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ical, geometric, and novel
topological features to develop generalizable
machine learning models for predicting
mechanically stable MOFs

Akash K. Ball, a Changhwan Oh, ab Gozel Dovranova a

and Heather J. Kulik *ac

Metal–organic frameworks (MOFs) are promising functional materials, but poor mechanical stability leading

to loss of porosity and degraded performance under external pressure limits their commercial use. The

diversity of MOF building blocks makes exhaustive experimental or simulation-based screening for high

mechanical stability impractical. While some prior work has used machine learning (ML) to accelerate

discovery, ML models typically lack the ability to generalize across diverse MOF topologies. Starting from

a dataset with around an order of magnitude more secondary building units and topology types than

previously studied, we develop a generalizable and interpretable ML framework to predict MOF

mechanical stability (i.e., by predicting the bulk modulus). Our ML models incorporate novel and

interpretable topological features developed based on principles of net theory and chemical features

that are applicable across a broad range of MOF chemistries and topologies. We employ our models in

a virtual high-throughput screening of over ∼435k MOFs from existing hypothetical and experimental

databases to identify the most mechanically stable candidates with potential industrial applications.
1. Introduction

Metal–organic frameworks1 (MOFs) represent a prominent class
of porous, crystalline materials assembled from inorganic
secondary building units (SBUs) and organic linkers. Their
exceptional chemical tunability2,3 and high porosity4 make them
promising candidates for a wide range of applications,
including gas separation and storage,5,6 catalysis,7,8 atmospheric
water harvesting,9–12 and desalination.13–15 The modular nature
of MOF construction allows for a vast combinatorial space,
offering extensive possibilities for designing materials with
tailored properties. Despite their potential, a signicant barrier
to the widespread, real-world implementation of MOFs is their
typically limited mechanical stability. Under external stress,
manyMOFs undergo deleterious phase transitions that can lead
to a loss of crystallinity, reduced pore volume, and eventual
structural collapse.16–19 This mechanical fragility curtails their
utility in large-scale applications where structural integrity is
paramount.20–22 Consequently, identifying exceptionally stable
MOFs and establishing clear design principles to enhance their
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mechanical robustness are critical steps toward realizing the
industrial potential of this material class.

The extensive combinatorial space of MOF SBUs, linkers, and
nets corresponds to millions of potential structures,23 making
experimental discovery of a MOF with the optimal properties for
a desired application a formidable challenge. Experimentally
validated MOFs have been compiled from the Cambridge Struc-
tural Database24 by rening single-crystal structures, with around
9–10 000MOFs total from either the CoREMOF 2019 ASR25 or the
revised CoRE MOF DB 2025 v2.0 ASR26 databases. Hypothetical
MOFs have been systematically enumerated by combining
different building blocks. Earlier hypothetical databases include
hMOF27 (∼130 000 structures), BW-DB28 (∼300 000 structures),
and ToBaCCo29 (∼13 000 structures). Motivated by the observa-
tion of a lack of diversity30 and stability31 in these hypothetical
MOFs compared to experimental MOFs, USMOF31 (∼54 000
structures) was developed with more topological and metal
diversity. Systematically synthesizing and testing this vast array of
either experimental or hypothetical candidates for mechanical
stability is both resource-intensive and prohibitively time-
consuming. As a result, virtual high-throughput screening
(VHTS) powered by computer simulations has emerged as an
indispensable tool for efficiently navigating this expansive
chemical space to identify promising new materials.26–28

A key indicator of the mechanical failure point of a MOF is
the pressure at which it loses crystallinity, as determined from
J. Mater. Chem. A
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its stress–strain curve.32,33 However, computing the entire
stress–strain curve for thousands of structures is computa-
tionally intractable for VHTS. The bulk modulus, a measure of
a material's resistance to compression calculated within its
elastic regime, has been established as a reliable and compu-
tationally efficient proxy for mechanical stability34 suitable for
VHTS.35 Bulk moduli can most accurately be obtained from DFT
and ab initio molecular dynamics,36,37 but classical force elds
offer a faster alternative with reasonable accuracy.35,38 Never-
theless, for truly large-scale screening on the order of 500k
experimental and hypothetical MOFs, even faster alternatives
are needed.

To mitigate the cost of VHTS, machine learning (ML) has
proven to be a powerful accelerator. By establishing quantitative
structure–property relationships (QSPRs), ML models can
rapidly predict the properties of unseen MOFs, bypassing the
need for expensive simulations.39–42 In recent years, ML has
been successfully applied to predict MOF performance in
various applications like separation43–48 and storage,49–51 along
with their stability52–58 under varying conditions. However,
previous applications of ML to mechanical stability have faced
several key limitations. QSPRs for the bulk modulus have oen
been constrained by datasets with limited diversity in MOF
building blocks and topologies. For instance, an early MLmodel
trained on 3385 ToBaCCo29 MOFs highlighted the inuence of
pore geometry on stability but lacked the chemical and topo-
logical breadth needed for broad generalizability. Another effort
using 20 342 QMOFs59 addressed the building block limitations
of the ToBaCCo set but failed to address the question of topo-
logical diversity.53 Furthermore, a critical gap in many of these
studies has been the absence of robust featurization methods
capable of encoding the global topology of the framework,53–55

which is crucial for establishing clear QSPRs linking a MOF's
topology to its stability. As a result, a systematic understanding
of which building blocks are most or least critical for mechan-
ical integrity remains largely unexplored, and a unied ML-
driven workow for discovering exceptionally stable MOFs
across all major databases has been missing.

In this work, we address these limitations to build the most
comprehensive and generalizable QSPR model for MOF
mechanical stability to date. We previously curated31 a bulk
modulus dataset for 7330 thermally and activation stable
USMOFs, which offers an order of magnitude greater diversity
in its building blocks and topologies compared to the preceding
ToBaCCo set. Nevertheless, no QSPRs were established on that
dataset, which we address in the present study. First, we use this
dataset to systematically quantify the hierarchical inuence of
different MOF building blocks on the bulk modulus, identifying
the structural components most critical for enhancing stability.
Next, we introduce a set of novel and interpretable topological
features derived from net theory to overcome the representation
challenges of previous models. We demonstrate that combining
these topological features with established geometric and
chemical descriptors leads to ML models with good generaliz-
ability. Finally, we leverage our predictive models to perform
a massive VHTS campaign across both hypothetical and
experimental MOF databases, identifying over 22 000
J. Mater. Chem. A
candidates with exceptionally mechanical stability. We validate
our high-throughput screening results by performing direct MD
simulations on the top-performing structures, conrming the
efficacy of our ML-guided discovery pipeline.
2. Computational details
2.1 Data set

We employed 7330 hypothetical “ultrastable” MOFs (i.e., with
respect to thermal stability and activation stability) in the
ultrastable MOF database (USMOF DB) and their Voigt–Reuss–
Hill bulk modulus (KVRH) computed in prior work.31 As in the
original study, we categorized the building blocks of USMOFs as
nodes (any organic or inorganic component containing more
than two connection points) and edges (organic building blocks
with two connection points) rather than using the terms
“linker” and “SBU,” enabling an unambiguous decomposition
of a MOF structure into distinct building blocks.31 As per the
denitions of node and edge, both organic nodes and edges are
essentially linkers, while inorganic nodes are SBUs. The 7330
USMOFs used in our study comprise three congurations of
inorganic nodes, organic nodes, and organic edges: (1) one
inorganic node and one edge (1inor–1edge, totaling 3900
MOFs), (2) one inorganic node, one organic node, and one edge
(1inor–1org–1edge, totaling 2395 MOFs), and (3) two inorganic
nodes and one edge (2inor–1edge, totaling 1035 MOFs).
Another effort using 20 342 QMOFs59 addressed the building
block limitations of the ToBaCCo set, but we do not use bulk
moduli calculated in that study because differences in calcula-
tion protocol make it hard to combine both datasets for the ML
prediction task.
2.2 MOF featurization

In this work, we used both numerical and text-based MOF
features to train and ne-tune different machine-learning
models. We used three classes of numerical descriptors: (1)
176 revised autocorrelations60 (RACs) obtained using molSim-
plify v1.7.3,61 (2) 14 geometric descriptors obtained from Zeo++
v0.3,62 and (3) 10 novel topological features that we developed in
this work based on the principles of net theory. RACs, initially
created as features for transition metal complexes60 and
subsequently adapted for MOFs,63 identify the chemical
features and local topology of MOFs by assessing the products
and differences of different atomic properties (Text S1 and
Table S1). Out of 176 RACs, we removed 28 that were invariant
over USMOF DB, leaving us with 148 RACs as MOF descriptors
(Table S2). The geometric descriptors assess the pore geometry
of MOFs by measuring pore size, probe accessible and non-
accessible volume, surface area, and pore volume (Table S3).
To calculate the probe accessible/non-accessible volume, we
selected a probe radius of 1.86 Å, which reects the approximate
radius of a nitrogen molecule.

The combined use of RACs and geometric descriptors has
allowed ML models to attain outstanding results in forecasting
MOF properties in numerous recent studies.31,44,46,56,57,64 Still,
prior work55 has shown a strong correlation between MOF nets
This journal is © The Royal Society of Chemistry 2026
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and mechanical stability. Hence, in this work, we introduce
novel topological features to explore their effect on the perfor-
mance of our models. The novel topological features are
developed based on the short symbol65 representation of peri-
odic nets. They contain the normalized frequency of different
cycle lengths, starting from the minimum cycle length of three
up to the maximum cycle length of twelve found amongst 495
distinct nets in the USMOF database (Text S2 and Table S5). A
net with a higher frequency of smaller cycle lengths (e.g., 3, 4,
and 5) corresponds to a higher average metal coordination
number (MCN) and a more rigid pore network, thereby result-
ing in greater mechanical stability (Text S2 and Table S4). We
also use two combinations of the numerical features to train our
ML models: (1) RACs and Zeo++ features and (2) RACs, Zeo++,
along with topological features, which allows us to investigate
the explicit effect of topological features on the performance of
our MLmodels (Fig. S1). For text-based representation of MOFs,
we used the previously developed MOFid,66 which is a structure-
agnostic representation of MOFs containing symbols of metals
present in the SBU, SMILES67 strings of MOF linkers, and the
Reticular Chemistry Structural Resource68 (RCSR) symbol of
MOF nets (Fig. S2).
2.3 Development of ML models and MOF screening

We used scikit-learn69 v1.3.0 to train ML models with four
different architectures: random forest regressor (RFR), gradient
boosting regressor (GBR), and kernel-ridge regressor (KRR) with
Laplacian or radial basis function kernel. We also used
PyTorch70 v1.10.1 with CUDA Toolkit v11.3.1 support to train
articial neural networks (ANNs) with more complex architec-
tures. Since the USMOF database contains three distinct classes
of MOFs based on the number and type of nodes (1inor–1edge,
1inor–1org–1edge, and 2inor–1edge), it is important to know if
a model trained on one MOF class can generalize to other
classes. For each of the ve model architectures, we trained
three ML models for each MOF class separately and one model
for all the MOFs, resulting in a total of twenty models trained
from scratch. All twenty ML models across the ve different ML
architectures were trained using two combinations of the
numerical descriptors (see Section 2.2). Apart from training ML
models from scratch, we also implemented a transfer learning
approach where we ne-tuned a previously developed trans-
former model with a self-attention mechanism called
MOFormer71 to predict mechanical stability in MOFs. As we did
for the other ML architectures, we ne-tuned four different
MOFormer models separately for each MOF class and the entire
USMOF DB using MOFid (see Section 2.2) as a text-based
representation of MOFs. Before model training and ne-
tuning, we created 80/20 train/test splits for our datasets. For
numerical features, we Z-normalized both the training and test
set features using the mean and standard deviation of the
respective training set features. Aer dataset normalization, we
performed recursive feature addition (RFA) for all models except
the ANNs (i.e., the RFR, GBR, and KRR models) to avoid over-
tting and improve interpretability and generalizability (Tables
S6). For RFA, we began with the ve most important features
This journal is © The Royal Society of Chemistry 2026
and incrementally added additional features until model
performance no longer improved. We performed extensive
hyperparameter optimization either using grid search for RFR,
GBR, and KRR models or using hyperopt v0.2.7 (ref. 72) for the
ANN models, along with ve-fold cross-validation (Table S7).
Due to the large computational cost associated with ne-tuning
the MOFormer model, we carried out a less extensive hyper-
parameter optimization with three-fold cross-validation for that
model (Table S7). Aer training and ne-tuning, we assessed
the performance of all the models on the set-aside test set and
performed Shapley additive explanation (SHAP)73 analysis of the
best-performing models to understand the structure–property
relationships in mechanical stability. We also computed the
latent space distance (LSD) scaled by the maximum latent space
distance to any point in the test set and averaged over ten
nearest neighbors74 to use as an uncertainty quantication
metric. Before screening for novel MOFs with exceptional
stability using our ANN model, we implemented the uniform
manifold approximation and projection75 (UMAP) algorithm to
reduce the dimensionality of the 512-dimensional latent space
of the model into two dimensions, which illustrates the
coverage of the training USMOFs in the space of hypothetical
and experimental MOFs. To determine if these datasets con-
tained duplicate MOFs, we identied them using the Weisfeiler-
Lehman graph hash76 method implemented in NetworkX77 v3.0.
2.4 Molecular simulation for KVRH estimation

We calculated MOF KVRH for MOFs not previously assessed
following the same methodology as in our earlier work.31 We
employed the LAMMPS v29Sep2021 (ref. 78) package and the
UFF4MOF79,80 force eld to describe the MOFs. The KVRH values
were obtained from the 6 × 6 stiffness matrix.81 This tensor
encompasses all the information regarding the mechanical
behavior of a MOF in the elastic region of the stress–strain
curve. To compute the stiffness matrix, we imposed a maximum
strain of 1% and assessed the relative energy variation between
the deformed and the original structure. Conjugate gradient
minimization was employed for geometry optimization prior to
stiffness calculation.
3. Results and discussion
3.1 Trends among KVRH and MOF properties

We rst explored the distribution of KVRH previously
calculated in the USMOF dataset.31 We observed a wide range
(0.02–96.0 GPa) of mechanical strengths in our dataset with
moderate average values (3.02 GPa) and a long-tailed distribu-
tion (Fig. 1a). We identied a set of 270 (3.7% of 7330) excep-
tionally mechanically stable MOFs, which we dene as those
with mechanical stability at least two standard deviations above
average (i.e., all MOFs with KVRH > 11.86 GPa). Of the connec-
tivity classes, we found most exceptionally stable MOFs were
1inor–1edge MOFs (200 MOFs, 74.1%), and the fewest were
1inor–1org–1edge MOFs (23 MOFs, 8.5%). When we compared
this distribution of MOFs with that of the original set, we found
enrichment of 1inor–1edge MOFs (53.2% MOFs in the original
J. Mater. Chem. A
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Fig. 1 (a) Stacked bar plots showing the distribution of KVRH for 1inor–1edge MOFs (blue bars), 1inor–1org–1edge MOFs (red bars), and 2inor–
1edge MOFs (green bars). The vertical dashed lines denote the following: gray for overall mean KVRH and orange for two standard deviations
above the overall mean KVRH. (b) Structures of the two MOFs with the highest KVRH in our dataset. The inorganic nodes in both the MOFs are
shown in the inset, with the node identities and metals present in the nodes. The KVRH values are reported for these examples. In the structures,
the atoms are colored as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen, magenta for europium, and turquoise for
terbium. (c) Stacked bar plots representing the distribution of bulk density (top left), diameter of the largest included sphere (top right), volumetric
pore volume (bottom left), and gravimetric surface area (bottom right) of 1inor–1edge MOFs (blue bars), 1inor–1org–1edge MOFs (red bars), and
2inor–1edge MOFs (green bars). In each plot, the orange star denotes the mean geometric property of the top ten exceptionally stable MOFs
(Table S8). The mean geometric properties of all three classes of MOFs and the top ten MOFs are reported in the insets.

J. Mater. Chem. A This journal is © The Royal Society of Chemistry 2026
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set) and signicant depletion of 1inor–1org–1edge MOFs
(32.7% MOFs in the original set) in the exceptionally stable
subset. Focusing on the ten most mechanically stable MOFs,
we found all the MOFs with outstanding mechanical stability
(KVRH > 39 GPa) to be from the 1inor–1edge class. The two most
mechanically stable are characterized by lanthanide-based (Tb
or Eu) dinuclear nodes with carboxylate and bipyridine linkers
that lead to exceptionally high mechanical stability (Fig. 1b and
Table S8).82

We next investigated the geometric properties of the ten
most mechanically stable MOFs in our dataset. MOF geometry
has been found to be signicantly relevant for mechanical
stability.53,55 We computed and compared the distribution of
four geometric properties (see Section 2.2): bulk density (r),
diameter of largest included sphere (Di, also known as the
largest cavity diameter), fractional volumetric pore volume
(VPOV), and gravimetric surface area (GSA). We found the mean
Di, VPOV, and VSA of the top ten MOFs to be at least three times
lower than the rest of the MOF set, and we found the mean r of
the top ten MOFs to be over six times higher than the mean r of
the remaining MOFs (Fig. 1c and Table S9). Thus, the top ten
MOFs are characterized by lower porosity and higher bulk
density, as might be expected.53,55 Our observation is further
conrmed by the negative correlation between pore dimensions
(Di, VPOV, and VSA) and KVRH (Spearman's r # −0.41) and
a positive correlation between r and KVRH (Spearman's r$ 0.53)
for all three classes of MOFs present in our dataset (Fig. S3).
This explains why MOFs in the class that contains organic
nodes lack exceptional mechanical stability, as they have
consistently higher pore dimensions (Di, VPOV, and VSA) and
lower density (Fig. 1c). While mechanically stable MOFs with
lower porosity are expected, we investigated if there are MOFs
that have high mechanical stability despite having high
porosity, since such MOFs are likely targets for gas storage
applications. We identied one such Mg-based 1inor–1edge
MOF with carboxylate linkers that both belongs to the excep-
tionally stable subset (KVRH = 19.30 GPa) and possesses above
average (i.e., by one std. dev.) porosity as judged by the largest
included sphere (Di = 64.5 Å, Fig. S4).

We next investigated the building blocks in the most
mechanically stable MOFs. We rst explored the linker chem-
istry that was common across the distinct inorganic nodes (N12,
N41, N45, N47, N48, N49, and N76) present in the ten most
stable MOFs (Fig. 2a). We observed three distinct linker chem-
istries with similar frequency: carboxylate linkers (4 MOFs,
nodes N12, N49, and N76), porphyrin linkers (3 MOFs, node
N41), and combined carboxylate/bipyridine linkers (3 MOFs,
nodes N45, N47, and N48) (Fig. 2a). Upon investigating only the
linker chemistries that are enriched in mechanically stable
MOFs compared to the entire set, we discovered signicant
enrichment of both porphyrin and combined carboxylate/
bipyridine linkers, with nearly eight times enrichment of
porphyrin linkers and two times enrichment of combined
carboxylate/bipyridine linkers (Table S10). To isolate our focus
to the portion of the linker that does not coordinate the metal,
we evaluated edge frequency. As per the denition of node and
edge, MOFs in our dataset can occasionally only be comprised
This journal is © The Royal Society of Chemistry 2026
of nodes and lack edges (see Section 2),31 and, indeed, most of
the highest-stability MOFs (8 of 10) lack edges (Table S8).55,83,84

In the remaining two MOFs, we found two edges (E0 and E3)
with short lengths (Fig. 2a and S5).31

Turning to SBU chemistry, there are ve unique metals
present across seven distinct inorganic nodes, out of which
three are lanthanides (Tb, Eu, and Ho) and two are lighter
elements (Co, Mg, Fig. 2a). All ve metals were enriched in the
most stable MOFs over the original set, with the highest
enrichment of Ho (10% of the top ten MOFs vs. 0.7% of 7330
MOFs, Table S11 and Fig. S7). Although the presence of Co,
specically in porphyrinic nodes, and lanthanides has been
shown to enhance the mechanical stability of MOFs,53 the
observation Mg MOFs having high mechanical stability had not
been reported.

We also investigated the most frequent nets in the top ten
mechanically stable MOFs. Despite the highest presence of gar
and ptr nets over our entire dataset (7.1% and 6.8% respec-
tively), we discovered the qtz-e net to be the net for the three
most stable MOFs and, therefore, the most frequent among the
top ten (Fig. S8 and Table S8). This is a signicant enrichment
of this net from its presence in the original set (0.16% of 7330
MOFs). We further probed the average metal coordination
number (MCN) of the nets. Consistent with prior work,55 we
found enrichment of higher MCNs of six (6 top-ten MOFs vs.
16.5% of all MOFs) and eight (1 top-ten MOF vs. 1.1% of all
MOFs) in comparison to the predominant MCN of 4 in the
overall set (38.9% of all MOFs, Fig. S9). The fact that the qtz-e net
has an MCN of six potentially contributes to its abundance
among the ten most stable MOFs.

To uncover the inuence of the MOF building blocks and
nets on KVRH, we performed non-parametric Kruskal–Wallis
tests,85 which can quantify the extent of variations in KVRH with
different MOF building blocks and nets using a h2 metric (i.e.,
higher values indicate larger variations). For the ve most
frequent building blocks and nets across all MOFs in our
dataset, we found the most signicant variations in KVRH for
inorganic nodes and nets (h2 of 0.40 and 0.39 for inorganic
nodes and nets, Fig. 2b, S6 and Text S3). Although both organic
nodes and edges are analogous to MOF linkers, we discovered
signicantly lower variation in KVRH with edges than with
organic nodes (h2 of 0.02 vs. 0.15), which can be explained by the
substantially greater inuence of organic nodes on MOF pore
size than edges (Fig. 2b and S10). Our nding that the identity of
the inorganic node has the highest inuence on MOF
mechanical stability was consistent across all three classes of
MOFs, at odds with prior work that identied MOF net to be the
dominant factor for predicting mechanical stability (Fig. S11–
S13).55
3.2 ML models for mechanical stability prediction

To capture complex structure–property relationships between
mechanical stability and MOF building blocks, topology, and
pore geometry, we trained interpretable ML models. We
considered several strategies for featurizing our MOFs. We
introduced a new type of topological feature that encodes the
J. Mater. Chem. A
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Fig. 2 (a) Structures of the seven distinct inorganic nodes (N12, N41, N45, N47, N48, N49, and N76) and two distinct organic edges (E0 and E3)
present in the ten most mechanically stable MOFs. The metals present in the inorganic nodes are reported in the labels below each node. In the
structures, the atoms are colored as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen, yellow-green formagnesium,
light pink for cobalt, magenta for europium, turquoise for terbium, and teal for holmium. The black circles denote the atoms present in the
inorganic nodes and edges that serve as connection points with other building blocks. (b) 2D convex hull of KVRH vs. diameter of the largest
included sphere for MOFs containing any of the five most frequent inorganic nodes (top left), organic nodes (top right), nets (bottom left), and
edges (bottom right) in our entire dataset (more results shown in Fig. S6). In each panel, the purple vertical dashed line corresponds to the
average diameter of the largest included sphere (34.7 Å) of all MOFs in our dataset. The metals present in the inorganic nodes are shown in the
legend, the average metal coordination number of the nets is shown in the legend, and the h2 values from the Kruskal–Wallis tests are reported
above each pane.
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frequency of different cycle lengths (i.e., connected rings in the
structure of the MOF). We also featurized MOFs using graph-
based RACs30,86 that encode atom-wise chemistry and local
connectivity, and we included Zeo++ features62 that encodeMOF
pore geometry (Texts S1, S2 and Tables S1–S3). We also trained
models over each of the three individual classes of MOFs
(1inor–1edge, 1inor–1org–1edge, and 2inor–1edge) to investi-
gate possible variability in the structure–property relationships
between the three MOF classes.
Fig. 3 Test set parity plots of predicted vs. true KVRH for the ANNmodels
1edge, 1inor–1org–1edge, and 2inor–1edge) of MOFs using (a) one-h
frequency and 14 Zeo++ features, (c) 148 RAC and 14 Zeo++ features, a
features. The data points are colored by kernel density estimation (KDE
indicate the parity lines. For each model, the datapoint corresponding to
structures of those MOFs are shown in Fig. S14. The values of log R2 are

This journal is © The Royal Society of Chemistry 2026
Inspired by previous work on ML for MOF mechanical
stability,55 we rst trained an ANN using only four geometric
features (r, Di, VPOV, and GSA) obtained using Zeo++ in
combination with one-hot encoded net features to evaluate if
this set of features alone is sufficient to develop generalizable
ML models for KVRH prediction across our dataset. Due to the
heavily skewed distribution of KVRH towards lower values, we
selected the log R2 (i.e., the log transform was applied prior to
computing R2) as a more appropriate performance evaluation
metric for our models instead of R2, since achieving high R2 in
trained on the entire USMOF dataset containing all three classes (1inor–
ot encoded topology and four Zeo++ features, (b) 10 cycle length
nd (d) 10 cycle length frequency, 148 RAC, and 14 Zeo++ topological
) density values as shown by inset color bars, and black dashed lines
the most extreme outlier MOF is denoted by the black circle, and the
reported in the insets.
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signicantly skewed data is challenging.53 Unlike in prior work,
we observed extremely poor performance for the ANN model
trained over the entire dataset (test set log R2 = 0.47, Fig. 3a).
Similar unsatisfactory performance by the ANN models was
observed when training on individual classes of MOFs, with the
best performance for 1inor–1org–1edge MOFs and the worst
performance for 2inor–1edge MOFs (test set log R2 = 0.51 vs.
0.42, Table S12). Overall, the poor performance of the models is
likely due to the greater chemical and topological diversity in
our USMOF dataset than in the subset of ToBaCCo MOFs used
in the previous work.29,55

While investigating the most extreme outlier MOF (id:
MOF_net-sod-g_node1-N66_edge1-E7) during our prediction
task over the entire set, we found theMOF to be highly porous (r
= 0.048 g cm−3, Di = 92.3 Å, and VPOV = 0.96 cm3 cm−3) with
a bulk density less than 25% of the average for MOFs in our
dataset (Fig. S14 and Table S9). This motivated us to explore
alternativ featurization. To investigate whether adding other
geometric features (e.g., the diameter of the largest free sphere)
could improve the performance of the ANN models, we
retrained our models with ten additional geometric features
obtained using Zeo++, but we did not observe any improvement
in model performance (Tables S3 and S12).

Motivated by the overriding effect that topology had in
earlier estimations of mechanical stability, we next investigated
whether we could introduce customized topological features to
improve ANN model performance over one-hot encoded
features. One disadvantage of one-hot encoded features in our
USMOF set is that this approach does not encode any measure
of similarity among different nets. Using a feature set based on
the properties, rather than the identities, of the nets allows
similarity to be leveraged by the model. We developed topo-
logical features based on the short symbol65 representation of
periodic nets. Specically, these features contain the normal-
ized frequency of different cycle lengths (Text S2). Our models
trained only with these new topological features and all four-
teen Zeo++ features showed somewhat enhanced performance
over the entire dataset (test set log R2 = 0.51 vs. 0.47) in
comparison to the one-hot encoding and Zeo++ feature set
(Fig. 3b). Still, our model performance was only somewhat
improved with the topological features, which we attribute to
the absence of MOF chemical information from the feature set.

With the aim of improving upon the geometry/topology-only
model in mind, we encoded the chemistry of the MOFs through
a combination of RAC and Zeo++ features used extensively in
our previous work on MOFs, but we omitted information about
the global topology.30,31,44,46,49,56,57,64 Although global topology is
not explicitly present in this new feature set, this information is
partially encoded in the MOF graph captured by RACs as the
local connectivity between atoms. Using RAC and Zeo++
features, we found signicant improvement in the performance
of the models over the geometry/topology-only models for the
entire set (test set log R2 = 0.72 vs. 0.51, MAE = 1.19 GPa,
Fig. 3c). We again observed the best performance for the model
trained on 1inor–1org–1edge MOFs and the worst for the model
trained on 2inor–1edge MOFs (test set log R2 = 0.72 vs. 0.66,
Table S12).
J. Mater. Chem. A
We next investigated whether we could further improve the
performance of the models by adding information about the
global topology missing in RACs. We rst added the one-hot
encoded topology to the set of RAC and Zeo++ features, but
the ANNs trained with this new feature set performed similarly
to the models trained with RAC and Zeo++ features alone (Table
S12). When we instead added our novel topological features
instead of one-hot encoded topology features, we observed
further improvement in model predictions beyond the perfor-
mance of models trained with only RAC and Zeo++ features (test
set log R2 = 0.76 vs. 0.72 when training and evaluating over the
entire set, MAE = 1.13 GPa, Fig. 3d). However, out of the three
individual MOF classes, we only found appreciable model
performance improvement for the model trained on 1inor–
1edgeMOFs when using this feature set (test set log R2= 0.74 vs.
0.72, Table S12). The negligible inuence of our novel topo-
logical features on the model performance for 1inor–1org–
1edge MOFs is possibly due to a lower inuence of topology on
KVRH for those MOFs, as hypothesized earlier. However, a low
effect for 2inor–1edge MOFs is probably due to the similarity of
topologies present in those MOFs, with most of them having an
average MCN of 5 (78% of MOFs, Fig. S9). For all feature sets
considered (i.e., aer adding RACs), the most extreme outlier is
the same for all models (id: MOF_net-ske_node1-N17_edge1-
E13, Fig. S14). Despite the building blocks of the outlier MOF
appearing during training, the inability to correctly predict KVRH

for this MOF is likely due to a more complex synergistic effect
between building blocks that is not represented elsewhere in
the training data.

We next investigated if we could further improve the
performance of our best-performing ANN models trained with
RAC, Zeo++, and the novel topological features by employing
more interpretable model architectures and feature engi-
neering. Such models have previously demonstrated compa-
rable performance to ANNs.49,57 To test this, we used four
distinct simpler model architectures: a random forest regressor
(RFR), a gradient boosting regressor (GBR), and a kernel ridge
regressor (KRR) utilizing either a Laplacian kernel (KRR-
Laplacian) or a radial basis function kernel (KRR-RBF). The
KRR kernels encode similarity relationships, unlike ANNs
which encode complex non-linear relationships. To prevent
overtting and to reduce the impact of uninformative features
in these models, we employed recursive feature addition
(RFA) (Table S6). All four RFA-trained model architectures
modestly outperform our best-performing ANN models, both
when evaluating over the entire set and also when restricting
scope to each of the three individual MOF classes (Table S13
and Fig. S15). Of the four models, we found the KRR-Laplacian
model to perform best across the entire set (test set log R2= 0.79
vs. 0.76 for the best-performing ANN model, MAE = 1 GPa) and
also when trained on individual MOF classes.

To compare against an alternative approach to the KVRH

prediction task, we implemented a transfer learning approach
where we ne-tuned a previously developed transformer model
with a self-attention mechanism called MOFormer.71 MOFormer,
which was pretrained on > 400k MOF structures, has demon-
strated excellent performance when ne-tuned on relatively small
This journal is © The Royal Society of Chemistry 2026
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datasets (∼14k to ∼137k) in predicting band gap and gas
adsorption.71 For the USMOFs in our dataset, we rst obtained the
structure-agnostic text-based representation of MOFs used by
MOFormer, called the “MOFid,” which encodes MOF chemistry
and topology (Fig. S2).66 We ne-tuned MOFormer on individual
USMOF classes and also over the entire USMOF DB. Surprisingly,
we found poor performance of the MOFormer model in all the
prediction tasks when compared to our best-performing KRR-
Laplacian model (test set log R2 over the entire set = 0.65 for
MOFormer vs. 0.79 for the KRR-Laplacian model, Fig. S16 and
Table S14). When we compared the performance of the
MOFormer model with the ANNs trained earlier, we found that
the ne-tunedMOFormer performed better than all the geometry/
topology-onlymodels, but it always performedworse than an ANN
when RACs were included in the ANN feature set. This can most
likely be attributed to the smaller training dataset size compared
to past prediction tasks and missing information about MOF 3D
structure inMOFid that is extremely relevant forMOFmechanical
stability. Thus, out of all the models considered, we identied the
KRR-Laplacian model with RACs, Zeo++, and topological features
to be the best-performing model across our data, with mean
absolute errors of 1 GPa over all test MOFs and 8.24 GPa over
exceptionally stable test MOFs (Tables S13 and S15).

We next identied the most inuential MOF features and
quantied their contribution to predicting KVRH with our best-
performing KRR-Laplacian model for the three MOF classes
(1inor–1edge, 1inor–1org–1edge, and 2inor–1edge) using
feature importance analysis (see Section 2).73 This analysis
assigned importance values to each feature, which we then
normalized to show relative importance (Fig. 4). Consistent with
observations on model performance depending strongly on the
addition of RACs, our analysis revealed the paramount impor-
tance of RACs for all the MOF classes, with RACs having the
highest importance for 2inor–1edge MOFs (84.2% of collective
importance, Fig. 4). Specically, we found the electronegativity
of the metal and around the metal center (mc-c-0, mc-c-1, and
mc0-c-2, where 0 indicates a difference RAC) to be the most
important out of all the RACs (e.g., mc-c-1 contributes 31% for
Fig. 4 SHAP feature importance analysis for the best-performing KRR-
1inor–1edge MOFs (left), 1inor–1org–1edge MOFs (center), and 2inor–1e
the bar plots. The bars are color-coded based on the feature class to
topological features, and red for RACs. The percentage of importance of
inset pie charts. See Tables S1–S3, Texts S1 and S2 for explanation of fe

This journal is © The Royal Society of Chemistry 2026
2inor–1edge MOFs, Fig. 4 and Table S1). The key importance of
metal electronegativity can be attributed to hard–so acid–base
(HSAB) theory, where metals with low electronegativity form
exceptionally strong bonds with hard bases like O and N
common to MOF linkers. This feature importance result is
consistent with the prevalence of lanthanides and Mg in the ten
most stable MOFs, since such metals are harder acids than
more abundant 3d transition metals like Cd and Zn present in
USMOFs (Fig. 2, S7 and Table S11).31

We next investigated the most important geometric and
topological features. Out of all the geometric features, we found
MOF surface area and pore volume to be the most important,
which is consistent with the strong negative correlation
between those features and KVRH (Fig. S3). When comparing the
three MOF types, geometric features had the most signicant
effect for 1inor–1org–1edge MOFs out of the three MOF classes
(29.8% of total importance), emphasizing our hypothesis that
geometry is more important for these MOFs because they
sample a larger range of high porosities. With respect to topo-
logical features, we found these to be most important for 1inor–
1edge MOFs (27.9%), with the normalized frequencies of three
to six cycle lengths being the most important topological
features. The maximum cycle length in our set is twelve, and
thus emphasizing smaller cycle lengths suggests the impor-
tance of higher connectivity (i.e., higher average MCN) for
mechanical stability. For the other MOFs, we expected higher
inuence of geometric features for 1inor–1org–1edge MOFs,
and we attribute the lack of topological diversity for 2inor–
1edge MOFs as the reason why those features are not selected
(Fig. 4). For example, 78% of 2inor–1edge MOFs have an average
MCN of 5 (Fig. S9). Overall, our feature importance analysis
consistently demonstrated the strongest inuence of metal
chemistry on mechanical stability for all classes of MOFs in
comparison to geometry or topology.

3.3 Identifying mechanically stable MOFs in databases

To identify MOFs with exceptional mechanical stability in
databases of hypothetical and experimental MOFs, we next used
Laplacian models individually trained on the KVRH dataset containing
dge MOFs (right). The relative importance of all the features is shown in
which each feature belongs: blue for geometric features, green for
the geometric features, topological features, and RACs is shown in the
ature nomenclature.

J. Mater. Chem. A
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our ML models to screen these MOFs. For experimental MOFs,
we selected the all-solvent-removed (ASR) MOFs from the CoRE
MOF DB 2025 v2.0 ASR (ref. 26) database, whereas the hypo-
thetical MOFs were selected from three databases: (1) BW-DB,28

(2) hMOF,27 and (3) ToBaCCo.29 Despite the best performance of
the KRR-Laplacian model across our USMOF DB, we chose the
second-best model, which is an ANN, for the screening task
because ANNs perform well in their application to unseen
materials (Table S12). We selected the ANN model trained with
RACs, Zeo++, and novel topological features trained over the
entire USMOF DB, which showed the best performance out of
all the ANN models in our work (see Fig. 3). Because the topo-
logical features are essential for the screening task, we only
screened MOFs that (1) do not have any ambiguities associated
with their topology and (2) their topologies have valid short
symbol representations to enable the determination of their
topological features. Starting from 475 891 hypothetical and
Fig. 5 (a) Uniform manifold approximation and projection (UMAP) dimen
RACs, Zeo++, and novel topological features over the entire USMOF DB
space of hypothetical (blue points) and experimental (green points) MOF
average metal coordination number (MCN, right) for training set USMOFs
hMOF, and ToBaCCo) and the experimental CoRE MOF DB 2025 v2.0 AS
MOFs. The distributions are shown on a logarithmic scale. For metal ident
since aMOF can havemore than onemetal type. The averageMCN is com
in a MOF, which can make the average MCN fractional (e.g., average MC

J. Mater. Chem. A
8854 experimental MOFs, this ltering step reduced our MOFs
to a total of 433 550 hypothetical and 3157 experimental MOFs.
We further removed 949 duplicate experimental MOFs (see
Section 2), resulting in a nal pool of 2208 experimental MOFs
(Table S16). Overall, we observed a signicantly higher attrition
rate of experimental MOFs than hypothetical MOFs in obtain-
ing our nal MOF pool, which is expected since a vast majority
of experimental MOFs (35% MOFs) contain topologies that
cannot be assigned RCSR symbols.

To rst assess the suitability of applying the ANN model to
unseen experimental and hypothetical MOFs, we compared the
distribution of hypothetical and experimental MOFs with the
training set USMOFs in the latent space of the model. We
employed dimensionality reduction to visualize the coverage of
training MOFs in the space of hypothetical and experimental
MOFs (Fig. 5). While we observed overall good overlap of the
training MOFs with the broader hypothetical and experimental
sionality reduction on the latent space of the ANN model trained with
to visualize the coverage of training set USMOFs (red points) across the
s. (b) Radar plots showing the distribution of metal identities (left) and
and the set of MOFs present in three hypothetical databases (BW-DB,
R database that were used to screen exceptionally mechanically stable
ity, the sum of the MOF percentages for all the metals may exceed one
puted by averaging over theMCNs of all distinct types of nodes present
N of 3.5 for a MOF with nodes having MCNs 3 and 4).

This journal is © The Royal Society of Chemistry 2026
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MOF space, some regions of space were more well populated
than others. Although, by design,31 the USMOFs have similar
metal diversity to experimental MOFs, Cu and Zr metals were
less well represented in USMOFs compared to experimental or
hypothetical MOFs. In terms of geometric properties, all hypo-
thetical and experimental MOFs are signicantly less porous
than the training set USMOFs, with an average bulk density 4–
6× that of the training set USMOFs (Table S17). The connectivity
(i.e., the MCN), all three sets of MOFs were quite similar
(Fig. 5b). Overall, good coverage in properties is observed
between the training set of USMOFs and the sets we would like
to predict properties on, but we might expect relatively high
model uncertainty for model predictions due to differences in
the porosity and metal frequency between the USMOFs and the
other datasets.

To overcome potential limitations in coverage of hypothet-
ical and experimental MOF space by the USMOF DB training
data, we incorporated uncertainty quantication (UQ) prior to
making predictions. The distance to training data (i.e., LSD) in
the last layer of the model provides an estimate of model
uncertainty.74 We scaled the LSD with respect to training data
and conrmed that the threshold value of this quantity can be
adjusted to systematically reduce test set error (Fig. S17). For
screening unseen MOFs, we selected the LSD threshold (0.37)
that produced a 1 GPa mean absolute error on the retained test
set MOFs. Using this threshold, we estimated KVRH for 35% of
hypothetical MOFs (152 805 out of 433 550 MOFs) with the
highest percentage for ToBaCCo MOFs (46.4%) and the lowest
percentage for hMOFs (23.4%), which can be attributed to their
relative similarity to USMOF MOFs in terms of their average
geometric properties (Tables S17 and S18). Unlike hypothetical
MOFs, we were only able to make uncertainty-controlled esti-
mates of KVRH for 6.9% of experimental MOFs (152 out of 2208
MOFs), which can be explained by the low porosity of experi-
mental MOFs that makes their geometric properties most
dissimilar to those of training set USMOFs (Tables S17, S18 and
Fig. S18).

In total, we estimated KVRH of 152 957 MOFs. From this
subset, we identied 22 609 exceptionally stable MOFs
(22 583 hypothetical and 26 experimental) that have two stan-
dard deviations higher KVRH than the mean KVRH of USMOFs
(KVRH > 11.86 GPa). Out of the 22 583 hypothetical MOFs with
exceptional stability, we found the vast majority to be BW-DB
MOFs (18 883 MOFs) with the lowest representation of
ToBaCCo MOFs (only 43 MOFs, Table S18). When we investi-
gated the percentage of MOFs with estimated KVRH that have
exceptional stability, we observed signicantly higher percent-
ages for both BW-DB and hMOFs (15.1% and 15.6%) over
ToBaCCo MOFs (1.1%), which can be explained by the lower
porosities of BW-DB and hMOFs compared to ToBaCCo MOFs
(Tables S17 and S18). We observed the percentage of excep-
tionally stable MOFs to be even higher for experimental MOFs
(17.1%), which can similarly be explained by the lowest porosity
of experimental MOFs out of all the MOF databases (Tables S17
and S18). A comprehensive list of all exceptionally stable MOFs
is provided in the Zenodo repository.87
This journal is © The Royal Society of Chemistry 2026
For our predicted top-performing MOFs, we next validated
our ANN-predicted KVRH values with molecular simulation. Out
of eight MOFs corresponding to the top two from each of the
four experimental/hypothetical databases, six were found to be
exceptionally stable (KVRH > 11.86 GPa) based on their simulated
KVRH values (Table S19). The ANN-predicted KVRH values on
hypothetical MOFs showed considerable deviations from
simulated values, with errors as high as 295%. For the experi-
mental MOFs, this error generally corresponded to an under-
prediction, while for hypothetical MOFs it oen corresponded
to an overprediction. For top experimental MOFs, the under-
prediction by our model is likely due to the limitation of the
model in extrapolating to MOFs with KVRH higher than the
mean KVRH of top experimental MOFs (KVRH > 30.8 GPa), since
our training set of USMOFs contains only 0.4% of such MOFs.
Nevertheless, the 75% successful validation rate of the ANN
model demonstrates its potential in uncovering novel and
exceptionally stable MOFs. A broader analysis of 100 randomly
sampled MOFs from the set of exceptionally stable screened
MOFs achieved a 70% success rate in classifying MOFs (Text S4
and Fig. S19). Our analysis has also identied that the instances
of limited generalization by our models arise due to signicant
mismatches between the geometric features of training
USMOFs and the screened MOFs.

We further examined the characteristics of the six (i.e.,
exceptionally stable) highest-performing screened MOFs that
were predicted by our ML model and validated by simulation.
We found that they all contained common metals (Zn, Cu) and
linker chemistry (i.e., N or O coordination), consistent with the
prevalence of these features in the overall MOF sets (Fig. 6 and
S20). Surprisingly, we did not nd any lanthanide MOFs in our
top MOFs even though we found those MOFs to be the most
stable in USMOFs, which can be explained by the absence of
lanthanides in the hypothetical MOFs and limited presence of
such MOFs in the prediction set of experimental MOFs (8.6% of
MOFs in the experimental prediction set vs. 23.8% of USMOFs).
In terms of overall topology, we observed that four out of six
MOFs have the pcu net with an MCN of 6 (Fig. 6). This is again
likely due to the higher frequency of the pcu net in both the
experimental and combined hypothetical prediction set (i.e.,
26% of experimental MOFs and 64% of combined hypothetical
MOFs) and the fact that an MCN of 6 is the highest possible
value in all sets excluding ToBaCCo (Fig. S21). Finally, we
assessed four key geometric properties (Di, r, VPOV, and GSA)
for all the top six stable MOFs. We observed that four out of the
six exceptionally stable MOFs were less porous than the average
MOF in the respective prediction set, with as much as 3.7×
lower GSA than an averageMOF in the prediction set (for the top
stable ToBaCCoMOF, Tables S20 and S21).88 Overall, our results
indicate that a preference for the topology with the highest
available MCN and lower porosity than the original training set
is a common feature of highly mechanically stable MOFs.
However, based on the feature analysis on our models, further
signicant improvement in the mechanical stability can be
achieved by judicious metal substitution in SBUs based on the
chemistry of the linker connecting atoms. Specically, hard acid
metals like lanthanides and magnesium substitution are highly
J. Mater. Chem. A
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Fig. 6 Structures of the top simulation-validated, exceptionally stable (KVRH > 11.86 GPa) (a) experimental and (b) hypothetical MOFs derived after
screening MOFs in the experimental MOF (CoRE MOF DB 2025 v2.0 ASR) database and three hypothetical MOF databases (BW-DB, hMOF, and
ToBaCCo). The experimental CoREMOFs and hypothetical MOFs are denoted using their Cambridge Structural Database24 (CSD) reference code
and their database ID, respectively. Each MOF is noted with its metal identity and the Reticular Chemistry Structure Resource68 (RCSR) topology
symbols (in parentheses). In the structures, the atoms of MOFs are color-coded as follows: white for hydrogen, gray for carbon, blue for nitrogen,
red for oxygen, pink for iron, yellow for copper, and gray blue for zinc. The geometric properties of the MOFs and their ANN-predicted and
molecular simulation-calculated KVRH values are provided in Table S19.
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recommended in MOFs with oxygen or nitrogen as linker con-
necting atoms.

We nally investigated the chemical realizability of 22 583
exceptionally stable hypothetical MOFs. The building blocks of
these MOFs were originally obtained from experimental MOFs
in previous databases (e.g., CoRE 2014 (ref. 89) and CoRE 2019
(ref. 25)), which contained several structural errors, including
overlapping atoms, invalid atom connectivity, and incorrect
metal oxidation states.90–92 By employing a recently developed
positive-unlabeled crystal graph convolutional network, MOF-
Classier,93 we have identied 6863 exceptionally stable hypo-
thetical MOFs with valid structures, suggesting their potential
synthetic feasibility. In total, our VHTS approach has enabled
the identication of 6889 exceptionally stable MOFs (6863
J. Mater. Chem. A
hypothetical and 26 experimental) with chemically valid struc-
tures. The list of stable hypothetical MOFs with valid structures
is provided in our Zenodo repository.87
4. Conclusions

In this work, we have advanced the search for mechanically
stable MOFs by developing generalizable ML models trained
with novel topological features and chemical descriptors (i.e.,
RACs). We started with a dataset of 7330 hypothetical ultra-
stable MOFs (USMOFs) with over six times the inorganic node
diversity and ten times the topological diversity of prior work.
While we found a dominant presence of hard acid metals like
lanthanides and magnesium in the most mechanically stable
This journal is © The Royal Society of Chemistry 2026
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MOFs, we also discovered the frequent appearance of topologies
with high average metal coordination numbers in the most
stable MOFs. Using non-parametric Kruskal–Wallis tests, we
uncovered the most signicant dependence of KVRH on inor-
ganic node identity, followed by topology, organic nodes, and
edges.

We next constructed ML models with different architectures
and MOF features to identiy structure–stability relationships.
Contrary to prior work, we demonstrated the signicant limi-
tations of only geometric and categorically encoded topological
features in developing generalizable models across broad MOF
chemistry. We showed improvement in the performance of our
models aer incorporating RACs encoding MOF chemistry and
local connectivity as well as through novel topological features
based on the short symbol representation of periodic nets.
Feature importance analysis on our models revealed the most
signicant contribution to dictating MOF mechanical stability
to be metal chemistry rather than MOF geometry or topology.

Finally, we screened around 433k hypothetical and 2.2k
experimental MOFs to identify exceptionally stable MOFs. Using
our best-performing ANNmodel, we condently identied KVRH

of 152 957 MOFs (152 805 hypothetical and 152 experimental)
with a 75% successful validation rate of our model identifying
MOFs with exceptional stability in a set of eight highly stable
MOFs. Further improvement of the models in this work, espe-
cially in identifying stable experimental MOFs, could be ach-
ieved by enlarging training datasets to capture more MOFs with
lower porosity that are representative of the geometric proper-
ties of experimental MOFs. Additionally, the accuracy of pre-
dicted KVRH could be further enhanced by developing integrated
ML-based workows with judicious DFT screening or employ-
ing emergent machine-learned interatomic potentials that can
achieve DFT-level accuracy with signicantly lower computation
cost than DFT. Overall, we expect that hard acid metal substi-
tution will be a successful strategy to enhance mechanical
stability in porous MOFs and that the developed topological
features could be useful in other materials such as covalent
organic frameworks and polymer networks.
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7 L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk,
P. A. Jacobs and D. E. De Vos, Probing the Lewis Acidity
and Catalytic Activity of the Metal–Organic Framework
[Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate), Chem.–Eur.
J., 2006, 12, 7353–7363.

8 M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, Preparation,
Clathration Ability, and Catalysis of a Two-Dimensional
Square Network Material Composed of Cadmium(II) and
4,4'-Bipyridine, J. Am. Chem. Soc., 2002, 116, 1151–1152.

9 H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin,
H. Furukawa, A. S. Umans, O. M. Yaghi and E. N. Wang,
Water harvesting from air with metal-organic frameworks
powered by natural sunlight, Science, 2017, 356, 430–434.

10 W. Xu and O. M. Yaghi, Metal–Organic Frameworks for
Water Harvesting from Air, Anywhere, Anytime, ACS Cent.
Sci., 2020, 6, 1348–1354.

11 M. J. Kalmutzki, C. S. Diercks and O. M. Yaghi, Metal–
Organic Frameworks for Water Harvesting from Air, Adv.
Mater., 2018, 30, 1704304.

12 M. W. Logan, S. Langevin and Z. Xia, Reversible Atmospheric
Water Harvesting Using Metal-Organic Frameworks, Sci.
Rep., 2020, 10, 1492.

13 N. Abdullah, N. Yusof, A. F. Ismail and W. J. Lau, Insights
into metal-organic frameworks-integrated membranes for
desalination process: A review, Desalination, 2021, 500,
114867.

14 R. Ou, H. Zhang, V. X. Truong, L. Zhang, H. M. Hegab,
L. Han, J. Hou, X. Zhang, A. Deletic, L. Jiang, G. P. Simon
and H. Wang, A sunlight-responsive metal–organic
framework system for sustainable water desalination, Nat
Sustainability, 2020, 3, 1052–1058.

15 Z. Cao, V. Liu and A. Barati Farimani, Water Desalination
with Two-Dimensional Metal–Organic Framework
Membranes, Nano Lett., 2019, 19, 8638–8643.

16 S. H. Lapidus, G. J. Halder, P. J. Chupas and K. W. Chapman,
Exploiting High Pressures to Generate Porosity,
Polymorphism, And Lattice Expansion in the Nonporous
Molecular Framework Zn(CN)2, J. Am. Chem. Soc., 2013,
135, 7621–7628.

17 S. A. Moggach, T. D. Bennett and A. K. Cheetham, The Effect
of Pressure on ZIF-8: Increasing Pore Size with Pressure and
the Formation of a High-Pressure Phase at 1.47 GPa, Angew.
Chem., Int. Ed., 2009, 48, 7087–7089.

18 P. Ramaswamy, J. Wieme, E. Alvarez, L. Vanduyuys,
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