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prediction of metal sulfide
photocatalysts for sacrificial hydrogen evolution
under visible light irradiation
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The development of promising inorganic semiconductor photocatalysts for water splitting to produce

green H2 is required to achieve a sustainable society. Machine learning is expected to accelerate the

exploration of novel inorganic semiconductor photocatalysts. We applied machine learning to explore

novel metal sulfide photocatalysts for sacrificial H2 evolution under visible light irradiation. A machine-

learning model that exhibited good accuracy was successfully constructed using our original in-house

dataset (not openly shared data) of metal sulfide photocatalysts developed by our group. Then, data on

materials in the Inorganic Crystal Structure Database (ICSD) were input into the constructed machine-

learning model, resulting in the identification of various metal sulfide candidates with high activities for

H2 evolution in the first screening. We selected Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn) among the

candidates for the second screening because many photocatalysts containing Cu(I) and/or Ag(I) ions and

corner-shared MS4 tetrahedra have been reported as visible-light-responsive photocatalysts for sacrificial

H2 evolution. Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn) photocatalysts, prepared by a solid-state

reaction, showed activities for sacrificial H2 evolution under visible light irradiation. Thus, we developed

novel visible-light-responsive metal sulfide photocatalysts for sacrificial H2 evolution by employing

machine learning on our original dataset.
Introduction

Photocatalytic water splitting, as articial photosynthesis, is
a promising technology to produce low-cost green H2 to solve
resource, energy and environmental issues.1–8 Since the report
of the Honda–Fujishima effect of water splitting using a TiO2

photoanode in the early 1970s,9 various photocatalysts such as
metal oxides,1,2 metal (oxy)suldes,10–13 metal (oxy)nitrides14–21

and polymeric materials22,23 have been developed. In recent
years, Domen and co-workers successfully developed a highly
efficient Al-doped SrTiO

3
photocatalyst with a near-unity

quantum yield, giving about 0.7% of a solar-to-hydrogen (STH)
energy conversion efficiency.24,25 In addition, they developed an
efficient Z-schematic water splitting sheet composed of Rh and
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La co-doped SrTiO3 as an H2-evolving photocatalyst, Mo-doped
BiVO4 as an O2-evolving photocatalyst and Au as a solid electron
mediator, giving about 1.1% STH efficiency.26 However, the
efficiencies are insufficient for practical solar water splitting.
Therefore, the development of novel efficient photocatalysts is
still a challenging topic. Among various photocatalytic material
groups, metal suldes are attractive because many of them
respond to visible light due to the valence band consisting of S
3p orbitals being located at a relatively negative energy level. We
have reported various metal sulde photocatalysts, including
Cu-doped,27 Ni-doped,28 Pb and A (A = Cl, Br, and I)-codoped
ZnS,29 AgInZn7S9,30 NaInS2,31 ZnS–AgInS2,32 ZnS–CuInS2,33

ZnS–CuInS2–AgInS2,34,35 A
I
2ZnA

IVS4 (AI = Cu and Ag; AIV = Sn
and Ge),36 AGa2In3S8 (A = Cu and Ag),37 Zn1−2x(CuGa)xGa2S4,38

ZnS-CuGaS2,39 Ni-doped AgGaS2,40 Cu1−xAgxGaS2,41 ZnS–CuCl,11

BaLaCuS3,11 ZnIn2S4,11 ZnGaxIn2−xS4,11 MnGaInS4 11 and
Cu3MS4 (M = V, Nb and Ta),11,42 for H2 evolution in aqueous
solutions containing S2− and SO3

2− ions under visible light
irradiation. However, metal sulde photocatalysts cannot be
employed for water splitting as a single particle because they are
not chemically stable due to self-oxidation in an aqueous
medium under light irradiation. This drawback can be solved by
utilizing them as photocathodes and H2-evolving photocatalysts
in photoelectrochemical and Z-schematic systems for articial
J. Mater. Chem. A
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photosynthesis, respectively.43,44 Various photoelectrochemical
systems consisting of metal sulde photocathodes have been
constructed for water splitting under visible light
irradiation.39,41,42,45–50 Additionally, powdered Z-schematic water
splitting under visible light irradiation has been achieved by
using metal suldes as a H2-evolving photocatalyst, metal
oxides as an O2-evolving photocatalyst, and ionic or solid-state
electron mediators such as Co complexes and a reduced gra-
phene oxide.39,46,51,52 Therefore, it is quite important to develop
novel metal sulde photocatalysts that are responsive to visible
light.

So far, photocatalysts have mainly been developed by an
intuitive empirical approach. Hence, it is expected that
employing machine learning with an objective approach by
data-driven science utilizing specialized physicochemical
parameters will accelerate the exploration of promising novel
photocatalysts. Material development utilizing a machine-
learning method is generally referred to as materials infor-
matics (MI) and has been applied to various materials systems,
such as catalysts,53,54 adsorbents,55 magnetics56 and
batteries.57,58 Recently, various functional materials, such as
alloys, metal oxides, zeolites, metal complexes, metal–organic
frameworks and polyoxometalates, have been developed for
applications in which the properties of either the surface or the
bulk play an important role.54,59 In contrast, it remains chal-
lenging to apply MI to the eld of photocatalysts, especially
inorganic semiconductor photocatalysts for water splitting,
because the photocatalytic reaction involves complicated
factors such as photoabsorption, mobility of carriers, recom-
bination, surface reactions, and so on. Although there are some
reports of MI application to inorganic semiconductor photo-
catalysts, these works focus on optimization of photocatalytic
reactions rather than developing new photocatalyst materials.60

Application of MI to develop novel inorganic photocatalysts
faces a signicant barrier because it is difficult to employ open
data from publications, as the photocatalytic activities have not
been evaluated under a common set of experimental condi-
tions. This means that the data cannot be compared with each
other. Therefore, a large dataset needs to be prepared, including
photocatalytic activities evaluated with the same experimental
system, photocatalytic compounds and crystal structures, to
construct a machine-learning model for training.

We have developed many photocatalysts of metal oxides and
metal suldes that are active for water splitting and sacricial
H2 and O2 evolutions.2,61,62 We possess a large in-house dataset
consisting of many photocatalyst compounds, crystal struc-
tures, preparation conditions, activities for water splitting, and
sacricial H2 and O2 evolutions evaluated under the same
experimental conditions. Our dataset contains photocatalyst
materials with not only high but also low activities, which is
a great advantage for constructing an accurate predictive model.
Recently, we have preliminarily demonstrated that a machine-
learning model with acceptable accuracy was successfully con-
structed by employing our original dataset.63,64 These reports are
signicant in terms of the effectiveness of our dataset.

In the present study, we constructed a machine-learning
model based on our in-house dataset, which was then used to
J. Mater. Chem. A
predict the activities for sacricial H2 evolution of metal suldes
listed in the Inorganic Crystal Structure Database (ICSD,
a commercially licensed database). Then, we experimentally
synthesized Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn) from
the candidates identied by machine learning and evaluated
the activities for H2 evolution under visible light irradiation.
Experimental
Machine-learning methods

We retrieved 8975 data entries of metal sulde compounds
from the ICSD65,66 in order to conrm thematerial that had been
experimentally identied. In addition, we used an in-house
dataset of metal sulde photocatalysts, including 357 experi-
mental data points developed by our group, as the training data.
A representative sample of the original dataset is included as
a csv le named ‘Example_of_original_dataset’ in the SI. Each
record in our dataset contains a material variable of chemical
composition, 16 variables related to preparation conditions,
dopants and cocatalysts, and an objective variable of activities
for sacricial H2 evolution. The material variable of the chem-
ical compositions in the in-house dataset of metal sulde
photocatalysts developed by our group was converted into
numerical features by using XenonPy (version 0.6.5)67 in order
to process machine-learning algorithms. First, chemical
compositions were converted into comp_dict, which is
a dictionary of proportions by element, using Pymatgen.68 Then,
aer normalization of the proportions, 232 compositional
features on the basis of comp_dict were calculated, such as 58
features (atomic number, bond radius, van der Waals radius,
electronegativity, and so on) of weighted average, weighted
variance, and the minimum and maximum for each element.69

The calculated features with high dimensions were projected to
the gure with 2 dimensions by principal component analysis
(PCA). The gure with axes called principal components shows
the diversity of the data features.70,71 Subsequently, LightGBM,72

based on a gradient-boosting algorithm, was employed to
construct the prediction model of sacricial H2 activities of
metal sulde photocatalysts because we focused on under-
standing the trend of the activities of metal sulde photo-
catalysts in order to perform the rough material screening.
Logarithmic transformations for the objective variables were
used when constructing the machine-learning model. Double-
cross-validation and evaluation metrics were carried out by
Scikit-learn.73 A 5-fold double cross-validation was used in this
study.
Preparation of photocatalysts

Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn), which were pre-
dicted as new photocatalyst candidates by machine learning,
were prepared by a solid-state reaction in evacuated quartz
ampule tubes. Ag2S (Kojundo Chemical, 99%), Cu2S (Kojundo
Chemical, 99%), CdS (Kojundo Chemical, 99.99%), SnS2
(Kojundo Chemical, 99.9%) and GeS2 (Kojundo Chemical,
99.99%) were used as starting materials. They were mixed in an
agate mortar with 20% excess Ge for Ag2CdGeS4, 40% excess Ge
This journal is © The Royal Society of Chemistry 2026
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for Cu2CdGeS4, and 10% excess Cd and Sn for Cu2CdSnS4. The
mixtures were heated under vacuum for 12 h at 923, 923 and 823
K for Ag2CdGeS4, Cu2CdGeS4 and Cu2CdSnS4, respectively.

Characterization of photocatalysts

X-ray diffraction (XRD; Rigaku; MiniFlex600) with Cu Ka radi-
ation was used to identify the crystal structures of the obtained
samples. Diffuse reectance spectra were measured by using
a UV-vis-NIR spectrometer (JASCO; UbeatV-570) with an inte-
grating sphere and were converted to absorbance by the
Kubelka–Munk method. Scanning electron microscopy (SEM;
JEOL; JSM-6700F) was used to observe the morphologies of the
particles. Photoelectron yield spectroscopy (PYS; Bunkoukeiki;
BIP-KV100) was conducted under vacuum to determine the
ionization potential of the samples.

Density functional theory calculations

Density functional theory (DFT) calculations were carried out
using the CASTEP code.74 ICSD #152753, #26150 and #619773
were employed for Ag2CdGeS4, Cu2CdGeS4 and Cu2CdSnS4,
respectively. In geometric optimization, the Vanderbilt-type
ultraso pseudopotentials,75 the generalized gradient approxi-
mation (GGA)76 and the Perdew–Burke–Ernzerhof (PBE)77 as
exchange–correlation functional were used under periodic
boundary conditions. 600 eV of cutoff energy and a k-point
mesh with a typical spacing of 0.07 Å−1 given by the Monkhorst–
Pack method78 were used. The limited-memory Broyden–
Fletcher–Goldfarb–Shanno (LBFGS) algorithm79 was employed
for geometric optimization of the supercells. Details of the
conditions of the convergence criteria are summarized in the SI
(Table S1). The Heyd–Scuseria–Ernzerhof (HSE03)80 hybrid
functional was used to analyze the density of states and the
band structures of the optimized crystal structures. The valence
electronic congurations for Cu, Ag, Cd, Ge, Sn and S were
3d104s1, 4d105s1, 4d105s2, 4s24p2, 5s25p2 and 3s23p4, respec-
tively. The number of electrons in the primitive unit cell were
156 and 124 for [Ag2CdGeS4] and [Cu2CdMS4 (M = Ge and Sn)],
respectively.

Photocatalytic reactions

Photocatalytic H2 evolution was carried out using a top-
irradiation cell with a Pyrex window in a gas-closed circula-
tion system. The sample was dispersed in an aqueous solution
(150 mL) of 0.1 mol L−1 Na2S (Na2S$9H2O; Kanto Chemical,
98%) and 0.5 mol L−1 K2SO3 (Kanto Chemical; 95%) as sacri-
cial reagents. The pH of the aqueous solution containing S2−

and SO3
2− ions was 13. A Ru cocatalyst as an H2-evolving site36

was loaded on the prepared sulde photocatalysts by in situ
photodeposition in an aqueous solution of RuCl3$nH2O
(Tanaka Kikinzoku; 39% as Ru in RuCl3$nH2O) as a source of
a cocatalyst. A 300 W Xe-arc lamp (PerkinElmer; Cermax
PE300BF) was used as a light source. The wavelength of light
irradiation was controlled by using a cut-off lter (HOYA; L42, l
> 420 nm). The amount of evolved H2 was quantied using an
online gas chromatograph (Shimadzu; GC-8A, MS-5A column,
TCD, Ar carrier).
This journal is © The Royal Society of Chemistry 2026
Apparent quantum yields (AQY) were measured using
a 300 W Xe-arc lamp (PerkinElmer; Cermax PE300BF) and
a 100 W Xe-arc lamp (Asahi Spectra; LAX 102) with band pass
lters (Asahi Spectra). The photon ux of monochromatic light
was measured using a silicon diode head (OPHIR; PD300-UV
head) with a NOVA display. AQY was calculated by the
following eqn (1).

[AQY %] = 100 × [the number of reacted electrons]/[the number

of incident photons]= 100× [the number of evolved H2 molecules

× 2]/[the number of incident photons] (1)
Results and discussion
Machine-learning-based prediction of metal sulde
photocatalyst candidates for sacricial H2 evolution under
visible light irradiation

A owchart for screening of metal sulde photocatalysts for
sacricial H2 evolution under visible light irradiation (l > 420
nm) bymachine learning is shown in Fig. 1. First, the prediction
model of activities for H2 evolution was constructed by machine
learning on the basis of our original in-house dataset, as shown
in Fig. 1(1). Fig. 2 shows a plot of the predicted versus experi-
mental activities, which was used to evaluate the constructed
machine-learning model using double cross-validation. The
coefficient of determination (R2) was more than 0.5, indicating
that the model was constructed with acceptable accuracy for the
initial (rst/rough) materials screening, as shown in
Fig. 1(1)–(3). The acceptable accuracy described heremeans that
the constructed machine-learning model is suitable for under-
standing the trend of activities for H2 evolution of metal sulde
photocatalysts, which leads to a subsequent (second/rened)
screening based on chemical insights, as shown in Fig. 1(4).
Next, we selected candidate materials for screening from the
ICSD of metal sulde compounds based on their similarity in
the feature space to our in-house dataset of metal sulde pho-
tocatalysts, as shown in Fig. 1(2). Fig. 3 shows thematerial space
of metal suldes in the ICSD and our in-house original dataset
as red and blue dots, respectively. Then, we selected 765 metal
sulde compounds, located within the blue square in Fig. 3, as
candidate materials for screening. This region was selected
because it included many in-house experimental data that were
used as training data, given that it was difficult to predict the
activities of materials outside the range of the training data.
Subsequently, the activities of the candidate suldes for sacri-
cial H2 evolution were predicted by using the constructed
machine-learning model, as shown in Fig. 1(3) and 2. The
selected metal sulde candidate materials with their predicted
activities are shown in Fig. 4. The 200 material sulde candi-
dates with their predicted activities were obtained, as shown in
the ‘list_of_candidates’ csv le (SI). Thus, the metal sulde
photocatalyst candidates were identied in the rst stage of
screening by MI. As shown in Fig. 1(4), we selected three metal
suldes, Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn), for the
second stage of screening based on empirical insights, given
that a number of metal suldes containing Cu(I) and/or Ag(I)
J. Mater. Chem. A
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Fig. 1 Flowchart of exploring metal sulfides for H2 evolution by machine-learning.

Fig. 2 Comparison between predicted activities obtained by the
machine-learning model and experimental activities for sacrificial H2

evolution under visible light irradiation (l > 420 nm) on the basis of our
original experimental dataset. In the 5-fold double cross-validation,
the validation results from fold 0 to fold 4 are shown as blue, orange,
green, red and purple circles, respectively.
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ions and corner-shared MS4 tetrahedra have been reported as
promising visible-light-responsive photocatalysts for sacricial
H2 evolution.36,39,41
Preparation and characterization of Ag2CdGeS4 and
Cu2CdMS4 (M = Ge and Sn) photocatalysts

Ag2CdGeS4 and Cu2CdMS4 (M= Ge and Sn) were synthesized by
a conventional solid-state reaction. XRD patterns revealed that
orthorhombic Ag2CdGeS4, with the enargite structure, and
tetragonal Cu2CdSnS4, with the stannite structure, were ob-
tained in a single phase (Fig. S1). Orthorhombic Cu2CdGeS4,
with the enargite structure in an almost single phase, was also
obtained with a negligible amount of Cd4GeS6. We optimized
the excess amount of GeS2 (0–50 mol% ex.) with the aim of
obtaining a single phase of Cu2CdGeS4. It was revealed that the
lowest amount of Gd4GeS6 in the sample was achieved when
a 40 mol% excess amount of GeS2 was used, although the single
phase of Cu2CdGeS4 was not obtained. Particulate morphol-
ogies were observed in the SEM images (Fig. S2). Sintered large
particles with a size of several tens of micrometers were
observed on Ag2CdGeS4, and aggregations of primary particles
with a size of several micrometers were observed on Cu2CdMS4
(M = Ge and Sn). Diffuse reectance spectra of the obtained
samples are shown in Fig. 5(a). The band gaps of Ag2CdGeS4,
Cu2CdGeS4 and Cu2CdSnS4 were estimated to be 2.21, 1.86 and
This journal is © The Royal Society of Chemistry 2026
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Fig. 3 Material space of metal sulfides in the ICSD and our original
dataset by PCA. Principal components 1 and 2 (with no units), which
form the axes, are new coordinate axes constructed by performing
linear combinations of the original variables.

Fig. 4 Material space of metal sulfides in the ICSD and our original
experimental dataset with predicted activities for sacrificial H2 evolu-
tion under visible light irradiation (l > 420 nm) by PCA. Principal
components 1 and 2 (with no units), which form the axes, are new
coordinate axes constructed by performing linear combinations of
original variables. Open circles are in-house experimental data.
Squares are the data from the ICSD, and the color indicates a predicted
activity corresponding to the right vertical axis.
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1.28 eV, respectively, from the absorption edges. It is notable
that Cu2CdSnS4 absorbs over the whole range of visible light.
PYS spectra were measured under vacuum to determine the
ionization potentials, which can generally be assigned to the top
of the valence band level of the samples. As shown in Fig. 5(b),
the potentials were estimated to be −5.79 eV (vs. vacuum level)
for Ag2CdGeS4 and –5.18 eV (vs. vacuum level) for Cu2CdMS4 (M
= Ge and Sn), indicating that the valence band of Ag2CdGeS4
formed at a more positive potential than those of Cu2CdMS4 (M
= Ge and Sn). This result is reasonable because the Ag 4d
orbitals generally form the valence band at a more positive level
than Cu 3d orbitals, as observed for other metal sulde pho-
tocatalysts containing Cu(I) and Ag(I) ions.41 DFT calculations
were also performed to investigate the band structures of Ag2-
CdGeS4 and Cu2CdMS4 (M = Ge and Sn), as shown in Fig. 6 and
7. All samples showed the direct transition property, and the
calculated band gaps for Ag2CdGeS4, Cu2CdGeS4 and Cu2-
CdSnS4 were 1.89, 1.65 and 0.95 eV, respectively. The order of
the band gaps agreed well with the experimental data estimated
from absorption edges of diffuse reectance spectra, as shown
in Fig. 5(a). The partial density of states (PDOS) of Ag2CdGeS4
and Cu2CdMS4 (M=Ge and Sn) are shown in Fig. 7. The valence
band maxima mainly consisted of Ag 4d + S 3p hybrid orbitals
for Ag2CdGeS4 and Cu 3d + S 3p hybrid orbitals for Cu2CdMS4
(M = Ge and Sn), while the conduction band minima mainly
consisted of Cd 5s5p + Ge 4s4p hybrid orbitals for Ag2CdGeS4
and Cu2CdGeS4. We previously reported DFT calculations for
a Cu2ZnGeS4 photocatalyst with the stannite structure that was
active for sacricial H2 evolution under visible light irradia-
tion.36 The results showed that Zn 4s4p orbitals were located at
a higher energy than Ge 4s4p orbitals, indicating that the
contribution of Zn 4s4p to the conduction band of Cu2ZnGeS4
This journal is © The Royal Society of Chemistry 2026
was small. In contrast, the contribution of Cd 5s5p to the
conduction band was relatively large for Ag2CdGeS4 and Cu2-
CdGeS4. The conduction band minima mainly consisted of Cd
5s5p + Sn 5s5p hybrid orbitals for Cu2CdSnS4, which were
located at a lower energy than the Cd 5s5p + Ge 4s4p hybrid
orbitals, leading to the narrow band gap of Cu2CdSnS4. Fig. 8
shows the band structures determined by diffuse reectance
spectra, the ionization potentials by PYS measurements, and
the DFT calculations. The order of driving forces for the
reduction of water was Cu2CdGeS4 > Ag2CdGeS4 [ Cu2CdSnS4.
The DRS, PYS and PDOS results suggest that Sn 5s5p orbitals
contribute to the formation of the conduction band of Cu2-
CdSnS4 at a more positive level than for Ag2CdSnS4 and Cu2-
CdGeS4, leading to the decreased driving force for water
reduction.

Photocatalytic H2 evolution over Ag2CdGeS4 and Cu2CdMS4
(M = Ge and Sn) photocatalysts in the presence of sacricial
reagents under visible light irradiation

Photocatalytic H2 evolution over Ag2CdGeS4 and Cu2CdMS4 (M
= Ge and Sn) photocatalysts from an aqueous solution con-
taining S2− and SO3

2− ions as sacricial reagents, was investi-
gated under visible light irradiation. H2 continuously evolved
for all samples for 3 h, without a noticeable deactivation, as
shown in Fig. 9. As mentioned in the previous section, Cu2-
CdGeS4 contained a small amount of Cd4GeS6 as an impurity.
However, the single Cd4GeS6 showed very low activity (16 mmol
h−1) compared to Cu2CdGeS4 (369 mmol h−1). Therefore, the
obtained Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn) represent
new visible-light-responsive metal sulde photocatalysts for H2

evolution. The Cu2CdSnS4 photocatalyst continuously evolved
J. Mater. Chem. A
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Fig. 6 Band structures of Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn).

Fig. 5 (a) Diffuse reflectance spectra and (b) PYS spectra of Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn) prepared by a solid-state reaction.

Fig. 7 Density of states of Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn).
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Fig. 8 Band structures of Ag2CdGeS4 and Cu2CdMS4 (M = Ge and Sn).
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H2 for 22 h (Fig. S3). The turnover numbers of the molar
quantity of reacted electrons for H2 evolution to that of the
photocatalyst host were 1.8 at 3 h, 3.1 at 3 h and 1.2 at 22 h for
Ag2CdGeS4, Cu2CdGeS4 and Cu2CdSnS4, respectively. The
turnover numbers were larger than unity, indicating that H2

evolution proceeded photocatalytically. Cu2CdGeS4 showed the
highest activity among the samples. Fig. 10 shows action
spectra of sacricial H2 evolution over the Ru (0.5 wt%)-loaded
Ag2CdGeS4, Cu2CdGeS4 and Cu2CdSnS4 photocatalysts. Ag2-
CdGeS4 and Cu2CdGeS4 responded to 570 and 780 nm,
respectively. The onsets of the action spectra of Ag2CdGeS4 and
Cu2CdGeS4 agreed well with those of the diffuse reectance
spectra, indicating that H2 evolution proceeded by band gap
excitation. Notably, Cu2CdSnS4 responded to near-infrared light
at 900 nm. AQYs were 2.6% at 470 nm for Ag2CdGeS4, 3.4% at
Fig. 9 H2 evolution over Ru-loaded Ag2CdGeS4 and Cu2CdMS4 (M =

Ge and Sn) photocatalysts prepared by a solid-state reaction from an
aqueous solution containing sacrificial reagents under visible light
irradiation. Photocatalyst: 0.3 g, cocatalyst: photodeposition in situ,
reactant solution: 0.5 mol per L K2SO3 and 0.1 mol per L Na2S aqueous
solution (120 mL), cell: top-irradiation cell with a Pyrex window, light
source: 300 W Xe lamp with a cut-off filter (HOYA: L42).

Fig. 10 Action spectra of sacrificial H2 evolution over the Ru (0.5 wt%)-
loaded Ag2CdGeS4, Cu2CdMS4 (M = Ge and Sn) photocatalysts.
Photocatalyst: 0.3 g, cocatalyst: PD in situ, reactant solution: 0.5 mol
per L K2SO3 and 0.1 mol per L Na2S aqueous solution (120 mL), cell:
top-irradiation cell with a Pyrex window, light source: 300 W Xe lamp
with band-pass filters.

This journal is © The Royal Society of Chemistry 2026
570 nm for Cu2CdGeS4 and 0.015% at 570 nm for Cu2CdSnS4.
The order of AQYs was Cu2CdGeS4 > Ag2CdGeS4 [ Cu2CdSnS4.
Here, the order of the driving force of reduction of water was
Cu2CdGeS4 > Ag2CdGeS4 [ Cu2CdSnS4, judging from the
position of the conduction band minima, as shown in Fig. 8.
Therefore, Cu2CdGeS4, with the largest driving force for
reduction of water, showed the highest activity among the
samples.
Conclusions

We have successfully developed Ag2CdGeS4 and Cu2CdMS4 (M
= Ge and Sn) as new visible-light-responsive metal sulde
photocatalysts for sacricial H2 evolution by utilizing machine
J. Mater. Chem. A
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learning. Themachine-learningmodel with acceptable accuracy
was constructed by utilizing our original dataset of metal sulde
photocatalysts developed by our group. The features of material
suldes in the ICSD and our original dataset were plotted in
a material space with two dimensions by using XenonPy and
principal component analysis. We predicted the activities of 765
metal suldes in the ICSD inside the material space (where
many experimental data used as the training data existed) using
the constructed machine-learning model, resulting in the
identication of metal sulde candidates for H2 evolution. We
experimentally synthesized Ag2CdGeS4 and Cu2CdMS4 (M = Ge
and Sn) from the candidates because metal suldes containing
Cu(I) and/or Ag(I) ions and corner-shared MS4 tetrahedra have
been reported as promising photocatalysts for sacricial H2

evolution under visible light irradiation. The band gaps of
Ag2CdGeS4, Cu2CdGeS4 and Cu2CdSnS4 were estimated to be
2.21, 1.86 and 1.28 eV, respectively, from the diffuse reectance
spectra. DFT calculations indicated that the conduction band
minima of Ag2CdGeS4 and Cu2CdGeS4 mainly consisted of Cd
5s5p + Ge 4s4p hybrid orbitals, and Cu2CdSnS4 were mainly
composed of Cd 5s5p + Sn 5s5p hybrid orbitals. Ag2CdGeS4,
Cu2CdGeS4 and Cu2CdSnS4, prepared by a solid-state reaction,
showed activities for sacricial H2 evolution under visible light
irradiation up to 570, 780 and 900 nm, respectively. Among the
prepared photocatalysts, Cu2CdGeS4 gave the highest AQY,
possibly because it possessed a larger driving force for the
reduction of water compared to Ag2CdGeS4 and Cu2CdSnS4. In
this study, exploration of novel visible-light-responsive metal
suldes for sacricial H2 evolution by machine learning has
been achieved. It is expected that this study will contribute to
the accelerated exploration of novel metal semiconductor pho-
tocatalysts not only in the metal sulde group but also in other
material groups, such as metal oxides.
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