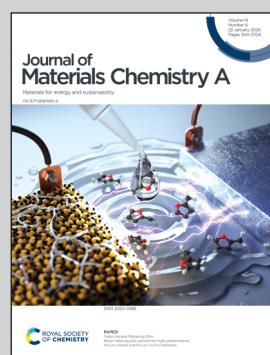


Showcasing research from Professor Zhiping Luo's laboratory,
Fayetteville State University, North Carolina, USA.


Computational-experimental assessment of transition-metal doping of Co_3O_4 for acidic oxygen evolution reaction with balanced activity and stability

Density-functional theory (DFT) screening of fourth-row transition-metal-doped Co_3O_4 for acidic OER establishes joint activity-stability descriptors and identifies chromium as an optimal dopant balancing performance and durability. Guided by computation, experiments on Cr-doped samples validated the dopant's high activity and stability. This work offers a broadly applicable strategy to discover effective dopants for oxide OER catalysts in acidic media.

Image reproduced by permission of Zhiping Luo from *J. Mater. Chem. A*, 2026, **14**, 3297.

Artwork generated using Adobe Firefly.

As featured in:

See Zhiping Luo *et al.*,
J. Mater. Chem. A, 2026, **14**, 3297.