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Abstract:

The singlet—triplet energy gap (AEsr) serves as a central screening parameter for new thermally
activated delayed fluorescence (TADF) materials, and is a valuable indicator of eventual OLED
performance. Surprisingly though, various measurement methodologies and reporting standards
for AEgt persist across the research community. The resulting variability undermines direct
comparisons of material properties across reported works, obfuscating structure-property
relationships that would otherwise guide synthetic efforts and computational validation. Here we
employ 4CzPyz and 4tCzPyz as model systems, and correlate their different possible AEgr values
with their reverse intersystem crossing (rISC) kinetics in films of common and device-relevant
hosts. By comparing AEgt values with emission decay kinetics and device roll-off performance
for these two materials, we propose that the steady-state room-temperature photoluminescence
onset should be used to determine E(S;), in preference to either steady-state low-temperature or
time-resolved singlet emission. Ultimately though, even this should only be taken as an indicator,
as device performance is not always reliably predicted by comparing optically derived AEgr gaps.

Keywords: thermally activated delayed fluorescence, singlet-triplet energy gap, reverse
intersystem crossing, photophysical characterization, OLED materials
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1. Introduction

Thermally activated delayed fluorescence (TADF) has transformed organic light-emitting diode
(OLED) technology by enabling complete harvesting of electrically generated excitons without
requiring precious heavy-metal phosphors.!# This breakthrough emerges from the thermal
upconversion of non-emissive triplet states to emissive singlets through reverse intersystem
crossing (rISC), avoiding the 25% efficiency limit imposed by spin statistics in conventional
fluorescent materials.’~7 The efficiency of this process depends exponentially on the singlet-triplet
energy gap (AEgr), establishing its accurate determination and comparison as a cornerstone of
TADF material development.3-10

Despite this central importance, AEgr determination using different common spectroscopic
methods sometimes yields dramatically conflicting values for identical materials, with variations
exceeding 250 meV.!!-13 This inconsistency represents more than an experimental inconvenience;
often silently, it undermines the fundamental premise of rational TADF design and precludes direct
comparison of experimental results across different research groups.!#+'® Even in this context
recent works attempt to directly minimize AEgr!”, carefully quantify its different values!®, or
examine its inversion all towards more efficient OLED operation.!® It therefore remains timely to
consider what really is the most appropriate way to measure and report this seemingly simple
spectroscopic parameter.

The different potential reporting methods for AEgt primarily arise from the temporal complexity
of TADF photophysics, itself a consequence of the conformational flexibility of donor-acceptor
architectures (Figure 1).2° Following photoexcitation, molecules undergo conformational
relaxation during prompt fluorescence (PF, nanosecond timescale), followed by intersystem
crossing and thermal activation enabling rISC and delayed fluorescence (DF, microsecond to
millisecond timescale).?'>3 Each of the commonly used reporting methods for AEgr (discussed
below) samples different temporal windows of this evolution, potentially capturing distinct
conformational subsets with different emission energies.?+?’
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Figure 1. Temporal evolution of excited states in TADF materials (left), and the resulting range of reportable AEgr
values (right). Following photoexcitation, molecules undergo conformational relaxation during prompt fluorescence
(PF, ns regime) and delayed fluorescence (DF, ps to ms regime) proceeding via reverse intersystem crossing (rISC).
Steady-state methods (room-temperature, SSgt; and low-temperature, SS; 1) provide single ensemble-averaged values.
Time-resolved approaches (PF, DF) yield variable results depending on the selected temporal window.
Phosphorescence (PH) measurements determine triplet state energies, but are often only accessible at low
temperatures. The shaded sections (right) depict the ranges of possible singlet energies that could be selected from
different measurements, thus illustrating the range of reportable AEgt values (black/coloured bars) relative to the same
triplet energy (red dotted line). Molecular structures of 4CzPyz and 4tCzPyz are shown in the upper right.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

In principle the difference in energy between the S; and T, states simply defines AEgr = E(S;) —
E(T;). E(T;) can be estimated from the high-energy onset of the phosphorescence (PH) spectrum
acquired using low-temperatures and long acquisition delays following pulsed excitation to
eliminate contribution from both PF (time-resolved) and DF (temperature suppressed). In cases
where the phosphorescence arises from locally excited (LE) states with strong vibronic structured
emission, the shortest wavelength peak of the spectrum is also occasionally used. For TADF
materials with mixed charge transfer (CT) and LE excited state character such a peak is not always
readily identifiable for T, assignment, and the onset is often more appropriate.
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While estimation of E(T;) is usually relatively straightforward, the situation for E(S;) is
surprisingly fraught. Steady-state room-temperature (SSgr) fluorescence emission is the most
convenient and often used to estimate the E(S;) value, but this neglects any changes in molecular
conformation that may impact E(T;) (necessarily measured at low-temperature). Proponents of
using steady-state low-temperature measurements (SS;t) for E(S;) can rightly claim that this
version of AEgr at least controls for any temperature-associated changes in molecular geometry,
however it is the room-temperature value of E(S;) and associated molecular conformers that are
actually relevant to ambient operation of OLED devices. Steady-state measurements themselves
present a single onset value as the intensity-weighted ensemble average of different conformers in
a film sample, in contrast to time-resolved values that can change significantly depending on the
delay time chosen as molecular conformations relax following excitation. The desirable removal
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of user choice in these steady-state values is therefore counterbalanced by the consideration that it
is the molecular conformers emitting in the DF regime that are actually responsible for rISC in
TADF devices. Hence of these four common variants of AEgt (SSgr-PH, SS;-PH, PF-PH, and
DF-PH), none stands out as a clear ‘best’ choice for predicting rISC and OLED performance.

Here we examine this challenge through systematic comparison of 4CzPyz?%?° and 4tCzPyz*° as
model systems, exhibiting similar spectra but different AEgr and rISC kinetics. We take the view
that the usefulness of any version of AEgr is in its ability to predict trends in rISC and DF lifetimes,
and thus also OLED performance. Hence by comparing these kinetic and spectroscopic properties,
we come to the conclusion that the steady-state room-temperature E(S;) is likely the best to use,
but ultimately confirm that none of the AEgr variants give anything more than an indication of
device performance.

2. Results and Discussion

To systematically evaluate these measurement approaches, we selected 4CzPyz?32?° and 4tCzPyz>°
(shown in Figure 1) as model systems. These compounds differ only by tert-butyl substitution on
the carbazole donors, yet exhibit different rISC kinetics despite having similar excited states. We
examined both compounds across three strategically chosen host environments: Zeonex (apolar),
DPEPO (polar), and PPT (for which device results are already reported?®-3?). Although the core
utility of AEgt measurements is usually to indicate these kinetics and device performance
properties ahead of time, this full investigation instead allows us to confirm how faithfully the
different versions of AEgr make these predictions. The chemical similarity of these two emitters
allows us to also confidently attribute changes in kinetics to changes in AEgr, as both are expected
to have similar spin-orbit coupling (D-A structure with no heavy atoms) and vibronic coupling
between excited states (discussed below).2!-22

Figure 2 presents comprehensive steady-state characterization of both emitters in the varying host
environments, at both room-temperature (SSgr) and 80 K (SS.1). Both compounds exhibit broad
emission bands characteristic of charge-transfer singlet states, with dramatic host-dependent
spectral shifts reflecting their sensitivity to host environment. The phosphorescence spectra reveal
very similar E(T;) across the series, likely arising from the shared pyrazine core. For all
measurements except 4CzPyz in PPT, the low-temperature spectra red-shift relative to room-
temperature emission, although only by ~0.03 eV.
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Figure 2. Steady-state photoluminescence characterization of 4CzPyz (a-c) and 4tCzPyz (d-f) across three host
environments (1 wt% Zeonex, 10 wt% DPEPO, and 10 wt% PPT films). Each panel shows room-temperature steady-
state emission (RT, black), low-temperature steady-state emission (LT taken at 80 K, red), and 80 K time-resolved
phosphorescence spectra (PH taken at 80 ms following pulsed excitation, blue). Black dashed tangent lines indicate

the spectral onsets used in determination of individual state energies and hence AEgr.
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Figure 3. Time-resolved photoluminescence spectra of 4CzPyz showing temporal evolution during (a-c) prompt
fluorescence (PF, 0.8-31 ns) and (d-f) delayed fluorescence (DF, ps-ms) regimes across three host environments (1
wt% Zeonex, 10 wt% DPEPO, and 10 wt% PPT films).
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Figure 4. Time-resolved photoluminescence spectra of 4tCzPyz showing temporal evolution during (a-c) prompt
fluorescence (PF, 0.8-52 ns) and (d-f) delayed fluorescence (DF, ps-ms) regimes across three host environments (1
wt% Zeonex, 10 wt% DPEPO, and 10 wt% PPT films).

Figures 3 and 4 illustrate the continuous evolution of the singlet emission throughout both PF and
DF regimes. These changes in onset demonstrate the challenge of selecting "representative" time
points for E(S;) and therefore AEsr determination. During PF (0.8-50 ns), systematic red-shifts
reflect conformational relaxation from initially excited Franck-Condon geometries, toward
thermally equilibrated structures. The DF regime exhibits even more dramatic spectral migration,
with substantial shifts from early microsecond to late millisecond timescales. This pronounced
evolution reflects the complex population dynamics in the emitting films, where different
conformational subsets exhibit varying spectra and kinetics?°. The continuous spectral evolution
demonstrates that any single temporal snapshot provides an at-best incomplete and potentially
misleading representation of the ensemble behavior. It is also unclear which of these subsets is
primarily responsible for device performance.

The different onset-derived values for AEgr (or possible ranges for time-resolved onsets) are
presented in Table 1. The same values are also shown graphically in Figure 5a. Inspecting this
figure, we attempt to identify trends in the values of AEgr when comparing 4CzPyz and 4tCzPyz
in the same host environment, which correspond to performance predictions that can be later
compared to the actual kinetics and device measurements. In Zeonex, 4tCzPyz is found to have a
smaller AEgr than 4CzPyz regardless of measurement method, and there is no overlap between
their respective AEgt value ranges whether derived from PF or DF onsets. This agrees with
theoretical calculations for these two emitters in vacuum using a nuclear ensemble approach?!-33
(NEA, Figure 5b), sampling across 500 geometries from a harmonic Wigner distribution of the
T, state at 80 K.

Excited state energies and hence AEgr values for these geometries were calculated using
DFT/TDDFT (see computational details in SI), with the gas-phase calculations most comparable
to the measurements of the dilute and inert Zeonex films. Indeed the lower-energy onsets of the
AEgr histograms appear to reproduce the experimental SSgrir AEst measurements, at
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approximately 0.2 and 0.3 eV for 4tCzPyz and 4CzPyz respectively. Although the modes of the
histograms occur at larger AEgt values, we propose that it is the molecules with the smallest values
that will most strongly contribute to the DF properties. We were also required to restrict our
investigation to T; geometries and low temperatures in this work in order to manage computational
costs. This combination would most closely correspond to experimental AEsr measurements
derived from DF-PH comparisons of time-resolved measurements taken at low temperature, as DF
emission arises initially from rISC in triplet molecular geometries. Experimentally this specific
measurement is not accessible though, as at low temperatures the DF itself would be suppressed.
Future investigations may allow this computational approach to also simulate and predict changes
in AEgt as derived from measurements across the PF and SSrr, by considering energies of separate
S; geometry distributions at elevated temperatures. The impact of host molecules can also be
included, although again at considerable computational expense.?*

Returning to Figure 5a, for the measurements in DPEPO both steady-state measurements (SSgt
and SS;t) lead to smaller AEgt values for 4CzPyz, although there is overlap and potential
disagreement in predictions between methods depending on which of the time-resolved
measurements are selected for comparison. In PPT this overlap is even more severe, although both
PF and DF extend across smaller AEgt values for 4tCzPyz. 4tCzPyz in PPT gives a particularly
wide range of PF-derived AEgr values (visible in Figure 4c¢), which may arise from a wider range
of microenvironment heterogeneity, or from a wider range of donor-acceptor dihedral angles in
the molecules in the film (disorder), that relax gradually upon photoexcitation.?’ Regardless of the
cause, it appears that this major shift across the PF has no subsequent impact on the DF kinetics
compared to 4CzPyz (Figure 6¢). Interestingly, for PPT the ordering of the room- and low-
temperature steady-state (SSgt and SS; 1) AEsr measurements inverts for 4CzPyz, in contrast to
all other measurements.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Figure 5. a Comparison of AEgr values obtained using different approaches for 4CzPyz and 4tCzPyz across three
host environments (1 wt% Zeonex, 10 wt% DPEPO, and 10 wt% PPT). Dark blue diamonds indicate AEgr values
from SSgrr onset, while cyan diamonds indicate AEgr values from SS; 1 onsets. Navy bars represent the range of AEgr
values inferable from prompt fluorescence (PF) onset measurements, with green bars showing similar for delayed
fluorescence (DF) onsets. Orange circles indicate the AEgr values derived from the device electroluminescence (EL)
onset (PPT film only) ref. 23° All AEgr values were calculated using triplet energies derived from 80 K
phosphorescence (PH) onsets. b. Histogram of AEgr values calculated using DFT/TDDFT across ensembles of
molecules in their Ty geometries at 80 K.

Table 1: Comparison of singlet-triplet energy gaps (AEst, eV) for 4CzPyz and 4tCzPyz determined using four
different measurement methods: room-temperature steady-state (SSgr-PH), low-temperature steady-state (SS.r-PH),
prompt fluorescence onset (PF-PH), and delayed fluorescence onset (DF-PH) approaches across 1 wt% Zeonex, 10
wt% DPEPO, and 10 wt% PPT host environments. For PPT, an additional version using previously reported device?3
electroluminescence onsets is also provided (EL-PH).

Page 8 of 15

Host Compound | SSgr- PH SSir-PH PF,..-PH PF,;,,-PH | DF,,-PH DF,,-PH EL -PH
Zeonex 4CzPyz 0.30 0.27 0.35 0.33 0.34 0.26
4tCzPyz 0.21 0.19 0.25 0.24 0.26 0.23
DPEPO 4CzPyz 0.26 0.25 0.30 0.23 0.30 0.21
4tCzPyz 0.29 0.28 0.39 0.32 0.38 0.28
PPT 4CzPyz 0.23 0.24 0.31 0.26 0.30 0.25 0.26
4tCzPyz 0.22 0.21 0.29 0.13 0.27 0.19 0.22

Note: All AEgr values calculated using singlet energies from the respective methods and triplet energies from 80 K phosphorescence (PH) onset.
PF max/min and DF max/min represent the largest/smallest AEgr values obtained from different spectra within the respective temporal regimes
(See Figures 3 and 4).
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Figure 6. Room-temperature photoluminescence decay profiles of 4CzPyz and 4tCzPyz in (a) 1 wt% Zeonex, (b) 10
wt% DPEPO, and (c) 10 wt% PPT host environments.
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Figure 7. OLED device performance and electroluminescence characterization. (a) External quantum efficiency
(EQE) versus luminance (cd m?) characteristics for OLED devices. (b) Normalized electroluminescence (EL) spectra
of OLED devices based on 4CzPyz and 4tCzPyz at 10 wt % in PPT. Dashed blue tangent lines indicate the spectral
onsets used for determining AEgt from EL-PH. Device data taken from refs 2%-3,

To critically evaluate the ability of the different versions of AEgt to predict rISC performance,
Figure 6 shows the time-resolved photoluminescence decays of the same films. RT decay profiles
reveal only subtle differences in delayed emission kinetics, as might be predicted from their overall
similar AEgr values. In Zeonex films 4CzPyz exhibits slightly slower and lower intensity DF
compared to 4tCzPyz, in agreement with its AEg being smaller for all four considered variants
and in calculations. In DPEPO the kinetic ordering inverts, with 4CzPyz showing faster-decaying
DF with comparable intensity. This outcome is predicted by both the SSgr and SS; 1 AEgt values
as well as those derived from PF spectra (smaller for 4CzPyz), however the overlap of DF onset
ranges means this prediction cannot also be confidently made for this version of AEgr.

PPT films yield nearly identical photoluminescence decay profiles shown in Figure 6c¢. This is
consistent with SSgr AEgt values being nearly identical, while the SS;  variant of AEgr incorrectly
predicts faster decay kinetics for 4tCzPyz by a similar expected magnitude as seen for DPEPO.
Here as well the time-resolved ranges of AEgt values significantly overlap, such that any predictive
power is overshadowed by the choice of specific spectra used. Hence, it appears from the
measurements in PPT that the SSgr variant of AEgt is the most predictive of the time-resolved
kinetics and underpinning rISC. We do not attempt to directly quantify these rISC rates though, as
they can similarly strongly depend on the range of decay used to fit prompt and delayed lifetimes.”

Before progressing we must consider other possible mechanisms by which the fBu groups in
4tCzPyz can impact rISC, and hence justify the earlier assertion that the structural similarity of
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4CzPyz and 4tCzPyz allows the changes in TADF kinetics to be attributed to changes in AEgr. In
the first instance, by increasing the electron-donating strength of the Cz groups the /Bu substituents
are able to directly impact E(S;) and hence modify AEgr.? In addition, /Bu groups have been
shown to reduce the formation of aggregate states’%37, although for the low-concentration films
investigated here this is not of primary concern. While rBu groups can also influence the steric
environment of donor groups in crowded multi-Cz emitters3®, we have previously shown that the
pyrazine heteroatoms in 4CzPyz?® and similar materials® significantly alleviate steric congestion
near the D-A bond. This environment limits the potential for outwardly-pointing /Bu groups to
influence the equilibrium D-A dihedral angle, although any such changes will also then reflect in
AEgr itself through changes in the electronic coupling between donor and acceptor. Separately,
any inertial effects of the /Bu groups reducing vibronic coupling (by dampening the relevant D-A
bond torsions) are expected to be small — inertial impacts on rISC were only modest in fluid
solutions for materials featuring much larger and more axially-displaced adamantyl substituents,
and only barely discernable in solids films.*°

From the near identical AEg values and near identical emission decays in PPT, we would therefore
infer near-identical rISC rates and hence expect near-identical OLED performance from 4CzPyz
and 4tCzPyz. Indeed, previously reported devices of these emitters in identical stacks with PPT
host show very similar EQE, .« (Figure 7a). However, while EQE,,.x relies on both rISC and
emitter PLQY (reported at 75 and 73% for 4CzPyz and 4tCzPyz, respectively in PPT), the roll-
off of this EQE is more strongly determined by rISC and shows significant unexpected differences
at higher operating brightnesses. Comparing the two devices together, the roll-off for 4tCzPyz is
significantly improved, in contrast to the similar spectroscopic AEgt and even rISC inferred from
comparison of time-resolved emission kinetics. This comparison therefore demonstrates that none
of the variants of AEgy are able to make ‘ironclad’ predictions of device performance for 4CzPyz
and 4tCzPyz, and thus proves by contradiction that similar skepticism should be applied for TADF
materials more broadly.

Instead, here AEgr taken from the onset of device electroluminescence (EL, Figure 7b) does
correspond with the device roll-off, considerably smaller for 4tCzPyz as shown in Figure Sa and
Table 1. It is unclear whether these different device-emission onsets are a result of the EL process,
or potentially the evaporated nature of the emissive films. In either case though, requiring device
preparation and characterization to enable accurate ‘prediction’ of device performance is of limited
strategic value, as the ‘prediction’ of this version of AEgr is itself immediately superseded by the
direct device measurements.

While the use of AEgt to broadly or qualitatively predict trends in TADF materials (where these
values sufficiently differ) is therefore still useful, and our recommended standardization of
reporting across the research community using SSgt measurements may help support greater meta-
analytical insight, we ultimately demonstrate that the performance of devices is not guaranteed to
be predicted by this factor in any of its spectroscopic variants. This work therefore justifies the
abandonment of pedantic or over-zealous support of any single reporting method, while weakly
favoring SSgr measurements primarily for their convenience and towards a unified approach.

3. Conclusion

Through systematic evaluation and comparison to further spectroscopic and optoelectronic
characterization, we demonstrate that room-temperature steady-state (SSgrr) measurements
provide the most convenient and reliable approach for determining predictive AEgr, albeit by only
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a narrow margin. The more important performance of actual devices is only loosely tied to any
version of AEgr, and quantitative comparisons are not necessarily insightful especially when the
differences are small. While it will benefit the community to adopt a single reporting standard
across the research field, the direct benefits of choosing any particular method within a single
investigation are limited. Based on experimental convenience and the removal of user choice, we
recommend the use of SSgt E(S;) measurements, but stress that none of these methods can be
uncritically relied on to fully predict eventual device performance.
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