Ishibashi 
(KAI) model and the nucleation-limited switching (NLS) model 
provide further insight into polarization reversal dynamics. The 
KAI model assumes that all domains in a ferroelectric thin film 
share a uniform switching time, predicting that the fraction of 
switched polarization follows 1 ― exp [ ― (𝑡/𝑡0)𝑛], where 𝑡0 is 
the characteristic time and 𝑛 is the Avrami exponent. In 
contrast, the NLS model assumes a distribution of switching 
times across domains, effectively treating 𝑡0 as following a 

Fig. 4 Schematic diagrams of (a) ferroelectric random-access memory (FeRAM), (b) 
ferroelectric field-effect transistor (FeFET), and (c) ferroelectric tunnel junction (FTJ), 
illustrating their basic device structures and representative electrical characteristics: 
FeRAM (P-E), FeFET (Id-Vg), and FTJ (I-V) curves showing nonlinear behaviors
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Lorentzian distribution. Both models highlight the inherently 
nonlinear nature of polarization reversal.15, 73-75

 Retention refers to the ability of a ferroelectric material to 
maintain its polarization state over time after removal of the 
external voltage, and it represents a critical characteristic for 
nonvolatile memory applications. High retention ensures that 
data stored in devices such as FeRAM and FTJs can be preserved 
for long durations without continuous power supply. 76 
Retention can be influenced by factors such as temperature and 
defect states, which affect the stability of stored information.77 
It is one of the most important advantages of ferroelectrics as 
nonvolatile memories. However, when ferroelectric films are 
scaled down to very thin thickness, leakage currents or 
depolarization fields can induce relaxation processes that drive 
the polarization back toward its initial state. In such cases, 
ferroelectrics can also mimic short-term memory 
characteristics.49, 78

Especially, depolarization field is a powerful methodology to 
induce short-term memory in ferroelectric devices. Generally, 
in the metal-ferroelectric-metal capacitors, the depolarization 
field is negligible because the physical distance between the 
surface charge of ferroelectric materials by their polarization 
and compensating charges at the electrode surface is ideally 
zero. However, typically in FeFETs and FTJs non-ferroelectric 
layers exist between the ferroelectric layer and metal electrode 
or semiconductor channels, inducing non-zero depolarization 
field. Such depolarization field can be also modulated by 
changing the capacitance of the non-ferroelectric between the 
ferroelectric materials and electrodes/channels. 

Endurance is the other critical characteristics of ferroelectric 
memory devices considered for PRC, because the property of 
the physical reservoir should be remained with no change. 
Especially for the case of (Hf,Zr)O2 (HZO)-based ferroelectrics,  
however, the repetitive polarization switching can result in the 
polarization states with three typical phenomena such as wake-
up, fatigue, and hard break-down. The wake-up effect is 
typically observed in the initial stage of the endurance test, 
where gradual increase in Pr is observed with increasing number 

of switching cycles. The wake-up effect if known to originate 
from the redistribution of charged defects such as oxygen 
vacancies and/or resulting local phase transition. With further 
increasing number of switching cycles, the degradation of 
ferroelectrics is frequently observed, which is called fatigue. The 
main mechanism of the fatigue is known as the domain wall 
pinning by defects such as oxygen vacancies or charge trapping. 
The hard breakdown generally originates from the rapid 
increase in the concentration of defect such as oxygen 
vacancies and their accumulation to form permanent 
conduction paths. With these typical changes in ferroelectricity 
finally affects the endurance of ferroelectric devices, so 
mitigation of such effects with an enhanced endurance is one 
significance for the PRC applications of ferroelectric devices. 

3. Ferroelectric Devices for Reservoir Computing

3.1. Suitability of ferroelectric devices for PRC implementation

 HZO-based ferroelectric devices have demonstrated strong 
potential as artificial synapses. However, several intrinsic 
limitations remain for their application in conventional deep-
learning-based neuromorphic training systems. Reported 
challenges include nonlinear weight updates, device-to-device 
variation (DTDV), and charge trapping, as well as saturation and 
insufficient retention characteristics.18, 66, 79-81 These issues can 
degrade the stability and accuracy of learning processes, and 
therefore require structural and process-level improvements 
such as interface engineering, dopant optimization, and 
superlattice design.80, 82-84

Nevertheless, while these properties may present 
disadvantages for synaptic devices that demand precise weight 
modulation, they can instead serve as functional advantages in 
reservoir computing architectures. In RC, the essential 
requirement is the generation of rich and distinguishable states 
over time, where intrinsic nonlinearity, temporal dependence, 

Fig. 5 Ferroelectric characteristics relevant to reservoir computing (RC): (a) origin of ferroelectric nonlinearity, (b) unlike conventional synapses, conductance increases nonlinearly 
with the number of pulses, resulting in nonlinear physical reservoir computing (PRC) outputs, (c) origin of short-term memory in ferroelectrics, (d) effect of short-term memory 
where PRC outputs vary depending on the timing of pulse inputs, (e) origin of device-to-device variation (DTDV) in HZO, (f) enhancement of state richness due to the ability of 
ferroelectric devices to generate distinct output states in response to same inputs
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and strong input separability within the reservoir dynamics 
directly contribute to enhanced performance. 12, 21

Recent advances in hardware-based RC systems have attracted 
significant attention. Such systems have achieved performance 
comparable to conventional RC in various tasks, including 
speech recognition, 21, 32 pattern classification, 12, 85 and time-
series prediction.9, 39, 41 In general, an RC framework consists of 
a reservoir that maps time-varying inputs into a high-
dimensional nonlinear feature space, and a readout network 
that processes the reservoir states through a linear weighted 
summation.14 During training, only the readout network is 
optimized, while the reservoir remains unchanged.

In PRC, the reservoir and the readout network are ideally 
constructed using volatile and nonvolatile devices, respectively. 
Previous studies have predominantly focused on implementing 
reservoirs with volatile devices, such as diffusive memristors, 21, 

38, 41, 86 nanomagnetic systems, 87, 88 self-organized nano-
networks, 89, 90and electrochemical transistors. 10, 91 In contrast, 
hardware implementations of readout networks remain 
relatively limited, though examples exist in which nonvolatile 
devices such as drift memristors44, 89, 92 have been used to store 
readout weights.38 However, despite the progress achieved 
with various device platforms, physical reservoirs still face 
several intrinsic limitations. Most notably, stochastic switching 
dynamics, limited endurance under repeated operation, and 
pronounced sensitivity to operational and environmental 
conditions frequently compromise the reproducibility and 
scalability of reservoir states.93-95 Moreover, vulnerability to 
thermal and chemical degradation in these devices remains a 
significant challenge for stable long-term system performance. 
Thus, although volatile device-based reservoirs successfully94, 95 
induce nonlinear and dynamic behaviors, substantial 
improvements in reliability, endurance, and large-scale 
integration are still required for the realization of robust 
hardware-based PRC systems.38, 96

In contrast, ferroelectric devices based on polarization 
switching exhibit predictable and repeatable behavior.18, 71, 103, 

104 Ferroelectric PRC can therefore provide not only tunable 
resistance states but also highly reproducible memory 
operation with excellent endurance.71, 105, 106In addition, fast 
switching speed and low-power operation107, 108 offer further 
advantages, enabling ferroelectric-based PRC systems to 
achieve reliability, accuracy, and energy efficiency 
simultaneously. Moreover, ferroelectrics inherently possess 
nonlinearity, short-term memory, and state richness, all of 

which are essential for efficient information processing in RC 
systems.49, 50, 109 In contrast to other PRC devices such as ReRAM 
and PCM, ferroelectric devices offer several unique advantages 
as reservoir substrates. First, their inherent hysteresis and 
remnant polarization provide strong nonlinearity and memory 
behavior without additional supporting circuits, making them 
naturally suitable for generating rich nonlinear dynamics and 
fading memory.110 Second, intermediate polarization states and 
partial switching allow ferroelectric reservoirs to retain input 
history over a broad range of time scales, thereby supplying a 
large number of reliably addressable internal states for 
sequential data processing.111 Third, HfO2‑based ferroelectric 
devices operate at low voltage and power and are compatible 
with standard CMOS fabrication, which facilitates reliable, 
large‑scale, and energy‑efficient integration of reservoir arrays 
compared with other PRC device platforms.112 

Ferroelectric devices involve several trade-offs when 
compared with other physical reservoir computing platforms. 
Because ferroelectric switching occurs primarily near a well-
defined coercive field, the effective voltage window for analog 
tuning is relatively narrow, and deeply scaled devices may face 
challenges in stabilizing a large number of distinct conductance 
states due to depolarization effects and interfacial dead 
layers.100 By contrast, ReRAM provides a wide resistance range 
through filamentary switching and scalable crossbar arrays,98 
while PCM enables easy multilevel implementation via 
progressive crystallization.98, 99 From a materials and process 
perspective, HfO2-based ferroelectrics are fully CMOS 
compatible but require precise control over composition113, 
phase formation, and thermal budget, resulting in a relatively 
narrow process window compared to scalable architectures of 
ReRAM and mature 3D fabrication processes of PCM.  In 
comparison, alternative PRC platforms benefit from more 
mature backend processes, offering greater flexibility in device 
architectures and integration.114 These aspects are summarized 
in Table 1 below.

The nonlinearity of ferroelectrics originates from 
mechanisms such as nucleation-limited switching and domain 
pinning, as illustrated in Figure 5(a).18, 66, 80 Domain pinning 
refers to the phenomenon in which domain walls are pinned by 
defects etc., thereby hindering their motion and resulting in 
partial or incomplete switching. This effect introduces 
nonuniform polarization dynamics that contribute to the overall 
nonlinear response of ferroelectric materials. As shown in 
Figure 5(b), the conductance of ferroelectric devices increases 

Characteristics 
as PRC 

Ferroelectric Devices ReRAM PCM

Advantages97-99 - Intrinsic hysteresis & memory
- Rich nonlinear dynamics
- Low‑voltage
- CMOS‑compatible operation

- Wide resistance range
- Scalable crossbars

- Easy multilevel implementation
- Strong phase-transition 
nonlinearity

Cons100-102 - Narrow analog window near coercive field 
- Scaling‑related issues
- Imprint/drift/fatigue

- Higher variability 
- Cycle‑to‑cycle noise
- Faster cumulative damage

- High energy switching
- Resistance drift
- Thermal crosstalk

Table 1 Summary of material and device properties of ferroelectric, ReRAM, and PCM technologies
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nonlinearly with the number of applied pulses, demonstrating 
polarization-driven accumulation behavior that results in 
nonlinear PRC outputs. Ferroelectrics respond to input signals 
in a nonlinear manner, enabling small variations in input to be 
amplified into pronounced output differences.50

  The short-term memory in ferroelectric systems arises from 
multiple physical mechanisms. One contributor is the 
depolarization field caused by incomplete charge screening, 
which destabilizes the polarization and leads to gradual decay 
over time. In addition, oxygen vacancies generate internal 
electric fields that oppose the polarization direction, thereby 
contributing to short-term memory behavior. Furthermore, 
antiferroelectric materials inherently exhibit volatile switching, 
which can naturally emulate short-term memory 
characteristics. These effects together enable short-term 
memory.38, 78, 83 This mechanism is schematically illustrated in 
Figure 5(c). Such behavior, as illustrated in Figure 5(d), allows 
the instantaneous physical states of the device to retain 
distinctions depending on prior inputs, thereby facilitating 
effective processing of temporal data streams. 48

As shown in Figure 5(e), HZO films can exhibit different 
phases even under nominally identical experimental conditions, 
resulting in DTDV. This variation allows the same input to 
produce multiple distinct output states, as depicted in Figure 
5(f), thereby enhancing the state richness of the reservoir.115 
Enhanced state richness, in turn, expands the accessible 
computational pathways and enables the handling of complex 
data-processing tasks.49

 Antiferroelectrics, in addition to ferroelectrics, can also be 
utilized for RC. Anti-ferroelectric materials exhibit field-induced 
phase transitions between antiferroelectric and ferroelectric 
states, giving rise to a characteristic double hysteresis loop. This 
nonlinear hysteretic response enables input signals to be 
effectively mapped into a complex high-dimensional space. 
Importantly, the intrinsic volatility of antiferroelectrics enables 
reset-free operation naturally, as their polarization 
spontaneously returns to the original state once the external 
field is removed. The reset-free characteristic is advantageous 
for achieving faster and more energy-efficient computation. 
Owing to this combination of nonlinearity and volatility, 
antiferroelectrics are highly promising materials for physical RC 
applications.83, 116-120

In summary, ferroelectrics inherently combine the three key 
properties required for RC, namely nonlinearity, short-term 
memory, and state richness and these characteristics enable 
efficient processing of dynamically varying time-series data.
Table 2 Summary of ferroelectric device characteristics relevant 
to PRC 

Property Representative Value / Performance
Endurance(cycles) ≥10⁶ ~ 10⁹38, 121

Switching Speed <1 ns ~ 10 ns39, 118

Power 
Consumption

sub-pW ~ nW (ultra-low, typical <1 
nW/op)38, 122

Nonlinearity Strong polarization-driven nonlinear 
response72, 117

Short-term 
Memory

Effective fading memory, short-term τ 
≈ 2–3 steps39, 123

State Richness 8–15 distinguishable reservoir states 
(HZO, FeFET)123, 124

Device Variability Cycle-to-cycle variation <8%38, 125

3.2. Reported demonstrations and case studies

 Although 1T–1C FeRAM is widely used in nonvolatile memory 
applications, they are not well suited for PRC. Fundamentally, highly 
nonvolatile nature of FeRAM lacks the intrinsic time-dependence and 
fading memory essential for reservoir dynamics, as polarization 
states remain stable over long timescales without natural decay. 
Once written, polarization states remain essentially unchanged over 
long timescales, preventing the natural state evolution and history-
dependent decay that underpin temporal information processing in 
reservoir computing.126 While transient polarization or charge 
dynamics can, in principle, be accessed in FeRAM, utilizing them 
typically requires additional supporting circuitry, which increases 
structural complexity and introduces substantial readout overhead 
due to continuous sampling.127, 128 Moreover, because the access 
transistor is connected in series, the ferroelectric capacitor is the 
only nonlinear element contributing to the system response, limiting 
the diversity of nonlinear dynamics that can be generated within a 
single cell. The relatively large cell area of 1T–1C FeRAM compared 
to FeFETs or FTJs further reduces its suitability for large-scale 
reservoir integration. As a result, FeRAM-based PRC 
implementations have been rarely reported in the literature, and 
FeRAM is therefore not discussed further in Section 3.2.

By contrast, FeFETs and FTJs inherently support time-dependent 
device responses in addition to continuous modulation of 
conductance or current, making them more suitable for physical 
reservoir computing. In these devices, polarization-driven channel 
modulation in FeFETs and tunneling-current modulation in FTJs 
naturally introduce history-dependent and relaxational dynamics, 
enabling fading memory without the need for auxiliary circuitry. Both 
platforms are compatible with CMOS processes and scalable 
architectures, including crossbar implementations, and have 
therefore been actively explored as neuromorphic and reservoir 
computing platforms.18, 98, 129

Compared with FTJs, FeFETs provide gate-controlled channel 
conductance and direct compatibility with standard CMOS logic 
circuits, enabling flexible biasing schemes and straightforward 
integration of reservoir nodes into large-scale silicon systems. In 
addition, the three-terminal geometry of FeFETs intrinsically 
decouples read and write operations, mitigating read disturbance, 
relaxing endurance constraints, and allowing more stable control of 
fading memory characteristics. FTJs, on the other hand, are compact 
two-terminal devices that naturally exhibit stronger tunneling-
induced nonlinearity and multilevel conductance, making them 
advantageous for highly scalable crossbar-type reservoirs, although 
their circuit-level controllability and read–write separability are less 
flexible than those of FeFETs.15, 18
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3.2.1. RC based on FeFETs

Fig. 6 Reservoir computing (RC) based on ferroelectric field-effect transistors (FeFETs): 
(a) generation of virtual nodes using the drain current response of a FeFET. Based on ref. 
112. (b) improvement of classification accuracy with FeFET-based RC. Based on ref. 113. 
(c) RC operation using leaky antiferroelectric field-effect transistors (AFeFETs) without 
reset pulses. Reproduced from ref. 114 with permission from John Wiley & Sons, Inc., 
copyright 2025. 

Among ferroelectric devices, the FeFET has been most 
actively investigated as a physical reservoir for RC.116, 130, 131 
FeFETs combine favorable features for reservoir 
implementation, including excellent compatibility with 
standard CMOS processes, intrinsic nonlinearity, and inherent 
short-term memory. Early studies on FeFET-based RC focused 
on utilizing the dynamic response of a single device, which has 
since evolved into more advanced approaches aimed at 
maximizing system performance. 

The initial concept of employing a FeFET as a physical 
reservoir was proposed by Nako et al. The key idea was to use 
the time-dependent drain current of a single FeFET, under 
sequential voltage pulse inputs, as virtual nodes, as illustrated 
in Figure 6(a). 131 When input pulses are applied, the 
polarization state of the ferroelectric layer in the gate dielectric 
changes, modulating the channel conductivity. Under relatively 

weak voltage pulses, only partial domain switching occurs. After 
the removal of the pulses, these domains tend to relax back to 
their original state over time. This behavior naturally gives rise 
to short-term memory and multiple intermediate states, which 
are essential for reservoir dynamics.131

While the initial studies demonstrated the feasibility of 
applying FeFETs to RC, subsequent research has focused on 
strategies to further improve the performance of FeFET-based 
RC systems. Figure 6(b) illustrates the progressive development 
of these approaches. One strategy involves expanding 
dimensionality by employing multiple FeFETs in parallel. This is 
particularly important for complex and large-scale tasks such as 
speech recognition, where a single device is insufficient. To 
address this, the input signal can be decomposed into multiple 
frequency components, each applied to a separate FeFET, 
thereby enhancing classification accuracy. In addition, beyond 
using only the drain current, later approaches also exploited 
source and substrate currents. Since these three current paths 
exhibit distinct dynamic responses even under identical gate 
voltage inputs, their simultaneous use effectively triples the 
number of virtual nodes without requiring additional hardware, 
leading to further improvements in classification accuracy. 130

Research has also explored the use of antiferroelectric FETs 
(AFeFETs) in RC. As shown in Figure 6(c), the leaky AFeFET 
reservoir enables RC operation without explicit reset pulses, 
leveraging its intrinsic volatility for fading-memory dynamics. 
Jung et al. proposed an in-sensor processing system in which a 
piezoelectric sensor was vertically integrated with a three-
dimensional AFeFET reservoir. Moreover, the adoption of Zr-
rich leaky antiferroelectric films enabled fast response speeds 
on the order of microseconds to milliseconds.116

In conclusion, FeFET-based RC research has rapidly advanced 
from the initial concept of utilizing the dynamic behavior of a 
single device to more complex approaches, including the 
exploitation of multiple current paths, parallel multi-device 
architectures, and the integration of antiferroelectric devices.

3.2.2. RC based on FeTFTs

FeTFTs have also been explored for RC applications. Figure 
7(a) illustrates the structure of an FeTFT specifically designed 
for RC. The core strategy of this study was to engineer the 
crystal phase of HZO in order to form a morphotropic phase 
boundary (MPB) between the ferroelectric and non-
ferroelectric phases, and to employ this MPB as the reservoir. 
Depending on annealing conditions, HZO can form either a 
ferroelectric phase exhibiting switchable polarization or a 
tetragonal phase with paraelectric characteristics. The 
researchers utilized the volatile property observed at the MPB, 
where the polarization is induced by an external voltage and 
gradually relaxes to the original state after voltage removal, to 
implement the reservoir. Based on this phenomenon, the MPB-
TFT was employed as a physical reservoir capable of nonlinear 
transformation and short-term memory. As shown in Figure 
7(b), the nonlinear and multilevel response of the MPB-TFT 
enables the mapping of input signals into a high-dimensional 
space.

Page 11 of 18 Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 2

:0
9:

37
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5TC03936C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tc03936c


ARTICLE Journal Name

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

 For the readout network, FeTFTs with HZO stabilized in the 
ferroelectric orthorhombic phase were adopted as synaptic 
devices. Leveraging the intrinsic nonvolatility of ferroelectrics, 
these FeTFTs maintained multilevel conductance states, which 
played a crucial role in accurately storing synaptic weights 
determined during training. Meanwhile, MPB-TFTs were also 
employed as neuron devices in the readout network, since leaky 
integrate-and-fire (LIF) neurons, similar to reservoirs, require 
volatile short-term memory properties.

In conclusion, this work demonstrated that by phase 
engineering of a single material, HZO, two functionally distinct 
devices—FeTFTs and MPB-TFTs—could be fabricated and 
monolithically integrated onto a single chip to realize all 
components of an RC system. This approach effectively 
addressed the limitations of prior RC systems, which required 
heterogeneous materials and fabrication processes for different 
components. 39

3.2.3. RC based on FTJs

Fig. 8 Reservoir computing (RC) implementation using ferroelectric tunnel junctions 
(FTJs): (a) schematic of a leaky FTJ, (b) I–V curve and P–V loop exhibiting large leakage 
current while retaining ferroelectric switching characteristics. (c) current measurement 
under various depolarization pulse sequences. Reproduced from ref. 49 with permission 
from The Japan Society of Applied Physics, copyright 2021.

FTJs, originally investigated as nonvolatile memory devices, 
have recently attracted attention as reservoirs in RC systems by 
exploiting their intrinsic physical properties.49, 109, 132-134 FTJs can 
provide the high dimensionality required for efficient RC 
through multilevel states. Yu et al. demonstrated a physical RC 
system in which depolarization effects in ultrathin ferroelectric 
films were intentionally harnessed to generate multiple virtual 
nodes from a single FTJ, as schematically illustrated in Figure 
8(a). In this architecture, input data were first converted into 
voltage pulse sequences using a masking process and 
subsequently applied to the FTJ reservoir. The resulting 
dynamic current responses were then processed by an ReRAM-
based readout layer to yield the final outputs. 

The key insight of this study was to repurpose a phenomenon 
typically regarded as detrimental to device performance. When 
the ferroelectric layer thickness is reduced below ~7 nm, 
depolarization effects become pronounced, leading to the 
gradual loss of polarization even without an external bias. By 
fabricating leaky FTJs with 3.5-nm-thick HZO, the researchers 
amplified this effect. As shown in Figure 8(b), these devices 
exhibited higher leakage currents compared to conventional 
FTJs, yet preserved clear ferroelectric switching behavior. Such 
characteristics contributed the devices with short-term 
memory, enabling the generation of dynamic and nonlinear 
responses essential for reservoir operation. Specifically after 
initialization by a strong negative voltage pulse to set the FTJ 
into a high-conductance state, successive depolarization pulses 
induced gradual changes in the internal polarization, resulting 
in a decaying current over time. Figure 8(c) demonstrates that 

Fig. 7 Reservoir computing (RC) implementation using ferroelectric thin-film transistors 
(FeTFTs): (a) RC system employing a device that combines the morphotropic phase 
boundary (MPB) with a double-gate structure, (b) comparison of drain current 
responses with and without the top gate. Reproduced from ref. 39 with permission 
from Springer Nature, copyright 2024.
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16 distinguishable reservoir states of the FTJ are realized by 
various depolarization pulse sequences. The sequence of 
temporally varying current values was directly employed as 
distinct ‘virtual nodes’, thereby achieving a high-dimensional 
reservoir from a single physical device. 

Furthermore, the study demonstrated that distinct pulse 
sequences could produce clearly separable current states, 
confirming the feasibility of FTJs as reservoirs. By connecting 28 
FTJs in parallel, the dimensionality of the reservoir was further 
expanded, and a complete hardware system was constructed, 
achieving high energy efficiency, fast processing speed, and 
excellent recognition accuracy.

In conclusion, this work introduced a novel strategy to realize 
high-dimensional reservoirs by leveraging depolarization 
effects in ultrathin FTJs. It highlighted the possibility of utilizing 
nonvolatile memory devices as dynamic elements in RC, while 
offering a simple two-terminal architecture compatible with Si-
based processes for building high-performance RC systems. 49

Table 3 Quantitative comparison of ferroelectric reservoir 
devices discussed in Section 3.2

Device FeFET130 AFeFET116 FeTFT39 FTJ49

Energy/Input - - 22.5 pJ 35 pJ
Time step 4 𝜇s 500 𝜇s 100 𝜇s 500 ns
distinguishable 
states

15 78 32 16

 4. Future Outlook & Conclusions

 Ferroelectric materials provide a particularly compelling 
foundation for physical reservoir computing because their 
intrinsic polarization dynamics simultaneously deliver the three 
requisites of an effective reservoir: a nonlinear input–state 
mapping, short‑term memory, and a rich manifold of 
distinguishable internal states. The hysteretic P–E response 
provides a strong source of nonlinearity, while multi-domain 
nucleation and domain-wall motion enable a continuum of 
intermediate polarization states. In addition, relaxation 
processes such as back-switching, depolarization-field-driven 
creep, and charge-trap dynamics introduce task-dependent 
volatility over millisecond-to-second timescales. Crucially, these 
material responses couple efficiently to electrical observables in 
compact device structures. In FeFETs, polarization modulates 
the channel conductance through interfacial electrostatics, 
whereas in FTJs and diode-type stacks, it governs the barrier 
height and symmetry, leading to distinct current states. These 
characteristics make ferroelectric devices inherently nanoscale, 
voltage-driven, and highly compatible with dense integration, 
thereby providing clear advantages over other physical 
reservoir platforms.
From a device‑engineering perspective, ferroelectrics offer 
clear routes to co‑design dynamics with the target temporal 
task. Partial‑switching regimes near the coercive field enhance 
sensitivity and separability, while controlled domain wall 
pinning sets relaxation spectra that determine memory 
capacity. The materials chemistry can be tuned by controlling 

dopant type and concentration, grain size and texture, 
electrode work function and oxygen activity, as well as by 
suppressing interfacial dead layers or introducing dielectric 
interlayers. These parameters allow separate control of 
coercive voltage, imprint, and leakage. From an interface 
engineering standpoint, the conductivity at the ferroelectric 
interface and the presence of interfacial dead layers critically 
influence the magnitude of the depolarization field. A highly 
conductive interface facilitates efficient charge compensation, 
thereby suppressing depolarization field and stabilizing the 
polarization state. In contrast, low-conductivity interfaces or 
the existence of interfacial dead layers hinder charge screening, 
leading to a larger depolarization field. This enhanced 
depolarization field accelerates relaxation, effectively reduce 
the decay constant associated with short-term memory. 
Therefore, controlling interfacial properties provides a viable 
route to tune the fading memory behavior in ferroelectric 
reservoir devices.135 Hafnia-based ferroelectrics are particularly 
attractive for scalable PRC because of their compatibility with 
CMOS processes, thickness scalability, and tolerance to back-
end thermal budgets. In contrast, perovskite thin films remain 
valuable for studying fast domain kinetics, strong piezoelectric 
and pyroelectric couplings, and optoelectronic transduction. In 
all cases, the central design goal is to map correlation time of a 
task and bandwidth to relaxation spectrum of the device, 
maximizing kernel quality without violating the echo‑state 
property.

Architecturally, ferroelectrics enable both single‑device and 
networked reservoirs. A time-multiplexed “single-node” 
reservoir can be implemented using an FeFET or FTJ operated 
under pulsed excitation with feedback. By sampling the 
transient conductance at staggered time delays, a series of 
virtual nodes can be generated, forming a high-dimensional 
state space with minimal hardware.  Multi‑terminal 
ferroelectric memtransistors further decouple write, state 
evolution, and read, improving readout linearity and reducing 
read disturb. At the network scale, arrays of FeFETs or FTJs in 
crossbar or oscillator‑coupled topologies offer parallel 
dynamics and richer coupling matrices, supporting higher 
throughput. Importantly, the analog–digital interface, including 
signal drivers, feedback paths, and linear readout circuitry, 
should be developed in close conjunction with the ferroelectric 
device stack, as circuit-level nonidealities can obscure the 
intrinsic dynamical behavior required PRC.

Reliability and variability, often regarded as drawbacks in 
non-volatile memories, can instead serve as controllable 
resources in ferroelectric reservoirs, provided that their 
statistical behavior remains stable. Wake-up and fatigue 
originate from the evolution of defect distributions and 
interface states. By optimizing electrode composition, barrier-
layer design, and pulse conditions, these effects can be 
controlled to expand the range of accessible states while 
maintaining reproducibility. Also, DTDV can enhance state 
diversity in ferroelectric reservoirs. This has been considered 
one practical source of state richness. However, DTDV variation 
is not the sole contributor to state richness. Even with reduced 
variability due to improved uniformity, state richness exists due 

Page 13 of 18 Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 2

:0
9:

37
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5TC03936C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tc03936c


ARTICLE Journal Name

14 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

to polarization dynamics. Partial switching produces multiple 
intermediate states, and nonlinear dynamics linked to 
nucleation and domain wall motion enhance the separation of 
input-dependent current states. In addition, back switching 
driven by depolarization fields, together with time-dependent 
polarization relaxation over multiple time scales, gives rise to 
fading memory behavior by encoding past inputs with 
temporally differentiated responses. These intrinsic 
mechanisms remain intact under uniform fabrication, allowing 
high state richness to be preserved. In fact, process stabilization 
may suppress undesirable stochastic fluctuations while 
maintaining the nonlinear switching dynamics that underpin 
reservoir performance, ultimately improving reproducibility 
and enabling robust reservoir computing.129 Periodic calibration 
of the linear readout and light in-situ adaptation can reduce 
long-term drift and maintain consistent readout performance. 
The community will benefit from standardized PRC 
benchmarking that is materials‑aware: reporting linear and 
nonlinear memory capacities, kernel quality, effective 
virtual‑node counts under specified pulse trains, latency–
energy–accuracy trade‑offs including ADC/DAC overheads, and 
robustness across temperature and humidity.

Energy efficiency is another strength of ferroelectric 
reservoirs. Polarization switching is driven by the applied 
voltage and, in the partial switching regime, involves only a 
modest amount of charge displacement. Operating near the 
coercive region, but without exceeding it, helps reduce energy 
dissipation while maintaining strong nonlinearity. 
Negative‑capacitance transients and subthreshold FeFET 
operation can further lower actuation voltages for tasks that 
tolerate smaller signal swings. Coupling ferroelectric devices 
with sensing functions can further reduce system overhead. For 
example, piezoelectric and pyroelectric responses enable in-
sensor reservoir operations, where mechanical or thermal 
fluctuations are directly converted into reservoir states. This 
approach helps minimize data transfer and sampling 
requirements at the edge. 

Looking forward, several materials‑centric opportunities 
could accelerate translation from laboratory demonstrations to 
robust ferroelectric PRC hardware. First, the timescale of device 
dynamics can be engineered through defect and interface 
control, for example by tuning ionic vacancy concentrations, 
electrode oxygen activity, and domain-wall pinning behavior. 
These factors should be systematically correlated with memory-
capacity measurements to establish predictive design rules. 
Second, three‑dimensional and heterogeneous integration that 
stacks ferroelectric layers with CMOS control, spintronic 
oscillators, or photonic front‑ends promises compact 
multi‑physics reservoirs with complementary bandwidths. 
Third, newly developed ferroelectric materials, such as dopant-
stabilized hafnia, layered perovskites, and two-dimensional 
ferroelectrics, could enable device operation in flexible, 
transparent, or low-voltage regimes. Finally, hardware-in-the-
loop training can be used to preserve an untrained reservoir 
while periodically recalibrating the readout or slightly adjusting 
the reservoir operating point. Such adaptive schemes will be 

important for compensating device aging without sacrificing the 
simplicity of PRC.

In conclusion, ferroelectric materials are well suited for 
physical reservoir computing, as they naturally exhibit nonlinear 
dynamics with inherent memory and can be effectively coupled 
to electrical readout in compact device architectures. By 
anchoring device behavior in controllable materials chemistry 
and by adopting standardized, task‑relevant benchmarks, 
ferroelectric reservoirs are poised to deliver energy‑efficient, 
low‑latency temporal inference at the edge. Continued 
advances in interface and defect engineering, volatility tuning, 
and scalable integration should enable reservoirs that are not 
only high‑performing but also manufacturable, bringing 
ferroelectric dynamics to the forefront of neuromorphic 
hardware. As noted in the representative studies discussed 
above, reservoir computing has already been experimentally 
demonstrated in HfO2-based ferroelectric devices with 
nanometer-scale ferroelectric layers compatible with advanced 
CMOS technologies. As ferroelectric devices are further scaled 
toward more aggressive nanoscale dimensions, additional 
challenges are expected to emerge. In particular, decreasing 
ferroelectric layer thickness makes the stabilization of the 
ferroelectric orthorhombic phase increasingly sensitive to 
polymorphism, surface energy, and crystallization kinetics, 
potentially narrowing the thickness window in which robust 
ferroelectricity can be sustained. In parallel, the depolarization 
field increases with decreasing thickness, which can distort 
polarization switching behavior and reduce the effective 
remanent polarization available for reservoir operation. 
Moreover, reductions in the effective ferroelectric volume and 
domain population associated with nanoscale scaling may limit 
the accessible nonlinearity, while amplifying the relative 
influence of noise.136, 137

Furthermore, these size-dependent effects suggest that, 
although ferroelectric reservoir computing remains feasible at 
the nanoscale, further scaling will require increasingly precise 
control over phase stability, interfaces, and operating 
conditions to maintain an appropriate balance among 
nonlinearity, fading memory, and noise, which are essential for 
stable and separable reservoir states.
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• No primary research results, software or code have been included and no 
new data were generated or analysed as part of this review.
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