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Ferroelectric Devices as Physical Reservoirs: Enabling Nonlinear
Dynamics and Memory in Neuromorphic Systems

Moonseek Jeong,™ Da Hyun Kim, " Su In Hwang,® Taegyu Kwon,? Jung Ho Yoon*® and Min Hyuk Park
*acd

Reservoir computing (RC) provides a training-efficient alternative to recurrent neural networks by fixing recurrent weights
and training only a linear readout. In hardware, physical reservoirs harness intrinsic device dynamics to supply the three
requisites for temporal computation: nonlinearity, short-term memory, and resulting high-dimensional state richness. This
review summarises RC fundamentals and maps device requirements onto materials properties including domain nucleation,
hysteresis, depolarisation-driven volatility, and multiscale relaxation. We survey representive ferroelectric platforms,
including hafnia-based ferroelectric field-effect transistors (FeFETs), ferroelectric tunnel junctions (FTJs), and ferroelectric
thin-film transistors (FeTFTs), together with their antiferroelectric variants. These devices inherently support nonlinear
input—state mapping, tunable fading memory, and rich intermediate states. Implementation strategies include multiplexing
and single-device reservoirs, evaluated against metrics for memory capacity and energy—latency—accuracy. Emphasis is
placed on complementary-metal-oxide-semiconductor compatible HfO, for scalability, fast switching, and low-voltage
operation. Reliability and variability are reframed as resources through interface and defect engineering. Ferroelectrics

emerge as energy-efficient reservoirs for robust temporal inference at the edge.

1. Fundamentals of Reservoir Computing

In this section, we address the concept and fundamental
principles of reservoir computing (RC), followed by a discussion
of the essential characteristics required for its device-level
implementation. PRC devices are expected to exhibit intrinsic
nonlinearity, short-term memory, and state richness, which are
critical attributes to effectively perform computational tasks
such as time-series processing, pattern recognition, and
prediction. Beginning with the origin and operational principles
of RC, this section summarizes the physical requirements
strongly correlated with key material properties for physical
reservoir computing (PRC) devices and extends the discussion
to the operation mechanism responsible for generating the final
output.

1.1 Fundamental principles of RC

Traditionally, machine learning (ML) systems have been
employed to learn from pre-observed datasets in order to

predict future trends or classify objects. However, such

approaches are highly dependent on the availability of data and
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often require considerable computational resources and
extended training time, which poses inherent limitations. RC, a
paradigm within ML, was introduced in the early 2000s as a
novel computational framework to overcome the structural
difficulties associated with training recurrent neural networks
(RNNs). In RNNs, neurons are interconnected through recurrent
connections, enabling the history of input signals to be encoded
into the internal states of the network, thereby implementing
short-term memory functionality. ' 2 Despite this advantage,
the training of conventional RNNs is generally challenging and
computationally demanding. These issues were effectively
addressed by the advent of RC, which was independently
proposed by Jaeger? and Maass®. Jaeger approached the
concept from a machine learning perspective, leading to the
development of echo state networks (ESNs), while Maass,
motivated by neuroscience, introduced liquid state machines
(LSMs) based on biologically realistic spiking neurons. Although
derived from different motivations, both approaches share the
same operational principle: the recurrent internal weights of a
complex dynamical system remain fixed, and only the output
layer is subject to training. This simplification of the training
process unified the two approaches under the common
framework of RC.>
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In RC, the term reservoir refers to the recurrent structure that
maps input signals into a high-dimensional nonlinear dynamical
space. Prior to a detailed comparison of RC and RNN
architectures, it is instructive to first establish the underlying
mathematical structure fundamentally shared by both models.
In both approaches, the internal state at the next step is
determined by applying a nonlinear function to a weighted sum
of the current input and previous state, while the network
output is computed as a linear transformation of these internal
states:  7;(t + At) = f(W i Xin () + 202 Wii(OT(6), Tour (£)
= Wowi(t), where r;(t)denotes the internal state of the i-th
recurrent node at time t, x%n(t) represents the input signal
coupled to node i and 7,,(t) is the readout output. Here,
i=1,2,..,N and N is the total number of nodes in recurrent
layer. Wi, Wijand W,;represent input, recurrent (from node
j to i), and output weight matrices, respectively, and f(.) is a
nonlinear activation function. These equations provide a unified
mathematical foundation for both RC and RNN, highlighting a
common framework from which differences in their learning
strategies can be further discussed.® In general, the reservoir
can be regarded as a variant of a RNN consisting of a large
number of interconnected nodes, where each node generates
nonlinear and dynamical internal states in response to external
inputs. A defining feature of RC is that the internal weights of
the reservoir remain fixed during training. Consequently, the
reservoir itself is not the object of learning but functions as a
static dynamical medium that responds diversely to input
stimuli. When input signals are injected into the reservoir, they
are transformed into complex internal states that reflect the
temporal continuity and patterns of the input stream. These
states can accumulate or decay over time, thereby encoding the
history of prior inputs and enabling short-term memory
functionality. As a result, the internal states preserve the
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Fig. 1 Learning architectures in (a) recurrent neural network (RNN) and (b) reservoir
computing (RC)
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temporal and nonlinear characteristics of the aoriginal.ipRut
while projecting them into a higher-dimepsioWalGsigaeel C03936C

Considering an RNN composed of N nodes, as schematically
illustrated in Figure 1(a), each node is fully connected and
receives external inputs xt, (£)(i = 1, ..., N)(If the i-th node
does not receive input, then x.,(t) = 0.) Each node maintains
an internal state r;(t), which evolves in time according to the
following relation: r;(t+ At) = f(EN; wii()r;(t) + Xin (1)),
where w;; represents the synaptic weight and f(-) typically
denotes a nonlinear activation function such as sigmoid or tanh.
In this framework, the RNN can be trained with a prescribed
number of output nodes N,,; to generate the desired target
outputs Targeti(t) (i = 1,..., Noy:) in response to input x;,(t).
The training objective is to adjust the internal weights w;; so
that the output states match the target signals. The simplest
approach involves randomly initializing all weights and then
minimizing an error function, for example through linear
regression. However, this training procedure often suffers from
severe numerical problems arising from the recurrent dynamics
of the RNN, which remain a major challenge. &7

In the case of RC, the internal weights w;; are randomly initialized
and remain fixed during operation, unlike in conventional RNNs
where the weights are updated through training. As illustrated in
Figure 1(b) and Figure 2(a), the set of nodes defined by the RNN
dynamics, 7(t + At) = f(X]2, Wi ()7 (1) + WinXin (D)) (wij:
N which is the
total number of nodes in reservoir.) is regarded as the reservoir. An

connection weight from node jtonode i, i = 1,2, ..,

additional N, readout units are then introduced, and the activity

Tf)ut(t) of each output node is obtained as a linear combination of

the reservoir states, b, (t) = N W), (0 =1, 2, Ngye)- In
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Fig. 2 Structure of (a) conventional reservoir computing (RC) and (b) physical reservoir
computing (PRC)
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Fig. 3 Schematical illustrations of three key attributes are required for physical reservoir computing (PRC) devices: the high-dimensional state richness originating from (a) large
number of available physical states, (b) nonlinear modulation of physical states by electrical inputs, and (c) Time dependent changes of physical states. (d) Comparison of time-
series prediction accuracy and classification performance of PRC systems with and without high-dimensional state richness.

this framework, training is performed solely on the output weights
out
ij
itself remains unchanged during training, the numerical problems
inherent in RNN

w which are not fed back into the reservoir. Since the reservoir

conventional learning are fundamentally

eliminated.®

Following the initial proposal of RC, early studies primarily
relied on software-based implementations. With the
subsequent emergence of PRC, however, this concept has been
extended to utilize a variety of physical systems as
computational substrates. 21 By utilizing the intrinsic
nonlinearity and dynamical responses of physical systems, PRC
has attracted considerable attention as a next-generation
computational platform that can simultaneously achieve
training efficiency and energy efficiency. Today, RC is being
actively investigated not only as a theoretically well-established
framework but also as a practically computational model,
particularly in the development of device-based neuromorphic
systems and hardware-oriented artificial intelligence circuits.

1.2. Requirements for physical reservoir devices

PRC extends the core concept of conventional software-
based RC to physical systems, in which real-world dynamical
networks,
employed as the reservoir.!2 As illustrated in Figure 2, unlike

processes, rather than simulated virtual are
conventional RC, PRC utilizes the intrinsic nonlinear dynamics of
materials during computation, thereby offering advantages
such as low power consumption, high-speed operation, and

inherent parallelism. Since the process of input handling

This journal is © The Royal Society of Chemistry 20xx

inherently incorporates the memory effects of the physical
system in an analog form, PRC can also be regarded as a form of
in-memory computing. Given that the essential functionality of
RC is based on mapping input data into a high-dimensional
nonlinear space and performing computation and prediction
within that space, the physical devices or systems serving as
reservoirs must satisfy specific requirements to enable PRC
implementation.3

As illustrated in Figure 2, moreover, physical reservoir computing
(PRC) realizes computation within a fixed, recurrent dynamical
system—the reservoir—whose transient responses are sampled as a

Ill

set of high-dimensional “virtual nodes”. In hardware, the reservoir
function can be embodied by a single compact device (or a small
number of devices) by exploiting intrinsic state variables together
with multiplexing and feedback. Unlike the

conventional RC shown in Figure 2(a), where computation is

spatiotemporal

achieved through complex mathematical operations and numerous
inter-node connections, PRC illustrated in Figure 2(b) utilizes the
intrinsic nonlinear and time-dependent physical dynamics of each
device to naturally map input signals into a high-dimensional feature
space. Because this mapping arises from internal physics of the
device rather than explicit numerical computation, PRC can operate
with low power consumption and high speed. Consequently, PRC can
achieve the same computational functionality as conventional RC
systems using only a single or a few compact devices, without
requiring a large artificial network.

J. Name., 2013, 00, 1-3 | 3
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PRC performs computation by mapping input information into a
high-dimensional space through the complex nonlinear dynamics of
the reservoir, followed by processing this information in the readout
layer.3 4 In this framework, the reservoir remains a fixed dynamical
system during training, and learning is limited to the output layer.
The primary function of the readout layer is to take the reservoir
state vector as input and compute a weighted summation to
generate the desired output. In ESN structures, these output weights
are typically trained by linear regression,® most often implemented
in software.'*

In conventional neuromorphic systems, synaptic devices play

a key role by finely tuning their conductance in response to
input pulses and stably storing the trained weights. Such devices
are typically expected to exhibit linearity, symmetric
conductance modulation, high state precision, and long-term
retention characteristics.’>20 In contrast, the device
characteristics required for RC systems are fundamentally
different.
The reservoir, as the core component of RC systems,
transforms input sequences into high-dimensional dynamical
states, while training is carried out only at the readout layer,
where the output weights are updated.3 14 In this architecture,
the crucial requirement for the device is not self-learning or
precise retention of weights, but rather the ability to generate
a rich and distinguishable state space in response to input
stimuli. Accordingly, three key attributes are required for PRC
devices: the high-dimensional state richness originating from
(1) large number of available physical states, (2) nonlinearity
between physical states and electrical inputs, (3) short-term
memory.?! These three essential features are schematically
summarized in Figure 3, which illustrates how available number
of physical states, nonlinearity, and short-term memory govern
the performance of PRC systems. First, as illustrated in Figure
3(a), a physical system intended for PRC must provide (i) a
multiplicity of accessible material-intrinsic physical states and
(ii) corresponding device electrical states that are tightly
governed by those material states. Because device
miniaturization is essential for practical PRC hardware, this
state multiplicity must persist under scaling, such that a rich,
high-dimensional state space is retained even at nanoscale
dimensions. To this end, it is advantageous to exploit physical
states rooted in the intrinsic properties of the active material
and to ensure strong coupling of those states to electrical
observables, such as conductance.

A variety of material state variables can be harnessed,
including—by way of example—the number and geometry of
conductive filaments in resistive-switching media, the degree of
crystallinity in  phase-change  materials, polarization
configurations in ferroelectrics, and magnetization states in
ferromagnets. These material platforms, widely explored as
emerging non-volatile memories, are well established to
support multiple stable or metastable states at the nanoscale.
When implemented in two-terminal or three-terminal device
architectures such that electrical stimuli elicit multiple,
well-resolved output levels, these state variables furnish the
substrate upon which nonlinearity and short-term (fading)

4| J. Name., 2012, 00, 1-3

memory—discussed below—collectively vield icc othe
high-dimensional state richness required¥ot Eff@etilereseiisir
computing.

Second, nonlinearity is the most fundamental requirement
for a reservoir element.* 1214 A linear system cannot adequately
capture interactions among input signals or separate higher-
order features. Therefore, the reservoir must exhibit nonlinear
dynamics. In the reservoir dynamics equation 7;(t + At) = f(
Zﬂyzl Wi ()rI(t) + X (£)) the function f must be nonlinear to
transform the combinations of x.,(t) into high-order features.
With this nonlinear basis, even a linear relation in the readout
such as 7y (t) = Wyyr(t) can yield complex time-series
predictions, since the reservoir has already transformed the
input history into a nonlinear, high-dimensional
representation.'* 22 If the reservoir were purely linear, the
entire system would struggle to separate intricate patterns with
a linear readout alone. Therefore, nonlinearity is essential for
mapping diverse inputs into a high-dimensional feature space.
As illustrated in Figure 3(b), a nonlinear PRC transforms input
signals into a high-dimensional representation through
nonlinear responses of the device. This requires not only simple
linear responses but also critical transitions, saturation
behaviors, and hysteretic characteristics. 1> 2324 From a physical
perspective, such nonlinearity can be realized through various
mechanisms, including tunneling or Schottky nonlinearities,
ferroelectric hysteresis, trap charging/discharging saturation,
and threshold-type ionic drift phenomena.?3 24

When a nonlinear device receives an input u, the reservoir
state can be expressed asr = f(u) = ciu + c,u? + czud +..(r
: reservoir state) where higher-order terms such as u? and u3
appear in addition to the linear term.?? As a result, the original
signal is not represented solely by its amplitude but is expanded
into multiple composite features. In PRC, these state values are
directly sampled to construct the state matrix, and only the
output weights are trained linearly to approximate the target
function as a weighted combination of these complex features.
When employing a saturation regime, in which the response
becomes less sensitive as the input amplitude increases, signals
with the same average intensity can generate different outputs
depending on their amplitude patterns—being highly sensitive
to small signals but insensitive to large ones.?> This property
simultaneously enables outlier suppression and feature
separation, such that PRC can utilize these distinctions in its
state space to classify different classes or sequences using only
the readout layer. Similarly, when a nonlinear threshold regime
is employed, the response remains nearly unchanged for |u|
< @(B:threshold value that determines the onset of nonlinear
activation), but distinct features are generated once the input
exceeds the threshold, functioning as an on/off marker. 26 27
These event features are then recorded in the reservoir state as
information about how many times the threshold was crossed
and at what points in time. The PRC framework can exploit
these temporal and sequential differences through a simple
linear readout for classification or regression tasks. In summary,
nonlinearity in PRC serves as a mechanism to efficiently

transform input signals into higher-dimensional

This journal is © The Royal Society of Chemistry 20xx
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representations, with the physical system itself functioning as a
nonlinear operator capable of generating complex responses.

Third, short-term memory or time dependence is an essential
attribute for processing temporal input streams.?8-3% Since RC
fixes the internal connections and trains only the readout, the
reservoir states should not merely respond to the
instantaneous input or preserve traces indefinitely. Instead,
they must exhibit fading memory characteristics to generate
state dynamics that reflect the temporal order of inputs.3
Mathematically, this can be described as r; = Y50 K(Dus_; ,12
where K(7) is the memory kernel that defines how past inputs
influence the present state with time-dependent weighting. As
T increases, i.e., for inputs further in the past, the contribution
gradually fades. If K(7) decays too quickly, the system cannot
effectively retain information from previous inputs. On the
other hand, if the decay is too slow, residual signals from earlier
inputs overlap with past ones, leading to correlated states and
reduced separability.2® 2% 31 Therefore, PRC devices must
achieve an appropriate balance in relaxation such that recent,
intermediate, and older inputs are all reflected in a properly
balanced property. In actual devices, the response often follows
a multiscale decay behavior, expressed as I(t)= Y,; A;e~t/" ,
where I(t) denotes the device response, A; represents the
weighting of each component, and t; is the characteristic decay
constant. If a wide distribution of 7;values exists, the device can
respond to the same input across multiple time scales, enabling
the readout to access a broad range of temporal
dependencies.?3 24 32

However, if the memory duration is excessively short or too
long, the system suffers from information loss or overfitting,
respectively. Thus, optimal memory properties with
appropriate ;values are required for effective PRC operation.?*
32 As illustrated in Figure 3(c), depending on the characteristics
of the task to be processed, there exists an optimal decay time,
and the system performance can vary significantly according to
decay time of the device. As shown in Figure 3(c), when the
decay time is appropriately tuned, the system can effectively
retain and reflect the order of input sequences. Therefore, to
handle a wide range of tasks, it is desirable to intentionally tune
the relaxation time within a single device to achieve the optimal
value for each task.333> This can be realized mainly by
electrically modulating parameters such as polarization
relaxation, trap time constants, and relaxation of ionic drift,
which effectively control the temporal dynamics of the device.

Finally, high-dimensional state richness, which is the
outcome of the combination of the aforementioned large
number of available physical state, nonlinearity between
physical states and electrical inputs, and short-term memory, is
a critical factor that determines the quality of the internal states
generated by the reservoir, 2> 36 requiring that distinct inputs
produce sufficiently distinguishable dynamical responses. # 22
Since the readout is linear, overall performance strongly
depends on the diversity of responses generated by the
reservoir. Even for identical inputs, different nodes or devices
should generate distinct reactions to ensure a high-dimensional
representation. This diversity enables input patterns to become
linearly separable and allows regression processes to achieve

This journal is © The Royal Society of Chemistry 20xx
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generalization with relatively small weights. Consider.tbe RC
readout relation y ~ Xw , where ¥ is thefsre dicted GUtpaE X0ls
the state matrix, w is the output weight vector. By definition, ¥

always lies within the column space of X, denoted as col(X),
which represents the entire span of results achievable through
the readout.?” Training then corresponds to selecting the ¥
within col(X) that is closest to the target y. In this context, the
prediction error ||y — ¥||is equivalent to the distance between
the target y and col(X). To minimize this distance, col(X) itself
must be sufficiently broad and diverse. State richness
effectively broadens col(X) by ensuring that the columns of X
are numerous and mutually distinct, thereby enabling the target
y to fall close to col(X). As a result, prediction errors are
reduced, and accurate approximation can be achieved with
relatively small weights.1? 14, 22,37

Figure 3(d) compares the performance of PRC systems
depending on whether high-dimensional state richness is
present. When such state richness exists, the column space
becomes broader, allowing more accurate and reliable
approximations. As shown in the figure, this leads to improved
performance in various tasks, including time-series prediction
and digit classification. In practice, strong state richness
requires reproducible responses for repeated identical inputs
while ensuring clear distinction between different inputs.
Various physical mechanisms have been explored in PRC to
achieve this property, including ferroelectric hysteresis and
partial switching, threshold switching and excitability in VO,
multi-timescale fading memory arising from ionic drift—
diffusion in oxide memristors, and multimode interference and
distributed delay in silicon photonics.?’ 31 32 3843 These
mechanisms enable the same input to generate multiple
distinct state variations, thereby enhancing the separability of
the reservoir states. Consequently, identical inputs yield
consistent responses, whereas different inputs produce clearly
distinguishable outcomes, allowing for low-error and stable
generalization even with small output weights.

In summary, nonlinearity provides the foundation for
information mapping, short-term memory governs the
temporal dynamics of states, and state richness ensures that
different inputs lead to distinct outputs.* 12 14 22,31 These three
characteristics represent essential requirements for physical
reservoirs to function as computational systems and must be
considered when evaluating physical devices for PRC
implementation. From this perspective, unlike conventional
synaptic devices, PRC devices are not primarily designed for
highly stable weight storage but rather for generating rich
dynamical responses and nonlinear spatiotemporal behavior.
Consequently, synaptic devices for reservoir computing should
be designed not only as weight storage units, but as history-
dependent, state-rich dynamic mapping engines that transform
input sequences into high-dimensional internal states.

In recent years, a variety of physical devices including
memristors** 4°, resistive random access memory(ReRAM)?¢,
phase-change memory(PCM)*’, and other devices have been
experimentally implemented as reservoir platforms in PRC.
Each hardware system achieves nonlinear and temporal
dynamics through its own characteristic physical mechanisms,

J. Name., 2013, 00, 1-3 | 5
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thereby demonstrating the versatility of the PRC concept and
the diversity of device engineering strategies available. Among
these, ferroelectric devices distinguish themselves by
combining strong nonlinearity, short-term memory effects, and
rich internal state dynamics, a set of features that directly
address key requirements for effective reservoir computing. In
contrast to platforms where nonlinearity emerges from
complex mechanism, ferroelectrics offer a well-defined,
electrically controllable mechanism that enables robust and
interpretable reservoir function. As a result, ferroelectric-based
reservoirs provide an efficient and physically grounded platform
for realizing high-dimensional and energy-efficient
computation. The specific advantages and implementation
strategies of ferroelectric reservoirs are examined in further
detail in Sections 2 and 3.

2. Ferroelectric Materials and Device Physics

This section discusses the fundamental properties of
ferroelectric materials, devices and explains how these features
can be utilized in the context of RC. Ferroelectrics exhibit
inherent characteristics such as nonlinearity and multi-level
states, which play a central role in realizing short-term memory,
state richness, and dynamic responses required for RC.48-30
Here, we provide a systematic overview of ferroelectricity,
including its historical development, intrinsic properties,
representative device structures, and features that can be
exploited for RC applications.

2.1. Overview of ferroelectricity

The history of ferroelectricity continues more than a century,
marked by continuous discoveries and innovations that have
shaped modern applications. Ferroelectricity was first reported
in 1920 by Valasek, who observed a hysteresis loop in Rochelle
salt (NaKC4H404-4H,0). 51 In 1935, KH,PO4 was discovered,
offering stability across a wide temperature range, >2 and the
discovery of BaTiOs in the 1940s triggered extensive research
into perovskite ferroelectrics such as PbZrTi;«O3 (PZT).53 In
subsequent decades, a variety of ferroelectrics were identified,
including PVDF, >* although many of these materials suffered
from severe fatigue and limited complementary metal-oxide-
semiconductor(CMOS) compatibility.

A major turning point occurred in 2011 with the discovery of
ferroelectricity in doped HfO, thin films.>> This breakthrough
demonstrated excellent ferroelectric properties together with
outstanding compatibility and scalability in existing
semiconductor processes, addressing long-standing challenges
such as thickness scaling and integration. As a result, research
in ferroelectric materials was renewed. More recently, two-
dimensional ferroelectrics such as CulnP,S¢°¢ and WTe,*” have
been reported, further broadening the application prospects of
ferroelectrics, ranging from neuromorphic computing to
flexible electronics. The development of ferroelectric materials
reflects the dynamic interplay between fundamental science
and technological demand. Today, ferroelectrics continue to
play a central role in the advancement of memory and logic

6 | J. Name., 2012, 00, 1-3

devices, and ongoing innovations are expected to gaptribute te
the progress of energy-efficient electronieéQysfeinslPB5TC03936C

Ferroelectrics are distinguished from ordinary dielectrics by
their spontaneous polarization, which is retained even after the
external electric field is removed, and can be reversed by
applying an opposite electric field.>® This phenomenon arises
from the lack of spatial inversion symmetry within the crystal
lattice, where a relative displacement between the centers of
positive and negative charges generates a permanent electric
dipole.®® The inherent nonvolatility of ferroelectrics thus
provides a fundamental basis for next-generation memory and
neuromorphic devices.'®

The most common method for identifying ferroelectric
properties is the quasi-static measurement of polarization—
electric field (P—E) hysteresis loops. When bipolar trigonal
pulses are applied, the ferroelectric material periodically
switches between two stable polarization states. At low electric
fields, the existing polarization state is maintained, whereas
once the field exceeds the coercive field (E.), dipoles realign,
leading to an abrupt change in polarization. With further
increase in the electric field, the polarization gradually
approaches the saturation polarization (P;).

Such polarization originates from the domain dynamics of
ferroelectrics. Domains are regions within the material where
dipoles are aligned in the same direction, and each domain is
separated by a domain wall, which can be displaced under an
external electric field.®! Polarization reversal does not occur
uniformly across the entire film but proceeds through the
nucleation and growth of oppositely oriented domains.52
Depending on whether domain switching is fully or partially
controlled, ferroelectrics can support both digital (binary)
operation and analog (multi-level) operation. Recent studies
have highlighted the importance of intermediate polarization
states formed during partial domain switching. These states are
stable and nonvolatile, and they resemble the gradual
modulation of synaptic weights observed in biological synapses.
As a result, ferroelectric thin films are considered promising
candidates for synaptic devices in neuromorphic computing.?>
Antiferroelectrics, in contrast, exhibit antiparallel dipole
alignment at zero external field, resulting in a net polarization
of zero. ® When an electric field above a certain threshold is
applied, they undergo a transition into the ferroelectric phase,
and upon removal of the field, they return to the original
antiferroelectric state, again yielding zero net polarization. This
field-induced transition gives rise to a characteristic double
hysteresis loop in the P-E curve.®*

In summary, ferroelectrics, owing to their nonvolatile
behavior, reversible dipole switching, and dynamic domain
characteristics, have emerged as promising candidates for next-
generation memory and computing devices.

2.2. Representative device structures

Ferroelectric materials have enabled the development of
various nonvolatile devices, among which ferroelectric random-
access memory (FeRAM), ferroelectric Field-Effect Transistor
(FeFET), and ferroelectric tunnel junction (FTJ) are the most
representative.  Each  structure exploits ferroelectric

This journal is © The Royal Society of Chemistry 20xx
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Fig. 4 Schematic diagrams of (a) ferroelectric random-access memory (FeRAM), (b)
ferroelectric field-effect transistor (FeFET), and (c) ferroelectric tunnel junction (FTJ),
illustrating their basic device structures and representative electrical characteristics:
FeRAM (P-E), FeFET (I4-Vg), and FTJ (I-V) curves showing nonlinear behaviors

polarization to realize memory and computational functions as
schematically illustrated in Figure 4.

FeRAM is based on a ferroelectric capacitor (FeCAP) with a
metal—ferroelectric-metal (MFM) configuration. The capacitor
is typically integrated with a select transistor in a 1T-1C
architecture to form a FeRAM cell.5> Data are stored by
switching the polarization state of the ferroelectric layer. As
shown in Figure 4(a), FeERAM exhibits a characteristic P-V
hysteresis loop corresponding to bistable polarization states.
FeRAM provides advantages such as fast switching, high
endurance, and low power consumption, but it still has the
drawback of destructive readout.®®

The FeFET is a transistor in which the gate insulator of a
conventional MOSFET is replaced with a ferroelectric layer,
generally adopting a metal-ferroelectric—insulator—
semiconductor (MFIS) structure.®’” As shown in figure 4(b), the
polarization state of the ferroelectric layer modulates the
threshold voltage of the transistor, thereby enabling nonvolatile
memory operation. Due to its ability to store both digital
information and analog weights, the FeFET has emerged as a
promising device for next-generation computing applications
such as logic-in-memory and neuromorphic systems. 68 6°

The FTJ consists of a thin ferroelectric layer, typically only a
few nanometers thick, sandwiched between two metallic
electrodes. The polarization direction changes the tunneling
barrier height, thereby producing distinct high- and low-

This journal is © The Royal Society of Chemistry 20xx
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resistance states.”® As shown in Figure 4(c), the,ET).exhihits
nonlinear |-V characteristics, where thBCON HRWE/[OFF St3tes
correspond to opposite polarization orientations. FTJs feature
non-destructive readout, structural simplicity, and excellent
scalability. In addition, their ability to support multi-level states
makes them suitable for emulating synaptic behavior in
neuromorphic computing. 7*

2.3. Operational characteristics

Ferroelectric materials exhibit unique electrical properties,
making them suitable for a wide range of memory and
computing applications. Key operational characteristics such as
nonlinear P-E relation, nonlinear P-t relation, retention, and
endurance are decisive factors that define the performance of
ferroelectric devices considered for PRC.

Ferroelectrics exhibit P-E nonlinearity because polarization
reversal occurs only when the applied voltage exceeds the
coercive voltage. This property allows ferroelectric devices to
remain stable in the “off” state and switch sharply to the “on”
state only in response to signals above the threshold voltage.”?
Such nonlinear switching behavior enables devices such as
FeFETs and FTJs to reliably store and process digital information.

Each unit cell of displacive ferroelectric materials has two
different polarization states originating from two energetically
stable arrangements of ions. As a result, a finite volume of
ferroelectric materials can have numerous polarization states
by modulating the relative fraction of the domains with
different polarization states, which is a fundamental
requirement for the PRC with high-dimensional state richness.
The relative fraction of the domains and resulting P state can be
modulated by applying E. Typically, nonlinear relation between
the P and E is observed in ferroelectric materials. To describe
the nonlinear P-E relation, two different tanh functions are
frequently utilized for the two branches of the typical P-E
hysteresis of ferroelectric materials. It should be noted that
tanh is one frequently used function to show nonlinearity
required for reservoir computing as mentioned previously in
this review. It implies that the FeCAP or FeRAM with 1T-1C cell
can show nonlinear P-V relations for PRC applications.
Moreover, such nonlinear P-E relation can results in the current-
voltage nonlinearity of FeFETs or FTJs.

Nonlinear P-t relation arising from their switching kinetics

describe the rate and dynamics of polarization reversal in
ferroelectric materials. The switching time, i.e., the time
required to change the polarization state, is a critical factor in
determining the operating speed of memory devices such as
FeRAM. Optimizing switching kinetics is essential to reduce
power consumption and improve overall device performance.
Theoretical models such as the Kolmogorov—Avrami—Ishibashi
(KAI) model and the nucleation-limited switching (NLS) model
provide further insight into polarization reversal dynamics. The
KAI model assumes that all domains in a ferroelectric thin film
share a uniform switching time, predicting that the fraction of
switched polarization follows 1 —exp [ — (t/to)"], where t; is
the characteristic time and n is the Avrami exponent. In
contrast, the NLS model assumes a distribution of switching
times across domains, effectively treating t, as following a
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Lorentzian distribution. Both models highlight the inherently
nonlinear nature of polarization reversal.'> 73-75

Retention refers to the ability of a ferroelectric material to
maintain its polarization state over time after removal of the
external voltage, and it represents a critical characteristic for
nonvolatile memory applications. High retention ensures that
data stored in devices such as FeERAM and FTJs can be preserved
for long durations without continuous power supply. 7¢
Retention can be influenced by factors such as temperature and
defect states, which affect the stability of stored information.””
It is one of the most important advantages of ferroelectrics as
nonvolatile memories. However, when ferroelectric films are
scaled down to very thin thickness, leakage currents or
depolarization fields can induce relaxation processes that drive
the polarization back toward its initial state. In such cases,
ferroelectrics can also short-term  memory
characteristics.*% 78

Especially, depolarization field is a powerful methodology to
induce short-term memory in ferroelectric devices. Generally,
in the metal-ferroelectric-metal capacitors, the depolarization
field is negligible because the physical distance between the
surface charge of ferroelectric materials by their polarization
and compensating charges at the electrode surface is ideally
zero. However, typically in FeFETs and FTJs non-ferroelectric
layers exist between the ferroelectric layer and metal electrode
or semiconductor channels, inducing non-zero depolarization
field. Such depolarization field can be also modulated by
changing the capacitance of the non-ferroelectric between the
ferroelectric materials and electrodes/channels.

Endurance is the other critical characteristics of ferroelectric
memory devices considered for PRC, because the property of
the physical reservoir should be remained with no change.
Especially for the case of (Hf,Zr)O; (HZO)-based ferroelectrics,
however, the repetitive polarization switching can result in the
polarization states with three typical phenomena such as wake-
up, fatigue, and hard break-down. The wake-up effect is
typically observed in the initial stage of the endurance test,
where gradual increase in P, is observed with increasing number

@) s (b)
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of switching cycles. The wake-up effect if known,tg Qriginate
from the redistribution of charged dePédtsOdGéR/Tas (GRygen
vacancies and/or resulting local phase transition. With further
increasing number of switching cycles, the degradation of
ferroelectrics is frequently observed, which is called fatigue. The
main mechanism of the fatigue is known as the domain wall
pinning by defects such as oxygen vacancies or charge trapping.
The hard breakdown generally originates from the rapid
increase in the concentration of defect such as oxygen
vacancies and their accumulation to form permanent
conduction paths. With these typical changes in ferroelectricity
finally affects the endurance of ferroelectric devices, so
mitigation of such effects with an enhanced endurance is one
significance for the PRC applications of ferroelectric devices.

3. Ferroelectric Devices for Reservoir Computing

3.1. Suitability of ferroelectric devices for PRC implementation

HZO-based ferroelectric devices have demonstrated strong
potential as artificial synapses. However, several intrinsic
limitations remain for their application in conventional deep-
learning-based neuromorphic training systems. Reported
challenges include nonlinear weight updates, device-to-device
variation (DTDV), and charge trapping, as well as saturation and
insufficient retention characteristics.'® 66 79-81 These issues can
degrade the stability and accuracy of learning processes, and
therefore require structural and process-level improvements
such as interface engineering, dopant optimization, and
superlattice design.80 82-84

Nevertheless, while these properties may present
disadvantages for synaptic devices that demand precise weight
modulation, they can instead serve as functional advantages in
reservoir computing architectures. In RC, the essential
requirement is the generation of rich and distinguishable states
over time, where intrinsic nonlinearity, temporal dependence,
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Fig. 5 Ferroelectric characteristics relevant to reservoir computing (RC): (a) origin of ferroelectric nonlinearity, (b) unlike conventional synapses, conductance increases nonlinearly

with the number of pulses, resulting in nonlinear physical reservoir computing (PRC) outputs, (c) origin of short-term memory in ferroelectrics, (d) effect of short-term memory

where PRC outputs vary depending on the timing of pulse inputs, (e) origin of device-to-device variation (DTDV) in HZO, (f) enhancement of state richness due to the ability of

ferroelectric devices to generate distinct output states in response to same inputs
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and strong input separability within the reservoir dynamics
directly contribute to enhanced performance. 1> 21

Recent advances in hardware-based RC systems have attracted
significant attention. Such systems have achieved performance
comparable to conventional RC in various tasks, including
speech recognition, 21 32 pattern classification, % 8> and time-
series prediction.® 3% 41 |n general, an RC framework consists of
a reservoir that maps time-varying inputs into a high-
dimensional nonlinear feature space, and a readout network
that processes the reservoir states through a linear weighted
summation.!* During training, only the readout network is
optimized, while the reservoir remains unchanged.

In PRC, the reservoir and the readout network are ideally
constructed using volatile and nonvolatile devices, respectively.
Previous studies have predominantly focused on implementing
reservoirs with volatile devices, such as diffusive memristors, 2%
38, 41, 8 nanomagnetic systems, & 88 self-organized nano-
networks, 8% %%and electrochemical transistors. 1091 |n contrast,
hardware implementations of readout networks remain
relatively limited, though examples exist in which nonvolatile
devices such as drift memristors** 892 have been used to store
readout weights.3® However, despite the progress achieved
with various device platforms, physical reservoirs still face
several intrinsic limitations. Most notably, stochastic switching
dynamics, limited endurance under repeated operation, and
pronounced sensitivity to operational and environmental
conditions frequently compromise the reproducibility and
scalability of reservoir states.®3> Moreover, vulnerability to
thermal and chemical degradation in these devices remains a
significant challenge for stable long-term system performance.
Thus, although volatile device-based reservoirs successfully®* 2>
induce nonlinear and dynamic behaviors, substantial
improvements in reliability, endurance, and large-scale
integration are still required for the realization of robust
hardware-based PRC systems.38 9

In contrast, ferroelectric devices based on polarization
switching exhibit predictable and repeatable behavior.8 71, 103,
104 Ferroelectric PRC can therefore provide not only tunable
resistance states but also highly reproducible memory
operation with excellent endurance.”? 105 106|n addition, fast
switching speed and low-power operation!®” 108 offer further
advantages, enabling ferroelectric-based PRC systems to
achieve reliability, accuracy, and energy efficiency
simultaneously. Moreover, ferroelectrics inherently possess
nonlinearity, short-term memory, and state richness, all of

Journal ofsMaterials Chemistry|C

which are essential for efficient information proggssingdJn.RC
systems.49:50,109 |n contrast to other PRC 8é&Vid€s 8aeas RERAM
and PCM, ferroelectric devices offer several unique advantages
as reservoir substrates. First, their inherent hysteresis and
remnant polarization provide strong nonlinearity and memory
behavior without additional supporting circuits, making them
naturally suitable for generating rich nonlinear dynamics and
fading memory.11% Second, intermediate polarization states and
partial switching allow ferroelectric reservoirs to retain input
history over a broad range of time scales, thereby supplying a
large number of reliably addressable internal states for
sequential data processing.''! Third, HfO,-based ferroelectric
devices operate at low voltage and power and are compatible
with standard CMOS fabrication, which facilitates reliable,
large-scale, and energy-efficient integration of reservoir arrays
compared with other PRC device platforms.112

Ferroelectric devices involve several trade-offs when
compared with other physical reservoir computing platforms.
Because ferroelectric switching occurs primarily near a well-
defined coercive field, the effective voltage window for analog
tuning is relatively narrow, and deeply scaled devices may face
challenges in stabilizing a large number of distinct conductance
states due to depolarization effects and interfacial dead
layers.1% By contrast, ReRAM provides a wide resistance range
through filamentary switching and scalable crossbar arrays,®
while PCM enables easy multilevel implementation via
progressive crystallization.®® ®° From a materials and process
perspective, HfO,-based ferroelectrics are fully CMOS
compatible but require precise control over composition!3,
phase formation, and thermal budget, resulting in a relatively
narrow process window compared to scalable architectures of
ReRAM and mature 3D fabrication processes of PCM. In
comparison, alternative PRC platforms benefit from more
mature backend processes, offering greater flexibility in device
architectures and integration.!!® These aspects are summarized
in Table 1 below.

The nonlinearity of ferroelectrics originates from
mechanisms such as nucleation-limited switching and domain
pinning, as illustrated in Figure 5(a).'® 66 80 Domain pinning
refers to the phenomenon in which domain walls are pinned by
defects etc., thereby hindering their motion and resulting in
partial or incomplete switching. This effect introduces
nonuniform polarization dynamics that contribute to the overall
nonlinear response of ferroelectric materials. As shown in
Figure 5(b), the conductance of ferroelectric devices increases

Table 1 Summary of material and device properties of ferroelectric, ReRAM, and PCM technologies

Characteristics Ferroelectric Devices

as PRC

ReRAM PCM

Advantages®’?° - Intrinsic hysteresis & memory
- Rich nonlinear dynamics

- Low-voltage

- CMOS-compatible operation
Cons100-102 - Narrow analog window near coercive field
- Scaling-related issues

- Imprint/drift/fatigue

This journal is © The Royal Society of Chemistry 20xx

- Wide resistance range - Easy multilevel implementation
- Scalable crossbars - Strong phase-transition
nonlinearity

- Higher variability
- Cycle-to-cycle noise
- Faster cumulative damage

- High energy switching
- Resistance drift
- Thermal crosstalk
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nonlinearly with the number of applied pulses, demonstrating
polarization-driven accumulation behavior that results in
nonlinear PRC outputs. Ferroelectrics respond to input signals
in a nonlinear manner, enabling small variations in input to be
amplified into pronounced output differences.>®

The short-term memory in ferroelectric systems arises from
multiple physical mechanisms. One contributor is the
depolarization field caused by incomplete charge screening,
which destabilizes the polarization and leads to gradual decay
over time. In addition, oxygen vacancies generate internal
electric fields that oppose the polarization direction, thereby
contributing to short-term memory behavior. Furthermore,
antiferroelectric materials inherently exhibit volatile switching,
which  can  naturally emulate short-term  memory
characteristics. These effects together enable short-term
memory.3% 78 8 This mechanism is schematically illustrated in
Figure 5(c). Such behavior, as illustrated in Figure 5(d), allows
the instantaneous physical states of the device to retain
distinctions depending on prior inputs, thereby facilitating
effective processing of temporal data streams. 48

As shown in Figure 5(e), HZO films can exhibit different
phases even under nominally identical experimental conditions,
resulting in DTDV. This variation allows the same input to
produce multiple distinct output states, as depicted in Figure
5(f), thereby enhancing the state richness of the reservoir.11®
Enhanced state richness, in turn, expands the accessible
computational pathways and enables the handling of complex
data-processing tasks.*?

Antiferroelectrics, in addition to ferroelectrics, can also be
utilized for RC. Anti-ferroelectric materials exhibit field-induced
phase transitions between antiferroelectric and ferroelectric
states, giving rise to a characteristic double hysteresis loop. This
nonlinear hysteretic response enables input signals to be
effectively mapped into a complex high-dimensional space.
Importantly, the intrinsic volatility of antiferroelectrics enables
reset-free  operation naturally, as their polarization
spontaneously returns to the original state once the external
field is removed. The reset-free characteristic is advantageous
for achieving faster and more energy-efficient computation.
Owing to this combination of nonlinearity and volatility,
antiferroelectrics are highly promising materials for physical RC
applications.83,116-120

In summary, ferroelectrics inherently combine the three key
properties required for RC, namely nonlinearity, short-term
memory, and state richness and these characteristics enable
efficient processing of dynamically varying time-series data.
Table 2 Summary of ferroelectric device characteristics relevant
to PRC

Property
Endurance(cycles)

Representative Value / Performance
2106 ~ 10938, 121

<1 ns~ 10 ns3% 118

sub-pW ~ nW (ultra-low, typical <1
nW/Op)38, 122

Strong polarization-driven nonlinear

Switching Speed
Power
Consumption
Nonlinearity
response’? 117
Short-term Effective fading memory, short-term t

Memory = 2-3 steps3? 123

10 | J. Name., 2012, 00, 1-3

State Richness 8-15 distinguishable reserygin, states.e

(HZO, FeFET)123, 120001: 10.1039/D5TC03936C

Device Variability =~ Cycle-to-cycle variation <8%3% 125

3.2. Reported demonstrations and case studies

Although 1T-1C FeRAM is widely used in nonvolatile memory
applications, they are not well suited for PRC. Fundamentally, highly
nonvolatile nature of FeRAM lacks the intrinsic time-dependence and
fading memory essential for reservoir dynamics, as polarization
states remain stable over long timescales without natural decay.
Once written, polarization states remain essentially unchanged over
long timescales, preventing the natural state evolution and history-
dependent decay that underpin temporal information processing in
reservoir computing.!?6 While transient polarization or charge
dynamics can, in principle, be accessed in FeRAM, utilizing them
typically requires additional supporting circuitry, which increases
structural complexity and introduces substantial readout overhead
due to continuous sampling.’?”> 128 Moreover, because the access
transistor is connected in series, the ferroelectric capacitor is the
only nonlinear element contributing to the system response, limiting
the diversity of nonlinear dynamics that can be generated within a
single cell. The relatively large cell area of 1T-1C FeRAM compared
to FeFETs or FTJs further reduces its suitability for large-scale
reservoir integration. As a result, FeRAM-based PRC
implementations have been rarely reported in the literature, and
FeRAM is therefore not discussed further in Section 3.2.

By contrast, FeFETs and FTJs inherently support time-dependent
device responses in addition to continuous modulation of
conductance or current, making them more suitable for physical
reservoir computing. In these devices, polarization-driven channel
modulation in FeFETs and tunneling-current modulation in FTJs
naturally introduce history-dependent and relaxational dynamics,
enabling fading memory without the need for auxiliary circuitry. Both
platforms are compatible with CMOS processes and scalable
architectures, including crossbar implementations, and have
therefore been actively explored as neuromorphic and reservoir
computing platforms.18 98 129

Compared with FTJs, FeFETs provide gate-controlled channel
conductance and direct compatibility with standard CMOS logic
circuits, enabling flexible biasing schemes and straightforward
integration of reservoir nodes into large-scale silicon systems. In
addition, the three-terminal geometry of FeFETs intrinsically
decouples read and write operations, mitigating read disturbance,
relaxing endurance constraints, and allowing more stable control of
fading memory characteristics. FTJs, on the other hand, are compact
two-terminal devices that naturally exhibit stronger tunneling-
induced nonlinearity and multilevel conductance, making them
advantageous for highly scalable crossbar-type reservoirs, although
their circuit-level controllability and read—write separability are less
flexible than those of FeFETs.?> 18
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Fig. 6 Reservoir computing (RC) based on ferroelectric field-effect transistors (FeFETs):
(a) generation of virtual nodes using the drain current response of a FeFET. Based on ref.
112. (b) improvement of classification accuracy with FeFET-based RC. Based on ref. 113.
(c) RC operation using leaky antiferroelectric field-effect transistors (AFeFETs) without
reset pulses. Reproduced from ref. 114 with permission from John Wiley & Sons, Inc.,
copyright 2025.

Among ferroelectric devices, the FeFET has been most
actively investigated as a physical reservoir for RC.116. 130, 131
FeFETs favorable  features
implementation, including compatibility with
standard CMOS processes, intrinsic nonlinearity, and inherent
short-term memory. Early studies on FeFET-based RC focused
on utilizing the dynamic response of a single device, which has
since evolved into more advanced approaches aimed at
maximizing system performance.

The initial concept of employing a FeFET as a physical
reservoir was proposed by Nako et al. The key idea was to use
the time-dependent drain current of a single FeFET, under
sequential voltage pulse inputs, as virtual nodes, as illustrated
in Figure 6(a). 3! When input pulses are applied, the
polarization state of the ferroelectric layer in the gate dielectric
changes, modulating the channel conductivity. Under relatively

combine for reservoir

excellent
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weak voltage pulses, only partial domain switching egcurs. After
the removal of the pulses, these domain®®EAE & P&Pax BEK te
their original state over time. This behavior naturally gives rise
to short-term memory and multiple intermediate states, which
are essential for reservoir dynamics.31

While the initial studies demonstrated the feasibility of
applying FeFETs to RC, subsequent research has focused on
strategies to further improve the performance of FeFET-based
RC systems. Figure 6(b) illustrates the progressive development
of these approaches. One strategy involves expanding
dimensionality by employing multiple FeFETs in parallel. This is
particularly important for complex and large-scale tasks such as
speech recognition, where a single device is insufficient. To
address this, the input signal can be decomposed into multiple
frequency components, each applied to a separate FeFET,
thereby enhancing classification accuracy. In addition, beyond
using only the drain current, later approaches also exploited
source and substrate currents. Since these three current paths
exhibit distinct dynamic responses even under identical gate
voltage inputs, their simultaneous use effectively triples the
number of virtual nodes without requiring additional hardware,
leading to further improvements in classification accuracy. 130
Research has also explored the use of antiferroelectric FETs
(AFeFETs) in RC. As shown in Figure 6(c), the leaky AFeFET
reservoir enables RC operation without explicit reset pulses,
leveraging its intrinsic volatility for fading-memory dynamics.
Jung et al. proposed an in-sensor processing system in which a
piezoelectric sensor was vertically integrated with a three-
dimensional AFeFET reservoir. Moreover, the adoption of Zr-
rich leaky antiferroelectric films enabled fast response speeds
on the order of microseconds to milliseconds.!®

In conclusion, FeFET-based RC research has rapidly advanced
from the initial concept of utilizing the dynamic behavior of a
single device to more complex approaches, including the
exploitation of multiple current paths, parallel multi-device
architectures, and the integration of antiferroelectric devices.

3.2.2. RC based on FeTFTs

FeTFTs have also been explored for RC applications. Figure
7(a) illustrates the structure of an FeTFT specifically designed
for RC. The core strategy of this study was to engineer the
crystal phase of HZO in order to form a morphotropic phase
boundary (MPB) between the ferroelectric and
ferroelectric phases, and to employ this MPB as the reservoir.
Depending on annealing conditions, HZO can form either a
ferroelectric phase exhibiting switchable polarization or a
tetragonal phase with paraelectric characteristics. The
researchers utilized the volatile property observed at the MPB,
where the polarization is induced by an external voltage and
gradually relaxes to the original state after voltage removal, to
implement the reservoir. Based on this phenomenon, the MPB-
TFT was employed as a physical reservoir capable of nonlinear
transformation and short-term memory. As shown in Figure
7(b), the nonlinear and multilevel response of the MPB-TFT
enables the mapping of input signals into a high-dimensional
space.

non-
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(FeTFTs): (a) RC system employing a device that combines the morphotropic phase
boundary (MPB) with a double-gate structure, (b) comparison of drain current
responses with and without the top gate. Reproduced from ref. 39 with permission
from Springer Nature, copyright 2024.

For the readout network, FeTFTs with HZO stabilized in the
ferroelectric orthorhombic phase were adopted as synaptic
devices. Leveraging the intrinsic nonvolatility of ferroelectrics,
these FeTFTs maintained multilevel conductance states, which
played a crucial role in accurately storing synaptic weights
determined during training. Meanwhile, MPB-TFTs were also
employed as neuron devices in the readout network, since leaky
integrate-and-fire (LIF) neurons, similar to reservoirs, require
volatile short-term memory properties.

In conclusion, this work demonstrated that by phase
engineering of a single material, HZO, two functionally distinct
devices—FeTFTs and MPB-TFTs—could be fabricated and
monolithically integrated onto a single chip to realize all
components of an RC system. This approach effectively
addressed the limitations of prior RC systems, which required
heterogeneous materials and fabrication processes for different
components. 3°
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current while retaining ferroelectric switching characteristics. (c) current measurement
under various depolarization pulse sequences. Reproduced from ref. 49 with permission
from The Japan Society of Applied Physics, copyright 2021.

FTJs, originally investigated as nonvolatile memory devices,
have recently attracted attention as reservoirs in RC systems by
exploiting their intrinsic physical properties.*% 109132134 FTJs can
provide the high dimensionality required for efficient RC
through multilevel states. Yu et al. demonstrated a physical RC
system in which depolarization effects in ultrathin ferroelectric
films were intentionally harnessed to generate multiple virtual
nodes from a single FTJ, as schematically illustrated in Figure
8(a). In this architecture, input data were first converted into
voltage pulse sequences using a masking process and
subsequently applied to the FTJ reservoir. The resulting
dynamic current responses were then processed by an ReRAM-
based readout layer to yield the final outputs.

The key insight of this study was to repurpose a phenomenon
typically regarded as detrimental to device performance. When
the ferroelectric layer thickness is reduced below ~7 nm,
depolarization effects become pronounced, leading to the
gradual loss of polarization even without an external bias. By
fabricating leaky FTJs with 3.5-nm-thick HZO, the researchers
amplified this effect. As shown in Figure 8(b), these devices
exhibited higher leakage currents compared to conventional
FTJs, yet preserved clear ferroelectric switching behavior. Such
characteristics contributed the devices with short-term
memory, enabling the generation of dynamic and nonlinear
responses essential for reservoir operation. Specifically after
initialization by a strong negative voltage pulse to set the FTJ
into a high-conductance state, successive depolarization pulses
induced gradual changes in the internal polarization, resulting
in a decaying current over time. Figure 8(c) demonstrates that

This journal is © The Royal Society of Chemistry 20xx
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16 distinguishable reservoir states of the FTJ are realized by
various depolarization pulse sequences. The sequence of
temporally varying current values was directly employed as
distinct ‘virtual nodes’, thereby achieving a high-dimensional
reservoir from a single physical device.

Furthermore, the study demonstrated that distinct pulse
sequences could produce clearly separable current states,
confirming the feasibility of FTJs as reservoirs. By connecting 28
FTJs in parallel, the dimensionality of the reservoir was further
expanded, and a complete hardware system was constructed,
achieving high energy efficiency, fast processing speed, and
excellent recognition accuracy.

In conclusion, this work introduced a novel strategy to realize
high-dimensional reservoirs by leveraging depolarization
effects in ultrathin FTJs. It highlighted the possibility of utilizing
nonvolatile memory devices as dynamic elements in RC, while
offering a simple two-terminal architecture compatible with Si-
based processes for building high-performance RC systems. 4°

Table 3 Quantitative comparison of ferroelectric reservoir
devices discussed in Section 3.2

Device FeFET30 AFeFET®  FeTFT® FTJ*
Energy/Input - - 22.5p) 35 pJ
Time step 4 pus 500 us 100 us 500 ns
distinguishable 15 78 32 16
states

4. Future Outlook & Conclusions

Ferroelectric materials provide a particularly compelling
foundation for physical reservoir computing because their
intrinsic polarization dynamics simultaneously deliver the three
requisites of an effective reservoir: a nonlinear input—state
mapping, short-term memory, and a rich manifold of
distinguishable internal states. The hysteretic P-E response
provides a strong source of nonlinearity, while multi-domain
nucleation and domain-wall motion enable a continuum of
intermediate polarization states. In addition, relaxation
processes such as back-switching, depolarization-field-driven
creep, and charge-trap dynamics introduce task-dependent
volatility over millisecond-to-second timescales. Crucially, these
material responses couple efficiently to electrical observablesin
compact device structures. In FeFETs, polarization modulates
the channel conductance through interfacial electrostatics,
whereas in FTJs and diode-type stacks, it governs the barrier
height and symmetry, leading to distinct current states. These
characteristics make ferroelectric devices inherently nanoscale,
voltage-driven, and highly compatible with dense integration,
thereby providing clear advantages over other physical
reservoir platforms.

From a device-engineering perspective, ferroelectrics offer
clear routes to co-design dynamics with the target temporal
task. Partial-switching regimes near the coercive field enhance
sensitivity and separability, while controlled domain wall
pinning sets relaxation spectra that determine memory
capacity. The materials chemistry can be tuned by controlling

This journal is © The Royal Society of Chemistry 20xx
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dopant type and concentration, grain size apg . textire.
electrode work function and oxygen de&Vity, 1058/l 03836y
suppressing interfacial dead layers or introducing dielectric
interlayers. These parameters allow separate control of
coercive voltage, imprint, and leakage. From an interface
engineering standpoint, the conductivity at the ferroelectric
interface and the presence of interfacial dead layers critically
influence the magnitude of the depolarization field. A highly
conductive interface facilitates efficient charge compensation,
thereby suppressing depolarization field and stabilizing the
polarization state. In contrast, low-conductivity interfaces or
the existence of interfacial dead layers hinder charge screening,
leading to a larger depolarization field. This enhanced
depolarization field accelerates relaxation, effectively reduce
the decay constant associated with short-term memory.
Therefore, controlling interfacial properties provides a viable
route to tune the fading memory behavior in ferroelectric
reservoir devices.'3> Hafnia-based ferroelectrics are particularly
attractive for scalable PRC because of their compatibility with
CMOS processes, thickness scalability, and tolerance to back-
end thermal budgets. In contrast, perovskite thin films remain
valuable for studying fast domain kinetics, strong piezoelectric
and pyroelectric couplings, and optoelectronic transduction. In
all cases, the central design goal is to map correlation time of a
task and bandwidth to relaxation spectrum of the device,
maximizing kernel quality without violating the echo-state
property.

Architecturally, ferroelectrics enable both single-device and
networked reservoirs. A time-multiplexed “single-node”
reservoir can be implemented using an FeFET or FTJ operated
under pulsed excitation with feedback. By sampling the
transient conductance at staggered time delays, a series of
virtual nodes can be generated, forming a high-dimensional
state space with minimal hardware. Multi-terminal
ferroelectric memtransistors further decouple write, state
evolution, and read, improving readout linearity and reducing
read disturb. At the network scale, arrays of FeFETs or FTJs in
crossbar or oscillator-coupled topologies offer parallel
dynamics and richer coupling matrices, supporting higher
throughput. Importantly, the analog—digital interface, including
signal drivers, feedback paths, and linear readout circuitry,
should be developed in close conjunction with the ferroelectric
device stack, as circuit-level nonidealities can obscure the
intrinsic dynamical behavior required PRC.

Reliability and variability, often regarded as drawbacks in
non-volatile memories, can instead serve as controllable
resources in ferroelectric reservoirs, provided that their
statistical behavior remains stable. Wake-up and fatigue
originate from the evolution of defect distributions and
interface states. By optimizing electrode composition, barrier-
layer design, and pulse conditions, these effects can be
controlled to expand the range of accessible states while
maintaining reproducibility. Also, DTDV can enhance state
diversity in ferroelectric reservoirs. This has been considered
one practical source of state richness. However, DTDV variation
is not the sole contributor to state richness. Even with reduced
variability due to improved uniformity, state richness exists due
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to polarization dynamics. Partial switching produces multiple
intermediate states, and nonlinear dynamics linked to
nucleation and domain wall motion enhance the separation of
input-dependent current states. In addition, back switching
driven by depolarization fields, together with time-dependent
polarization relaxation over multiple time scales, gives rise to
fading memory behavior by encoding past inputs with
temporally  differentiated responses. These intrinsic
mechanisms remain intact under uniform fabrication, allowing
high state richness to be preserved. In fact, process stabilization
may suppress undesirable stochastic fluctuations while
maintaining the nonlinear switching dynamics that underpin
reservoir performance, ultimately improving reproducibility
and enabling robust reservoir computing.'2° Periodic calibration
of the linear readout and light in-situ adaptation can reduce
long-term drift and maintain consistent readout performance.
The community will benefit from standardized PRC
benchmarking that is materials-aware: reporting linear and
nonlinear memory capacities, kernel quality, effective
virtual-node counts under specified pulse trains, latency—
energy—accuracy trade-offs including ADC/DAC overheads, and
robustness across temperature and humidity.

Energy efficiency is another strength of ferroelectric
reservoirs. Polarization switching is driven by the applied
voltage and, in the partial switching regime, involves only a
modest amount of charge displacement. Operating near the
coercive region, but without exceeding it, helps reduce energy
dissipation while maintaining strong nonlinearity.
Negative-capacitance transients and subthreshold FeFET
operation can further lower actuation voltages for tasks that
tolerate smaller signal swings. Coupling ferroelectric devices
with sensing functions can further reduce system overhead. For
example, piezoelectric and pyroelectric responses enable in-
sensor reservoir operations, where mechanical or thermal
fluctuations are directly converted into reservoir states. This
approach helps minimize data transfer and sampling
requirements at the edge.

Looking forward, several materials-centric opportunities
could accelerate translation from laboratory demonstrations to
robust ferroelectric PRC hardware. First, the timescale of device
dynamics can be engineered through defect and interface
control, for example by tuning ionic vacancy concentrations,
electrode oxygen activity, and domain-wall pinning behavior.
These factors should be systematically correlated with memory-
capacity measurements to establish predictive design rules.
Second, three-dimensional and heterogeneous integration that
stacks ferroelectric layers with CMOS control, spintronic
oscillators, or photonic front-ends promises compact
multi-physics reservoirs with complementary bandwidths.
Third, newly developed ferroelectric materials, such as dopant-
stabilized hafnia, layered perovskites, and two-dimensional
ferroelectrics, could enable device operation in flexible,
transparent, or low-voltage regimes. Finally, hardware-in-the-
loop training can be used to preserve an untrained reservoir
while periodically recalibrating the readout or slightly adjusting
the reservoir operating point. Such adaptive schemes will be

14 | J. Name., 2012, 00, 1-3

important for compensating device aging without sacrificing the
simplicity of PRC. DOI: 10.1039/D5TC03936C

In conclusion, ferroelectric materials are well suited for
physical reservoir computing, as they naturally exhibit nonlinear
dynamics with inherent memory and can be effectively coupled
to electrical readout in compact device architectures. By
anchoring device behavior in controllable materials chemistry
and by adopting standardized, task-relevant benchmarks,
ferroelectric reservoirs are poised to deliver energy-efficient,
low-latency temporal inference at the edge. Continued
advances in interface and defect engineering, volatility tuning,
and scalable integration should enable reservoirs that are not
only high-performing but also manufacturable, bringing
ferroelectric dynamics to the forefront of neuromorphic
hardware. As noted in the representative studies discussed
above, reservoir computing has already been experimentally
demonstrated in HfO,-based ferroelectric devices with
nanometer-scale ferroelectric layers compatible with advanced
CMOS technologies. As ferroelectric devices are further scaled
toward more aggressive nanoscale dimensions, additional
challenges are expected to emerge. In particular, decreasing
ferroelectric layer thickness makes the stabilization of the
ferroelectric orthorhombic phase increasingly sensitive to
polymorphism, surface energy, and crystallization kinetics,
potentially narrowing the thickness window in which robust
ferroelectricity can be sustained. In parallel, the depolarization
field increases with decreasing thickness, which can distort
polarization switching behavior and reduce the effective
remanent polarization available for reservoir operation.
Moreover, reductions in the effective ferroelectric volume and
domain population associated with nanoscale scaling may limit
the accessible nonlinearity, while amplifying the relative
influence of noise.36 137

Furthermore, these size-dependent effects suggest that,
although ferroelectric reservoir computing remains feasible at
the nanoscale, further scaling will require increasingly precise
control over phase stability, interfaces, and operating
conditions to maintain an appropriate balance among
nonlinearity, fading memory, and noise, which are essential for
stable and separable reservoir states.
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