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oval from wastewater through
biopolymer and nanocellulose-based green
technologies

Sayam Sayam, a Tarikul Islam, *bc Tasnim Hanan Tustid and Joyjit Ghoshc

Microplastics (MPs) in wastewater are a growing environmental issue that needs effective solutions. This

review examines the use of nanocellulose and biopolymers as sustainable options for removing these

pollutants from water. Nanocellulose (NC) is efficient due to its large surface area and biodegradable

nature, achieving up to 98% removal of microplastics through various processes, including adsorption

and filtration. Similarly, biopolymers like polysaccharides, lignin, and pectin can remove up to 99% of

particles by clumping and settling them out. However, some microplastics are not easily removed by

these materials on their own. Combining different materials, such as cellulose and chitosan, can enhance

removal efficiency to about 75%. Integrating these solutions into existing wastewater treatment plants

could help reduce microplastics and save costs; however, it is essential to ensure compatibility with

current systems and establish appropriate regulations. The review also highlights the need for future

research to support the widespread use of these methods in water treatment.
Sustainability spotlight

This review addresses the sustainability challenges associated with microplastic contamination in wastewater and highlights green technologies for their
removal. It focuses on nanocellulose and biopolymer-based materials derived from renewable resources, emphasizing their biodegradability, low toxicity, and
potential to replace synthetic treatment agents. The paper evaluates the environmental benets of adsorption, coagulation, and ltration mechanisms
compared to conventional chemical methods, outlining strategies to reduce secondary pollution and energy demand. By exploring scalable integration into
existing wastewater treatment systems, this review offers a pathway toward sustainable water management practices aligned with circular economy principles.
1. Introduction

Plastic materials rst appeared in the late 19th century, with
commercial use beginning in 1870.1 Due to their light weight,
durability, and corrosion resistance, plastics have rapidly
gained popularity across various industries. As a result, plastic
production increased nearly 180 times between 1950 and 2018,
reaching over 400.3 million tons globally by 2022.2 These
synthetic macromolecular polymers, such as polyethylene
terephthalate, polyethylene, polypropylene, polyvinyl chloride,
polyamides, polystyrene, and polyurethanes, have become
indispensable in daily life,3–5 especially in sectors like textiles,
construction, motor vehicles, consumer goods, medical, and
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food packaging.6,7 A detailed overview of plastic evolution and
its key historical milestones is presented in Fig. 1.8

Among these sectors, the textile industry is a leading
consumer of synthetic polymers. Since 1995, synthetic bers
have surpassed cotton as the most widely used textile material,
accounting for approximately 65% of global ber production by
2020.9 China and India dominate this sector, accounting for
66% and 8% of global output, respectively, followed by Taiwan
and the United States, each at approximately 4%.10,11 However,
the widespread use of synthetic bers has led to increasing
environmental concerns, particularly regarding MP pollution.
Synthetic bers shed MPs during washing and wear, contrib-
uting signicantly to the presence of MPs in water bodies. These
particles oen end up in wastewater treatment systems, where
they persist due to their resistance to degradation.

The rising accumulation of plastic waste, primarily from
single-use products such as shopping bags, bottles, and lids,
has exacerbated global pollution issues.7,12 While some plastics,
such as bottles, are recyclable, most single-use items still
accumulate in landlls or are incinerated, adding to environ-
mental degradation.13,14 Plastic pollution has now been reported
in a variety of ecosystems, including coastlines,15 oceans,16
RSC Sustainability
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Fig. 1 Historical timeline depicting the development and use of plastics (created with MS PowerPoint).
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deep-sea areas,17 and even remote islands.18 Plastics degrade
into MPs, which are categorized into primary and secondary
types.19–21 Primary MPs are intentionally produced in small sizes
(2 to 5 mm), oen found in products such as microbeads in
cosmetics,21–23 whereas secondary MPs result from the frag-
mentation of larger plastics through physical abrasion or UV
radiation.22–24 These degradation processes can produce parti-
cles as small as 1.6 mm, which have been detected in marine
environments.25,26 Interestingly, the concentration of MPs in
surface ocean waters is lower than expected due to their
tendency to aggregate with marine particles and settle into
sediments, oen facilitated by biolm formation.27

Wastewater treatment plants (WWTPs) are signicant entry
points for MPs into the environment. According to Sun et al.,5

MP concentrations in WWTP effluents can reach up to 447
particles per liter, with polystyrene (PS) being among the most
detected polymers. Even with tertiary treatment processes
(TTPs), effluents may still contain up to 51 particles per liter,
and only 24% of WWTPs globally currently implement TTPs.
Consequently, daily median MP discharges can reach approxi-
mately 2 million particles.

Traditional methods of removing MPs, such as ltration,
coagulation, and sedimentation, face limitations in terms of
efficiency and sustainability, especially for nanoscale parti-
cles.28,29 Filtration becomes energy-intensive when extremely
ne pores are required and oen suffers from clogging.29,30

Similarly, Zhang et al.31 demonstrated that coagulation and
sedimentation techniques are usually insufficient for the
complete removal of both micro- and nanoplastics. Moreover,
many conventional ltration materials are non-renewable, non-
biodegradable, and relatively expensive, raising concerns over
their long-term environmental impact.28,32 As a result, biopoly-
mers and NC have emerged as promising, eco-friendly alterna-
tives due to their renewability, biodegradability, high surface
area, and ease of functionalization.33–35 These materials,
sourced from plant cellulose and crustacean chitosan, can be
tailored for effective MP adsorption while minimizing their
RSC Sustainability
ecological footprint.33,34,36–40 Furthermore, the biodegradability
of NC is critical for its application in removing MPs, as it
ensures that the material itself will not persist in the environ-
ment or generate secondary pollution aer use. This attribute
strengthens its role as a genuinely sustainable, high-performing
option for long-term water purication technologies.

Given the urgent need for clean water and a sustainable
environment, there is increasing research interest in developing
renewable membrane materials for pollutant removal.
However, despite numerous studies on MP removal, compre-
hensive evaluations explicitly linking NC and biopolymer-based
adsorbents to practical wastewater treatment performance
remain limited. Existing reviews oen focus narrowly on
material synthesis or laboratory-scale performance without
addressing integration challenges, cost-effectiveness, or regu-
latory considerations. Moreover, recent trends—including the
push for sustainable textile processing, tightening environ-
mental regulations, and advances in bio-based nanomaterials—
underscore the urgent need for a critical synthesis of current
knowledge. This review consolidates and critically evaluates
recent advances in NC- and biopolymer-based systems for MP
removal from wastewater, focusing on adsorption, ltration,
and occulation mechanisms. It links material performance to
practical considerations for integrating wastewater treatment
and achieving cost-effectiveness. It situates these ndings
within emerging regulatory and policy contexts to provide
insights that guide future research and sustainable imple-
mentation strategies.

1.1 Source of the MPs

According to Babaei et al.,41 MPs in water come from numerous
sources, which can be classied into primary and secondary
categories. Understanading these sources is essential for
formulating effective mitigation strategies. To visualize these
origins, the primary and secondary MP pathways are depicted in
Fig. 2.42 This study also illustrated that various sources volun-
tarily produce primary MPs, which typically measure less than
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Sources and pathways of MP formation. Primary MPs come directly from products like personal care items, textiles, tires, paints, laundry,
and plastic manufacturing. Secondary MPs result from fragmentation of larger plastics such as bottles, bags, fishing nets, and shipping waste.
Published under the CC-BY License.42 Copyright 2023, The authors. Published by Springer-Verlag GmbH Germany.
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5 mm in size. Familiar primary sources include microbeads
found in personal care products such as toothpaste, exfoliating
scrubs, and several cosmetics. During use, thesemicrobeads are
rinsed down the drain and eventually end up in the water.
Plastic pellets, commonly referred to as nurdles, serve as
essential raw materials in plastics manufacturing. However,
nurdles unintentionally leave the environment during handling
processes or transportation.43–45 Another major contributor is
the use of synthetic bers and textiles, as their production,
usage, and disposal result in considerable microber emissions
into the environment.46 Microbers are notably released from
garments during washing due to wear and tear, as shown in
a study by Parbhakaran et al.,47 which tested polyester and nylon
fabrics using brush-washing methods. In contrast, secondary
MPs are formed when larger plastic materials degrade into
smaller pieces due to environmental factors, including weath-
ering, UV radiation, and physical abrasion.41,47 The degradation
of plastic waste, such as bottles, bags, and packaging materials,
occurs through exposure to wind, sunlight, and wave action.48,49

In the eld of agriculture, plastic mulches degrade over time,
releasing MPs into the soil, and animals may ingest these
particles when they graze on crop residues mixed with plastic
mulch remnants.48,50 WWTPs can eliminate a considerable
amount of MPs, but they remain a signicant source of
discharge. MPs originating from sources like domestic laundry
and industrial wastewater can both enter and exit these facili-
ties, ultimately reaching receiving waters.46,51,52 Urban runoff,
via stormwater, transports MPs from polluted soil into aquatic
environments,53 while atmospheric deposition also contami-
nates urban water systems.54 Moreover, abrasion of road
markings and tire wear generate plastic particles, making them
contributors to MP pollution.46,55

Table 1 summarizes the composition, physical form, and
size ranges of MPs from various domestic, industrial, and
environmental sources, providing context to their diversity and
scale. Particular examples and geographical factors further
emphasize the matter: in the Han River, China, the presence of
MPs varied from 2315 ± 603 to 8406 ± 2055 n m−3, indicating
a rising trend throughout the river.56 Research conducted in
textile industrial regions has revealed elevated levels of MPs,
© 2025 The Author(s). Published by the Royal Society of Chemistry
predominantly consisting of polyester as the primary polymer
type.57 Tsang et al.58 illustrated that in Hong Kong, the levels of
particles found in marine waters ranged from 51 to 27 909
particles per m3, while in sediments, they varied from 49 to 46
143 particles per kg. A recent investigation conducted in Indi-
ana rivers has highlighted notable MP contamination, empha-
sizing the extent of this problem in the Midwest's owing
waters.59
1.2 Impact of MPs on the ecosystem

The ecological impacts of MP pollution are varied and inuence
organisms at various trophic levels. A wide range of aquatic
organisms, extending from plankton to sh, can ingest MPs,
resulting in both chemical and physical toxicity.84 Fig. 3 shows
the transfer of MPs through different trophic levels.85 In addi-
tion to the absorption of harmful substances that build up on
the surface of MPs, ingestion of MPs may end in physical injury,
such as blockages in the digestive tract.86 It can also disrupt
food chains by accumulating within organisms, which leads to
higher levels that can affect how ecosystems work and are
structured.87,88 A study by Moto et al.89 illustrated that MPs have
the potential to change habitats, disturb ecological equilibrium,
and pollute water and soil. Sing et al.90 indicate that MPs have
negative impacts on plant development, soil pollution, and the
contamination of subsurface aquifers. The ability of MPs to
absorb and interact with organic pollutants can change their
toxic effects and complicate treatment efforts.91 The appearance
of MPs may facilitate the movement and colonization of
particular microbes, resulting in disruptions within the affected
ecosystems.92
1.3 MPs in drinking water

MPs have been found in both tap and bottled water, empha-
sizing widespread contamination.93,94 The source of MPs in
drinking water can vary, including unltered water sources,
packaging materials, treatment processes, and distribution
systems, as depicted in Fig. 4.94,95 A study by Semmouri et al.96

found the presence of MPs in surface water, ground water, and
treated sewage water that serve as sources of drinking water.
RSC Sustainability
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Table 1 Comprehensive overview of MP sources, their polymer compositions, physical morphologies, and size distributions

Source Composition Physical form Size range Ref.

Facial cleaners Polyethylene Spherical Higher than 0.5 mm 60
Beverage products Polyamide, acrylonitrile–

butadiene–styrene,
poly(ester-amide),
poly(ethylene terephthalate)

Fibres, fragments 0.1–3 mm 61

Textile factory Polyester Fibres 0.1–1 mm 62
Plastic mulch Polyester, polypropylene Fibres, fragments, foam,

lms
Higher than 500 mm 63

Mariculture activities Polyester, polypropylene,
polyethylene, polyamide
(nylon), polystyrene,
polyetherurethane,
polybutylene terephthalate

Fragments, akes, bres,
foam

Less than 0.25 mm 64

Anthropogenic activity Polystyrene, polyethylene,
polypropylene

Fibres, styrofoam,
fragments, lms, pellets

Less than 0.5 mm 65

Urban sewage Polyethylene, polystyrene,
polypropylene

Fragments, lines, foam,
lms

1–4.75 mm 66

Construction, shery
activities, and human
domestic sewage

Polyvinylchloride,
polyethylene, polyamide

Fibres, pellets, lms,
fragments

Less than 0.5 mm 67

Industrial area Polyethylene, polypropylene,
nylon

Fibres, fragments 0.1–5 mm 68

Tertiary industry Polyethylene, polypropylene,
polyacrylonitrile,
polyethylene terephthalate

Fragments, bers, lms 500 mm to 5 mm 69

Articial ecosystems Polyethylene, rayon,
polypropylene

Fibres, akes, lms,
granules

Less than 1 mm 70

Plastic industries Polypropylene, polyester,
nylon, polystyrene

Fibres, lines, spherules,
fragments/granules, lms

Less than 0.5 mm 71

Shower gels Polyethylene Irregular shapes 422 � 185 mm 72
Car tires Polypropylene, acrylic,

nylon, rubber
Fragments, bres Higher than 500 mm 73

Facial scrubs Polyethylene, polyvinyl
chloride

Spherical, irregular, granular 85 to 186 mm 74

Cosmetic products Polyethylene Irregular, granular, spherical 54–115 mm 75
Industrial sources Polyethylene, nylon,

polypropylene
Films, fragments, lines,
granules, sheets, lines

0.5–1.0 mm 76

Fishing and shipping
activities

Ionomer surlyn, acrylic
(acryl bre), polyetherimide,
polyphenylene sulphide,
ethylene vinyl alcohol,
acrylonitrile, nylon,
polyisoprene, polyvinyl
chloride, ethylene–vinyl
acetate, polyurethane

Fibres, pellets, fragments 1489 � 1017 mm 77

Personal care products,
facial cleansers, sewage
sludge

Polystyrene, polyester,
amino thermoset plastic,
polyallyl diglycol carbonate

Fragments, pellets, foam,
lms, lines

0.355–0.999 mm 78

Urbanization Polyethylene, polypropylene Pellets, fragments, lms,
lines, foam

0.3–4.75 mm 79

Sludge and WWTPs Polyamide, polyethylene,
polypropylene

Fragments, bres, lms,
granules

0.003–0.05 mm 80

Local inputs, ocean
transport

Polypropylene, polyester,
polyester, polyethylene

Fibres, akes, lms,
granules

2.0–2.5 mm 81

Domestic, agriculture
effluent, industry, upstream
inow, and airborne
settlement

Polyethylene terephthalate,
polyethylene, polypropylene,
polystyrene, polycarbonate,
polyvinyl chloride, cellulose
propionate, polyamide,
ethylene–vinyl acetate
copolymer

Pellets, fragments 0.05–5 mm 82

Commercial sh species Polyethylene terephthalate,
polyethylene, polypropylene,
polyamide, phthalocyanine

Fibres, fragments Higher than 215 mm 83

RSC Sustainability © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 MP transfer across trophic levels in the aquatic food chain (created with MS PowerPoint).

Fig. 4 Schematic representation of human MP exposure through the use of disposable plastic drinking cups. Published under the CC-BY
License.95 Copyright 2024, The authors. Published by MDPI.

Table 2 Summary of MP particle size, affected organisms, and reported biological effects

Origin MP exposure/size Effects Ref.

Emys orbicularis 500–1000 mg kg−1 Induced pathological changes in liver and kidney tissues 104
Ascidian ciona intestinalis 1 mm Impaired food uptake efficiency and reduced growth rate 105
Nematode 1 mm Triggered oxidative stress and induced intestinal injury 106
Crepidula onyx 2 mm Growth reduction 107
Sardinellagibbose 1 mm Decreased body weight and altered feeding behavior 108
Dania rerio 70 mm Disrupted normal gut structure 109
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Another study conducted by Zhou et al.97 indicated that the
amount of MPs released from plastic cups was around 556.80 ±

31.39 particles/L. In village areas, MPs can contaminate
drinking water systems from purication plants and reservoirs.
According to Meshram and Mhatre,98 these particles can pass
through the intestinal membrane and aggregate in tissues. They
have the potential to promote inammatory responses and
oxidative stress within the body.99,100 Sharma et al.100 discovered
that MPs can interfere with typical composition and
© 2025 The Author(s). Published by the Royal Society of Chemistry
functioning of the intestinal microbiota, which plays a crucial
role in immune and digestion response.

To further illustrate these impacts, Table 2 summarizes
recent ndings on MP sizes, affected organisms, and their
observed toxicological effects. Also, they can be found in sour-
ces of drinking water, presenting a signicant risk to aquatic
ecosystems.84 Aquatic organisms have the ability to consume
MPs, which can result in stunted growth, reduced feeding effi-
ciency, and reproductive toxicity.101,102 MPs may also function as
carriers for harmful chemicals, leading to biomagnication and
RSC Sustainability
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Fig. 5 Transfer routes of MPs fromwater, soil, and biota to the human body. Published under the CC-BY License.110 Copyright 2024, The authors.
Published by Springer Nature Switzerland AG.
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bioaccumulation within the food chain 101. This trophic
transfer and its cascading ecological consequences are illus-
trated in Fig. 5, which outlines the movement of MPs through
various food web levels.103

In addition, nanoplastics, due to their small size (<1 mm),
show unique toxicological characteristics and pose risks
distinct from those of MPs. They can translocate across bio-
logical barriers and accumulate in vital organs, potentially
leading to inammatory responses, oxidative stress, and geno-
toxicity.111 Moreover, they can interact with cells at the molec-
ular level, affecting gene expression, signaling pathways, and
cellular functions.112 A research conducted by Christopher
et al.113 found that nanoplastics have been detected in human
placentas, indicating maternal exposure and negative effects on
early-life development. Exposure routes include inhalation,
dermal contact, and ingestion.114 They can also accumulate
biota, leading to histological damage, neurotoxicity, and meta-
bolic disruption in sh. Additionally, they can impact soil
function and food-chain transfer.115
2. MP detection

The identication of MPs in wastewater involves a series of
steps that include sampling, pre-treatment, and separation,
followed by identication and quantication. Many methods,
such as Fourier-transform infrared spectroscopy (FTIR),
pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS),†
† Py-GC/MS: a thermoanalytical method that thermally decomposes polymers
into fragments for identication via gas chromatography and mass spectrometry.

RSC Sustainability
and Raman spectroscopy, are used to nd and measure MPs in
the environment.116–118 A comprehensive overview of these MP
detection techniques, including their analytical capabilities,
advantages and limitations, as well as the types of polymers
identied in biotic and aquatic environments, is presented in
Table 3.

The initial phase involves sampling, an essential procedure
focused on gathering samples from WWTPs. The accuracy of
this phase depends on the type of water, including freshwater,
seawater, or wastewater, since timing is crucial to account for
temporal and spatial uctuations in MP levels.149 Sampling
techniques can be customized according to the type of water-be
it freshwater, seawater, or wastewater-because of the variations
in particulate load and composition.150

Aer sampling, separation and pretreatment steps are
carried out to separate the sample from the wastewater
matrices. Filtration stands out as the most prevalent method for
separation, generally utilizing lters with stainless steel basket
lters that employ smaller and smaller mesh sizes (such as 10
mm, 50 mm, and 100 mm), which are effective at capturing
different particle sizes.151 The process becomes better through
density separation, which requires the differences in density
between MPs and other particulate matter. Researchers used
high-density salt solutions to enable the plastics to oat, while
the heavier materials settle.152 Digestion steps eliminate organic
matter that could obstruct spectroscopic identication. Agents
for chemical digestion, such as HCl, H2O2, and various
enzymes, are applied to break down organic components while
preserving the structural integrity of plastic particles.149,152 The
identication of MPs is primarily carried out using
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Workflow for MP detection: (1) sampling via multi-corers or plankton nets; (2) freeze-drying and digestion with H2O2 and acetic acid; (3)
separation using syringe cascade and detergent desorption; (4) analysis by Raman spectroscopy. Published under the CC-BY License.120

Copyright 2021, The authors. Published by Elsevier B.V.

‡ MFI: an optical technique for real-time, in situ analysis of suspended
microplastic particles in liquids.
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spectroscopic and thermal analytical techniques. FTIR spec-
troscopy determines the chemical composition of MPs through
the analysis of infrared absorption patterns. Using micro-FTIR
along with imaging allows for a close-up and detailed study of
individual particles.116,150,153 Raman spectroscopy, a widely used
technique, provides information at the molecular level by
analyzing rotational and vibrational modes. More advanced
methods, such as Surface Enhanced Raman Spectroscopy
(SERS), drastically improve detection sensitivity.153–155 Pyrolysis-
GC/MS, functioning as a thermoanalytical method, thermally
breaks down MPs into smaller molecular fragments for subse-
quent identication and separation, which is particularly useful
for complex or mixed samples where direct spectroscopic
identication is difficult.109,155.

Methods of quantication involve both chemical and visual
tactics. Optical microscopy is oen employed for quantifying
microplastic particles, whereas scanning electron microscopy
offers a thorough morphological understanding.149,152,153
© 2025 The Author(s). Published by the Royal Society of Chemistry
Research into the topic of spectroscopic quantication
continues, utilizing FTIR and Raman spectral data to determine
the mass of MPs, although this area is still under develop-
ment.156 Pyrolysis-GC/MS provides a more detailed character-
ization of specic polymers by determining the prevalence of
their distinct degradation products.157 Innovative detection
methods are consistently improving the precision and effec-
tiveness of MP detection. Micro-ow imaging (MFI)‡ assists in
the real-time determination of MPs in situ.158 Hyperspectral
imaging uses near-infrared technology and FTIR to provide very
detailed images, and when combined with chemometric
modeling, it helps quickly and accurately identify different
types of plastics.152,159 Xue et al.154 demonstrated that new
methods, such as the extreme learning machine paired with
differential Raman spectroscopy, combine advanced computer
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learning with light detection, leading to enhanced sensitivity for
biological samples. Furthermore, nanoparticle tracking analysis
has been used to measure the number of nanoplastics present
and their size, in response to growing concerns about plastic
particles that are smaller than one micron.119 A study by Rein-
eccius et al.120 illustrated the MP detection workow shown in
Fig. 6, highlighting key steps such as sampling using multi-
corers or plankton nets, freeze-drying and digestion with
hydrogen peroxide and acetic acid, separation through syringe
cascades and detergent desorption, followed by detailed anal-
ysis via Raman spectroscopy.
3. NC

NC, the most abundant biopolymer on the planet, is an excel-
lent substrate for the massive production of affordable,
ecologically sound water treatment media.121 Based on the
origin of raw materials, the synthesis method, and the
morphological structure, there are multiple kinds of NC mate-
rials. A variety of names have been given to these NC materials,
such as nanocrystalline cellulose (NCC), cellulose nanocrystals
Fig. 7 Microscopy image of (a) CMFs. Reproduced with permission fro
Published under the CC-BY License.130 Copyright 2017, The authors. Hin
from ref. 131. Copyright 2007, Elsevier Ltd.; (d) CNCs. Published under the
cellulose nanofibers. Reproduced with permission from ref. 133. Copyrig
assembled into a material stronger than spider silk. Published under the C
Chemical Society; (h) electrospun cellulose nanofibers. Reproduced wit
aerogels. Published under the CC-BY License.136 Copyright 2018, The au

© 2025 The Author(s). Published by the Royal Society of Chemistry
(CNCs), cellulose nanobrils (CNFs), cellulose microbers
(CMFs), cellulose nanobers, nanobrillated cellulose (NFC),
microbrillated cellulose, and various combinations of the
aforementioned types.122 Each type possesses an identical
chemical composition, but due to disparities in sources and
extraction techniques, they differ in structure, particle size,
crystallinity, and other characteristics.123 Table 4 provides
a comparative overview of these NC types, highlighting their
synthesis methods, surface modications, mechanical proper-
ties, recyclability, and MP removal efficiencies.

NCC—also referred to as CNCs, nanocrystals of cellulose, or
cellulose nanowhiskers—is an exceptionally robust form of NC
usually retrieved from cellulose brils by acid hydrolysis.123 The
extended, malleable, and interwoven NC that can be mechan-
ically separated from cellulose brils is called NFC, oen
referred to as cellulose nanobrils (CNFs) or nanobrillar
cellulose.124,125 Another sort of NC is bacterial NC, which is
primarily manufactured by G. xylinus and can be recovered from
the ingestion of tiny molecular carbohydrates by bacteria.126

Hydrolysis with extremely potent acids yields the nano-
crystalline particles by breaking local crystalline bonds between
m ref. 129. Copyright 2021, Springer Nature; (b) cellulose fibers (CFs).
dawi; (c) cellulose nanoparticles (CNPs). Reproduced with permission
CC-BY License.132 Copyright 2018, The authors. Published by MDPI; (e)
ht 2009, Royal Society of Chemistry; (f) BC and (g) cellulose nanofibers
C-BY License.134 Copyright 2018, The authors. Published by American
h permission from ref. 135. Copyright 2012, Elsevier Ltd.; (i) cellulose
thors. Published by MDPI.
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nanobrils and rupturing amorphous domains.127 Cellulose
bers undergo mechanical breakdown into CNFs most
frequently by rening, high-pressure homogenization, and
grinding.125 Bacterial cellulose (BC) can be produced by Aceto-
bacter aceti, and it can be optimized by the fermentation
process.128 Fig. 7 shows different types of NC materials.129–137

However, the synthesis of various NC materials faces several
challenges primarily related to processing conditions and
material properties. Traditional methods for NC preparation,
such as mechanical, biological, and chemical treatments, have
limitations including long treatment times, high energy
consumption, and environmental concerns.138 For instance, the
production of CNCs oen involves acid hydrolysis, which
requires careful control to avoid degrading the cellulose while
removing amorphous regions.139,140 CNFs, produced via
mechanical methods, can suffer from high energy consumption
during brillation.141 BNC, although pure, requires specic
culture conditions and can be costly to produce at scale.142

Modied CNCs, like cellulose benzoate, and composites like
CNF-CDW require additional chemical modication steps that
can introduce complexities in maintaining structural integrity
and desired properties.143
3.1 NC characteristics relevant to MP removal

3.1.1 High surface area and porosity. The high specic
surface area of NC is one of its outstanding characteristics, and
it contributes to wastewater treatment. The adsorption capacity
of materials based on NC for capturing pollutants and the size
exclusion capability of eliminating undesired elements may be
improved by increasing the specic surface area of NC and its
interactions with the surrounding matrix.144 The adsorption of
MPs is greatly dependent on the high specic surface area of the
NC and the microporous structure of the NC aerogel.160 Among
many other qualities, excellent mechanical properties of NC,
ease of processing into porous 2D or 3D structures, and
exceptionally reactive surface with high surface area (resulting
Fig. 8 Schematic representation of four NC-based mechanisms for MP

RSC Sustainability
in high density) make it a great building block for designing
functional nanomaterials by mineralization.161 Pickering foam
constructed from CNCs has a low density, which makes it
possible to dry it to create porous materials with numerous pore
structures and a large specic surface area. Reducing inner
density is an achievable approach to improve the specic
surface area of objects with known shapes and volumes.162

3.1.2 Biodegradability. NC is one of the most intriguing
plant-based biodegradable biopolymers.163 Nanomaterials
derived from biological sources have particular characteristics
of nanomaterials along with the further benets of sustain-
ability, abundance, and biodegradability.33 This biodegrad-
ability arises from its composition of glucose units linked by b-
1,4-glycosidic bonds, which are susceptible to enzymatic
breakdown by cellulose enzymes produced by different micro-
organisms.164 However, the biodegradation of NC can be
affected by several factors, including its source, surface modi-
cation, production process, and environmental conditions to
which it is exposed.165 Environmental factors such as pH,
temperature, moisture levels, and the presence of certain
organisms play an important role in inuencing the degrada-
tion of NC.166 When conditions are ideal, the performance of
cellulose enzymes is enhanced, leading to a higher decompo-
sition rate of NC into basic substances. Hossain et al.164 found
that the degree of crosslinking in NC-based superabsorbent
polymers can inuence their biodegradability. Higher cross-
linking density may impede enzyme accessibility, thereby
delaying the degradation process. Another study conducted by
Frank et al.165 demonstrated that dispersibility within polymer
matrices can also impact its biodegradation. For example,
research has illustrated that hydrophobic modications via
silanization can reduce the biodegradability of NC.
3.2 Mechanisms of MP removal using NC

The application of NC in MP remediation operates through
several key mechanisms. Fig. 8 provides a schematic overview of
removal (created with MS PowerPoint).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Filtration volume (V) versus square root of time (T1/2) for base mud and CNC-modified muds (C-CNC and S-CNC) at 25 °C, 150 °C, and
180 °C, demonstrating the influence of CNC concentration and temperature on fluid loss behavior. Published under the CC-BY License.170

Copyright 2024, The authors. Published by Springer Nature B.V.
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four mechanisms such as adsorption, ltration, aggregation,
and surface modication, each of which is elaborated below.

3.2.1 Adsorption. TEMPO-mediated oxidation has been
identied as an exceptionally effective technique for generating
cellulose nanobers due to its selectivity and low energy
consumption.167 Due to the high attraction between surfaces
with opposite charges, the positively charged MPs (polystyrene)
instantly bind to the anionic TEMPO-CNF surface during
adsorption. Additionally, anionic MPs can more readily enter
the NC network in the anionic system because the attraction
energy between negatively charged surfaces is half that of
surfaces with opposite charges. To boost the effectiveness of
removing anionic and nonionic contaminants from NC, the
hydroxyl groups can also be chemically modied.144 These
adsorption studies emphasize that surface chemistry and
functionalization strongly inuence MP capture, providing
a conceptual bridge to the membrane selectivity principles di-
scussed in the following ltration section.

3.2.2 Filtration. NC can be used to create membrane lters
that physically trap MPs.40,168 These membranes are designed
with pore sizes smaller than the MPs, ensuring their retention
while allowing water to pass through.168 NC-based membranes
offer advantages such as low energy consumption, high sepa-
ration efficiency, and eco-friendliness.40 The effectiveness of
these membranes can be improved by modifying the NC to
improve its stability and mechanical strength.169 For instance,
the addition of sulfonated or cationic CNCs (S-CNCs and C-
CNCs) to water-based drilling uids reduces ltration volume
at different temperatures, illustrating their capability in ltra-
tion applications. Fig. 9 demonstrates the ltration volume
against the square root of time at various temperatures with
© 2025 The Author(s). Published by the Royal Society of Chemistry
varying concentrations of C-CNC and S-CNC.170 These ndings
suggest that coupling adsorption pretreatments with ltration
could mitigate fouling and enhance overall MP removal,
underscoring the value of integrated treatment designs.

3.2.3 Aggregation. NC can induce the aggregation of MPs,
leading to the formation of larger particles that are easier to
remove.171,172 This process can be improved through the addi-
tion of coagulants, such as aluminum and ferrous sulfate,
which destabilize the MPs and promote their clumping
together. For example, coagulation with aluminum and ferrous
sulfates has proven effective in removing polystyrene and
polyvinyl chloride MPs from natural surface water. The effi-
ciency of MP removal can be further enhanced by optimizing
the dosage of coagulants and by using NC to create a matrix that
entraps the aggregated MPs.173

3.2.4 Surface modication. Pristine NC contains numerous
hydroxyl groups that can be chemically modied to introduce
functional groups with a high affinity for MPs.174,175 Several
methods can be employed, such as chemical modication, gra
copolymerization, adsorption and bioconjugation. In chemical
modication, oxidation, esterication, and etherication can
alter the surface properties of NC, making more effective for
adsorption.176 A study by Kopač et al.177 introduced cationic
groups that can increase the electrostatic attraction between NC
and negatively charged MPs. Fig. 10 shows SEM micrographs of
different types of cellulose-based nanobers, including cationic
CNFs, cationic microbrillated cellulose, freeze dried cellulose
nanobers, and quaternized CNFs, illustrating their individual
morphologies.177 Another technique, gra copolymerization,
involves graing polymers onto the NC surface to ne-tune its
properties. By graing specic polymers, NC can be engineered to
RSC Sustainability
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Fig. 10 Micrographs of different types of cellulose-based nanofibers. Published under the CC-BY License.177 Copyright 2022, The authors.
Springer Nature B.V.
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selectively bind to different types of MPs.178 Furthermore, modi-
fying the surface of NC through adsorption and bioconjugation
can improve its functionality and biocompatibility. This can lead
to better cell adhesion and controlled degradation, making it
suitable for various biomedical applications.179

Several techniques are available for surface modication, each
offering unique advantages depending on the application. For
instance, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) is a stable
nitroxyl radical widely used in surface modication.180 It is
frequently employed to modify CNFs by introducing carboxy
groups.181,182 These carboxy groups can then be further
Fig. 11 Different types of biopolymers for MP removal
(created with MS PowerPoint).

RSC Sustainability
functionalized; for instance, primary-amine-terminated poly-
alkylene glycol (PAG) can react with carboxy groups in TEMPO-
CNFs to form amide bonds, improving thermal and dimen-
sional stability.181 Another surface modication technique is
amine functionalization, which involves introducing amine
groups (–NH2) onto the surface of a material.183 A common
method for amine functionalization is silanization using 3-
aminopropyltriethoxysilane (APTES).184,185 The ethoxy groups in
APTES react with hydroxyl groups on the surface, forming stable
siloxane (Si–O–Si) covalent bonds.184 Other surface modication
techniques such as cationic surface functionalization using
cetrimonium bromide can improve interfacial interactions
between CNCs and polymeric matrices in nanocomposites.186
4. Biopolymers for MP removal

Biopolymers are gaining increasing attention as sustainable
materials for several applications, including MP removal from
wastewater. These polymers offer eco-friendly alternatives to
traditional synthetic polymers due to their renewability and
biodegradability. Various types of biopolymers have shown
promise in MP removal, as shown in Fig. 11 and detailed in
Table 5.
4.1 Chitin and chitosan

Chitosan, a naturally derived biopolymer, is a modied form of
chitin.210 It is the most abundant natural polysaccharide found
in the exoskeletons of crustaceans (crab, shrimp, and lobster),
insects, and fungal cell walls.211,212 The deacetylation of chitin
yields chitosan.211,213,214 The structure of chitosan features
amino and hydroxyl groups, as depicted in Fig. 12, which play
an important role in its ability to interact with pollutants.214,215
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Derivation of chitosan via chitin deacetylation (created with MS PowerPoint).

Fig. 13 Structural composition of alginate (created with MS PowerPoint).
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The amino groups on the structure of chitosan become posi-
tively charged under acidic conditions, facilitating electrostatic
interactions with negatively charged MPs.213 This leads to oc-
culation and coagulation, where small MPs aggregate into
larger ocs that can be easily separated from the water.216 The
porous structure and reactive functional groups of chitosan
enable it to adsorb MPs, effectively trapping them within its
matrix.217 Its effectiveness in MP removal stems from its ability
to act as an adsorbent and bioocculant.34,216 As a bioocculant,
chitosan promotes the aggregation of MPs, leading to their
sedimentation or easier removal through ltration.216,218 Addi-
tionally, shaping chitosan into beds increases its surface area
and makes it easier to handle and regenerate.212 Nano-sized
chitosan exhibits a high surface area and improved adsorp-
tion capacity, and higher MP removal efficiency.219
4.2 Alginate

Alginate, a naturally occurring biopolymer extracted from
brown algae,220 is a developing sustainable and efficient
Fig. 14 Fundamental molecular structure of starch polymer (created wi

RSC Sustainability
solution for MP removal from wastewater.220,221 Its biocompat-
ible, cost-effective, and nontoxic features make it suitable for
various applications.222 It is a linear polysaccharide composed
of two uronic acid monomers, guluronic acid and mannuronic
acid.223 The ability of alginate to form gels in the presence of
divalent cations, such as calcium ions, is a key property utilized
in MP removal.224 Zhang et al.221 showed that calcium alginate
hydrogel can be used as a occulant to remove MPs from water,
with a removal efficiency of up to 99.5% for certain MPs.
Although the effectiveness of this method can vary depending
on the composition and size of the MPs. For more effective
removal, Wang et al.222 demonstrated that alginate can be
combined with other materials to form composites with
enhanced adsorption capabilities. Additionally, alginate can be
used to entrap other materials, such as nano-zerovalent iron, to
degrade organic pollutants through advanced oxidation
processes.225 The functional groups present in alginate can also
interact with the surface of MPs, enhancing their removal.152 It
can be processed into various useable forms, such as beads or
th MS PowerPoint).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Chemical structure of polylactic acid (PLA)
(created with MS PowerPoint).

Fig. 16 Polymeric structure of polysaccharides
(created with MS PowerPoint).
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membranes, making it versatile for water treatment technolo-
gies.226 Fig. 13 illustrates the molecular structure of alginate.227
4.3 Starch

Starch is an emerging biopolymer for MP removal from waste-
water due to its availability, biodegradability, and low cost.228,229

Modied and unmodied forms of starch are being explored for
their ability to capture and remove MPs through various
mechanisms, offering an environmentally friendly alternative to
traditional methods.194 Gao et al.194 illustrated that cationic-
modied starch (CS) is efficient as a bio-coagulant for
removing MPs of different sizes, types, and aging conditions
under different water conditions. Additionally, starch can
destabilize MP suspensions, causing them to aggregate and
form larger ocs that can be easily removed.194,230 Another
research conducted by Amin et al.231 combined clay and cationic
starch to enhance biodegradability and cost-effectiveness.
Fig. 17 Chemical structure of lignin (created with MS PowerPoint).

© 2025 The Author(s). Published by the Royal Society of Chemistry
Furthermore, ultralight porous sponges made from cross-
linking corn starch and gelatin have been developed for
capturing micro- and nano-scale plastics, with the added
benet of being enzymatically decomposable to glucose.232

Fig. 14 demonstrated that the primary chemical framework of
starch-based polymer.233
4.4 Polylactic acid

Polylactic acid (PLA) is an attractive alternative to conventional
petroleum-based polymers because of its biocompatibility,
biodegradability, and renewability.234–236 It can be processed
using techniques like extrusion, injection molding, and
electrospinning.237,238 This versatility allows for the creation of
various membrane structures and forms suitable for different
ltration and adsorption methods in MP removal from waste-
water, as shown in Fig. 15.239 For instance, 3D printing methods
can be used to create PLA membranes with controlled porosity
and dimensional stability.234,240 Khalil et al.241 developed asym-
metric ultraltration membranes based on PLA for the removal
of MPs from wastewater. These membranes, characterized by
techniques such as FTIR, XRD, SEM, and porosity analysis, have
shown high removal efficiencies for organic matter. Further-
more, advanced PLA-based membranes embedded with func-
tionalized nanomaterials, such as positively charged multi-
walled carbon nanotubes/graphene oxide (f-MWCNTs/GO)
nanohybrids, have been developed to enhance water ux and
nutrient removal. For example, the addition of only 1.5% f-
MWCNTs/GO nanohybrid into the PLA matrix increased water
ux by 74% compared to unmodied membranes and achieved
removal rates up to 90.1% for ammonium nitrogen and 71.3%
for phosphate ions from raw wastewater.242
4.5 Polysaccharides

Polysaccharides can act as bioocculants, aggregating MPs into
larger, settleable ocs. For instance, an extracellular polymeric
substance produced by a freshwater Cyanothece sp. strain
RSC Sustainability
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demonstrated bioocculant capacity when exposed to micro-
and nano-plastics.243 Jagadeesh and Sundaram244 found that
modied polysaccharides can absorb MPs onto their surface,
facilitating their removal. Furthermore, organosilanes
combined with polysaccharides can be used to agglomerate and
x MPs, enabling their removal from water.245 Biochar, which
can be derived from polysaccharide-rich biomass, has shown
potential for MP removal through mechanisms such as “Stuck,”
“Trapped,” and “Entangled” interactions. However, hybrid
biochar-sand lters have shown promise as low-cost systems.246

The chemical structure of polysaccharide chains is shown in
Fig. 16. Furthermore, acrylamide (AM) cross-linked psyllium
polysaccharide (PLP-AM) has been synthesized and used as
a occulant for removing PS, PVC, and PET MPs from water.
Under optimal conditions, PLP-AM achieved removal percent-
ages of 92.55% for PS, 93.85% for PET, and 94.31% for PVC.247

Polysaccharides can be extracted from spirulina platensis using
hot water, followed by chitosan occulation treatment to
remove impurities.248,249
4.6 Lignin

The complex structure and abundant functional groups of
lignin make it a viable option for adsorbing pollutants,
including MPs, from wastewater.250,251 Studies have explored the
direct application of lignin as an absorbent for MPs. For
example, organosolv lignin derived from Miscanthus sp., pine
bark, and solid anaerobic digestates has been evaluated as an
adsorbent for various types of MPs.199 Additionally, lignin-based
materials, especially when processed into activated carbons or
porous structures, offer a high surface area and porosity.252,253

MPs can become entrapped within these pores through physical
adsorption.253 Cationic lignin polymers can neutralize the
negative surface charges commonly found on MPs in waste-
water.254 This charge neutralization reduces repulsive forces
between MP particles, allowing them to aggregate.255 Further-
more, lignin polymers can act as bridges between MP particles,
linking them together to form larger ocs.254 These larger ocs
Fig. 18 Schematic overview of coagulation–flocculation in MP treatme
tution of Chemical Engineers. Published by Elsevier Ltd.

RSC Sustainability
are then easier to remove via sedimentation or ltration.256,257

Kaur et al.258 demonstrated that lignin can degrade MPs under
light irradiation. Lignin can be chemically modied with [2-
(methacryloyloxy)ethyl]trimethylammonium chloride (METAC)
or acrylic acid to improve its charge density, water solubility,
and molecular weight, improving its occulation perfor-
mance.254,255,259 For example, introducing cationic groups
through METAC can enhance the ability of lignin to occulate
negatively charged MPs.255 The underlying polymeric structure
of lignin is demonstrated in Fig. 17.
5. Coagulation and flocculation
mechanisms

Coagulation and occulation are crucial processes for removing
MPs from wastewater.260 These processes involve destabilizing
suspended particles, including MPs, and aggregating them into
larger ocs that can be easily removed through sedimentation
or ltration.261,262 Coagulation involves neutralizing the surface
charge of the suspended particles, allowing them to aggre-
gate.262,263 Common coagulants such as aluminum-based salts
(such as alum) and iron-based salts (such as ferric chloride)
destabilize the MPs by reducing the repulsive forces between
them, promoting initial aggregation.264,265 Flocculation, on the
other hand, involves the addition of polymers that bridge the
destabilized particles, forming larger, more settleable
ocs.262,266 These polymers, oen polyacrylamides, improve the
aggregation of MPs, leading to improved removal efficiency.267 A
research by Awan et al.268 illustrated that high dosages of
coagulants can lead to the formation of a precipitate that
enmeshes MPs, facilitating their removal. This is oen referred
to as sweep occulation. Fig. 18 presents the coagulation–oc-
culation strategy for MP elimination.269 Flocculation thus
complements both adsorption and ltration methods, indi-
cating that multi-stage or hybrid systems may provide the most
scalable and sustainable solutions.
nt. Reproduced with permission from ref. 269. Copyright 2024, Insti-
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Table 6 Overview of treatment agents: removal efficiency and associated limitations

Coagulant/occulant Dosage (mg L−1) MP type(s) Removal percentage Drawbacks Ref.

Alum (aluminum sulfate) 50–100 HDPE, general MPs HDPE: 86.6; PS: 67 High sludge, pH reduction 277 and 278
Ferric chloride 50–100 HDPE, PS PS: 48 Corrosive, heavy metal risk, sludge

management
277 and 278

PAC 0.4 mmol L−1 PS, PP, PVC, PA, PE,
PU

PS: 97 Cost, residual Al, pH sensitivity 278

PAC + chitosan — PET PET: up to 90;
improved for others

Cost, limited scale, stability issues 279

Chitosan 10–40 PET PET: up to 90 Higher cost, limited scale,
pH sensitive

279

Moringa oleifera seed
extract (MOCP)

100–150 HDPE, PE, pristine &
weathered MPs

PE, HDPE: 70–87 Variable quality, shelf life,
less effective for some MPs

277, 278
and 280

Benincasa hispida extract 100 HDPE, general MPs HDPE: 83.7 — 277
Protein-coated
sand (f-sand)

— PE (weathered) 60 Lower efficiency,
charge reversal issues

278 and 280
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However, pH affects the surface charge of MPs and the
speciation of the coagulants used in occulation.270 A research
conducted by Ummalyma et al.271 have shown that the surface
charge of algal cells changes with pH, which affects occulation
efficiency. For instance, maximum occulation efficiency (94%)
was achieved by changing the medium pH from 8.5 to 12
through addition of NaOH. Similarly, in Yellow River water
treatment, the pH inuences the coagulation behavior and oc
properties when using ferric-based coagulants. The pH also
affects the structure of humic acid ocs, where ocs formed at
pH 5 with low coagulant dosage exhibited a compact structure
and high strength.272 Ionic strength also inuences the elec-
trostatic interactions between MPs and occulants by affecting
the electrical double layer surrounding the particles.273 Higher
ionic strength can compress the double layer, reducing the
repulsive forces between particles and promoting aggrega-
tion.274 However, excessive ionic strength can lead to destabili-
zation of the suspension and hinder occulation.275 Studies
have shown that increasing ionic strength accelerates aggrega-
tion.274 In a similar way, the ionic strength affects oc formation
and growth in polymer-clay occulation.273,275 The effect of total
hardness and ionic strength on coagulation performance has
been investigated using titanium tetrachloride, showing that
these parameters inuence the removal of organic matter.276

The combined effect of pH and ionic strength determines
the overall efficiency of occulation. For instance, in aluminum
sulfate-induced microalgae occulation, changes in pH and
ionic strength inuence algal occulation by altering the zeta
potential of cells. This relationship is described by the classical
DLVO theory, where cells with lower total DLVO interaction
energy exhibit higher occulation.270 Table 6 provides
a summary of coagulant and occulant performance for MP
removal, including dosage, target MP types, efficiency, and key
limitations.
6. Adsorption mechanism

Adsorption mechanisms are complex and depend on several
factors, including the properties of the MPs, the adsorbent
© 2025 The Author(s). Published by the Royal Society of Chemistry
material, and surrounding environmental conditions.281–283

Different MP types have varying chemical compositions and
surface properties, which can affect their affinity for pollutants
like 4-nonylphenol.284 Additionally, the surface area,284 pore
size,285 surface charge,286 and chemical functional groups of the
adsorbent material determine its capacity to bind MPs. For
example, the linear mycelium of Ganoderma lucidum shows high
adsorption efficiency due to its morphology, achieving equilib-
rium adsorption capacities of 102.92 mg g−1 for polyethylene,
156.39 mg g−1 for polypropylene, and 311.76 mg g−1 for poly-
styrene.287 Narwal et al.282 showed that interactions between p

electrons in aromatic rings can improve if both the MP and
adsorbent have aromatic moieties. Another study by Yuan
et al.288 showed that 3D RGO has adsorption capacity of poly-
styrene MPs, showing a distinct porous spatial structure bene-
cial for adsorption. As shown in Fig. 19, various
physicochemical interactions contribute to the adsorption of
contaminants by MPs.289

To understand the interaction between absorbers and
absorbents, adsorption isotherm models are important. They
provide a mathematical description of the adsorption process,
essential for predicting the behavior of adsorption systems. The
Langmuir isotherm is one of themodels that assumemonolayer
adsorption onto a homogeneous surface with identical
adsorption sites and no interaction between adsorbed
molecules.290–292 The Langmuir model is expresses as:

qe ¼ qmKLCe

1þ KLCe

where qe is the equilibrium adsorption capacity (mg g−1), qm is
the maximum adsorption capacity (mg g−1), KL is the Langmuir
adsorption constant (L mg−1), and Ce is the equilibrium
concentration of the adsorbate in solution (mg L−1)

Several studies have utilized the Langmuir isotherm model
for adsorption processes. For example, the adsorption of Cd and
landll leachate on wood-derived biochar was analyzed, and the
Langmuir model was one of the isotherms applied.293 Similarly,
the adsorption of nitrate onto solid olive mill residues was
examined using the Langmuir isotherm, yielding the equation y
= 0.007x + 0.4576 with R2 = 0.9787, indicating a good t.294 In
RSC Sustainability
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another study, the adsorption of benzene onto grass-derived
biochar was modeled using the Langmuir isotherm, resulting
in KL = 0.008, qm = 238.9, and R2 = 0.934.292 Another mathe-
matical model is the Freundlich isotherm, which is an empirical
model that describes adsorption on heterogeneous surfaces,
where adsorption energy varies across different sites.290–292 The
Freundlich model is expressed as:
Fig. 19 Illustration of interactions involved in the adsorption of pollutan
hydrophobic interactions, p–p stacking, cation bridging, van der Waa
License.289 Copyright 2022, The authors. Springer Nature Switzerland AG

Fig. 20 Aerogel structure comprises atom or nanoparticle clusters formin
Published under the CC-BY License.303 Copyright 2018, The authors. Pu

RSC Sustainability
qe = KFCe
1/n

where qe is the equilibrium adsorption capacity (mg g−1), KF is
the Freundlich adsorption constant, Ce is the equilibrium
concentration of the adsorbate in solution (mg L−1), and n is the
Freundlich exponent, reecting the intensity of adsorption or
surface heterogeneity.
ts onto MP surfaces, including electrostatic forces, hydrogen bonding,
ls forces, partitioning, and pore-filling. Published under the CC-BY
.

g a solid network (green), with interstitial spaces representing its pores.
blished by MDPI.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Zand and Abyaneh293 found that the adsorption of Cd from
landll leachate and the adsorption of nitrate onto solid olive
mill residues t the experimental data with the equation y =

0.3888x + 2.5552 and R2 = 0.9816.294 The adsorption of benzene
onto grass-derived biochar was also modeled using the
Freundlich isotherm, resulting in parameters KF = 8.065, n =

1.778, and R2 = 0.963.292 While Langmuir and Freundlich
isotherms are commonly used, other models such as the Tem-
kin, Redlich–Peterson, Sips, Toth, Dubinin–Radushkevich, and
Koble–Corrigan isotherms can also be employed to describe
adsorption processes, especially when the assumptions of
Langmuir and Freundlich models are not fully met.291,292,295–297

7. Synergistic application of NC and
biopolymers

Biopolymers combined with NC form composite materials with
enhanced properties for MP removal.298 For instance, the inte-
gration of NC and chitosan results in synergistic effects,
increasing overall adsorption capacity and selectivity for MPs.299

Wu et al.300 developed a sustainable, environmentally adaptable
adsorbent through the supramolecular self-assembly of chitin
and cellulose. This biomass-based brous framework exhibited
excellent adsorption performance across various MP types.
Similarly, Mok et al.301 demonstrated that reusable polyvinyl
alcohol/chitin/NC biopolymer composite lms, crosslinked
with maleic acid, effectively removed both MPs and methylene
blue dye. Another renewable and abundant biopolymer, starch,
when combined with NC, shows improved mechanical proper-
ties and enhanced MP capture and retention capabilities.302
Fig. 21 Removal efficiency comparison across NC, biopolymer, and syn

© 2025 The Author(s). Published by the Royal Society of Chemistry
Additionally, composite aerogels made from activated carbon
and NC blended with cross-linked biopolymers such as
hydroxypropyl methylcellulose and chitosan have been evalu-
ated for their ethylene gas adsorption capacity, as illustrated in
Fig. 20.303 Although this study focused on gas removal, the
materials' high porosity and surface area suggest strong
potential for MP adsorption applications as well.298 The syner-
gistic application of NC and biopolymers is commonly used for
those MPs that cannot be eliminated through the sole
biopolymer or NC. Fig. 21 shows the removal efficiency of NC,
biopolymer, and synergistic materials.304

Despite the advantages, NC and biopolymers face compati-
bility challenges. Many biopolymers are hydrophilic, while
some NC modications can introduce hydrophobic character-
istics, leading to poor compatibility.179 Poor interfacial bonding
can degrade the mechanical properties of the composite
material, reducing its overall effectiveness in MP removal.305

Additionally, NC has a tendency to aggregate due to strong
hydrogen bonding between individual bers.306 Uniform
dispersion on the NC matrix is important for achieving optimal
functional properties.307 Incomplete dispersion can lead to
stress concentration points and reduced performance of the
composite material.308,309

8. Sustainability of NC and
biopolymer-based treatment systems

The advancement of renewable, sustainable, biodegradable,
environmentally sound, safe, and sustainable materials
depends on the fabrication of NC-based products.124 NC can be
ergistic materials (created with MS Excel).

RSC Sustainability

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5su00634a


RSC Sustainability Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 1
2:

43
:4

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
created from bacteria, plants, or biomass using relatively
straightforward, scalable, and effective isolation methods. The
most common nanostructured component found in wood,
cotton, hemp, ax, and other plant-based materials is cellulose,
which is biodegradable and non-toxic. One can extract NC from
renewable resources via mechanical, chemical, enzymatic, or
a combination of these methods. Source, isolation method, and
possible surface changes all affect the characteristics of NC.310

Ali et al.311 demonstrated that materials based on NC work well
as adsorbents for pollutants in water. By enriching the surface
of materials like NC, water contaminants can be eliminated.
Water treatment methods, especially adsorption, are required
to meet the growing demand for clean water and to mitigate
pollution caused by bottled water waste. However, adopting the
right adsorbent is an important issue for water treatment since
it necessitates striking a careful balance between natural
components, high removal effectiveness, ease of separation
from treated water, environmental friendliness, and economic
viability. As a result, there is a lot of interest in creating inno-
vative adsorbent lms, such as bacterial NC-clay lm, for use in
water treatment.312 NC is a prime contender to enable novel,
sustainable, and affordable water purication technologies
because of its special physicochemical characteristics, which
include high surface area, several functions, nontoxic and
biodegradable characteristics, and scaffolding stability and
versatility.313 Academic research discussing the cutting-edge
advantages of using NC-based membrane ltration processes
has grown exponentially, reecting the predicted success of NCs
in the eld of improving water quality through membrane
ltration processes.314 This move to a bio-based solutions solve
our worldwide plastic pollution problem and offers a chance for
a circular economy, which would decrease reliance on fossil
fuels and create a cleaner environment.315

In the case of biopolymers, the most prevalent kind of bi-
obased polymer, polyhydroxyalkanoate (PHA), is made by
a variety of microorganisms and acts as a carbon and energy
storage medium.316 PHA is a viable substitute for non-
biodegradable petro-based plastics due to its biodegradability
and advantageous material properties.317 Prior research
explored the ability of synthetic biomaterials to absorb or
immobilize pollutants, as well as their adsorption capabilities
for eliminating a variety of impurities and enhancing water
quality.318

However, carbon footprint analysis plays a crucial role in
assessing the overall environmental impact of NC and
biopolymer production and application.319,320 This analysis
involves quantifying greenhouse gas emissions throughout the
entire life cycle, from raw material extraction to end-of-life
disposal.321,322 In this context, particular attention should be
given to electricity and chemical consumption, which are crit-
ical sub-aspects inuencing carbon footprint growth.319 To
enhance sustainability, the choice of disposal methods for NC
and biopolymer-based products is also signicant.323 Therefore,
sustainable end-of-life management should align with circular
economy principles, emphasizing the safe and economical
recycling and reuse of composite plastics.324 Additionally,
employing energy-efficient manufacturing processes, such as
RSC Sustainability
chemo- and bio-mechanical methods, can substantially reduce
the energy requirements for NC production.325

Moreover, several Life Cycle Assessment (LCA) studies have
compared synthetic polymers with biopolymer/NC-based
materials to evaluate environmental trade-offs.148 For instance,
the LCA of garbage bags made from polyethylene (PE), biomass
polyethylene (Bio-PE), and poly(butylene adipate-co-tere-
phthalate)–starch blends (PBAT/starch) illustrates the potential
benets of bioplastics in waste management scenarios.326 Sup-
porting this, a review of LCA studies on NC-based adsorbents
highlights their effectiveness in environmental remediation
applications.327 Furthermore, an LCA conducted by Hervy
et al.328 conrms that NC materials typically exhibit a lower
environmental footprint, particularly concerning resource
consumption.
9. Regulatory framework and policies

Mitigating MP contamination in emerging nations requires an
understanding of the laws and policies governing plastic waste
in the coastal environment.329 Many countries implemented
laws and regulations to reduce plastic pollution or are in the
process of engaging in stakeholder discussions, as demon-
strated in Table 7. These laws and regulations differ in their
approach (i.e., traditional viewpoint (top-down) methods,
market-oriented approaches, and voluntary efforts) because
African nations have different customs for the consumption,
manufacture, and disposal of plastics.330 Aquatic systems were
mostly exposed to MPs from WWTPs. However, a sustainable
governance framework—such as the one proposed by the
European Parliament in its review of the Urban Waste Water
Treatment Directive (TA/2019/0071)—is useful to ensure the
removal of MPs at WWTPs. This framework also calls for the
adoption of multiple technologies along the value chain.331 To
control the growth of oyster aquaculture, the Chinese Taipei
Shallow Sea Oyster Aquaculture Management Autonomous
Regulations have been implemented. Specic clauses of the
regulation encourage oyster farmers to use non-styrofoam
buoys by providing subsidies, even though its main purpose is
to handle the oyster aquaculture zoning system. The govern-
ment took this step to stop styrofoam buoys from shedding
MPs.332 A regional action plan was set up by HELCOM in 2015 to
address marine litter and secondary MPs by 2025. By enhancing
stormwater management and increasing the number of
WWTPs, assessing primary sources and legal mechanisms to
address them, promoting MP-free formulae, putting certica-
tion programs (like EU Ecolabel and Blue Angel) into place,
encouraging no littering policies, supplanting primary MPs in
personal care products, and increasing public awareness, this
plan suggests ways to combat primary MPs.333 To lessen the
negative environmental effects of plastic waste, the European
Union has established in place an extensive set of policies.334

The European Union has banned single-use plastics and set
broadened manufacturer responsibility and recycling standards
for its member states.335 In Vietnam, several measures accom-
panied by particular laws are used to reduce the diffusion of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 7 National strategies and regulations aimed at mitigating MP pollution, including plastic categories, policy actions, implementing
countries, and targeted environmental goals337

Plastic category Policy Country Goal

Aquatic MPs Microbead-free waters act 2015 USA � Ban the production and sale of wash-off
cosmetic products

Plastics The break free from plastic pollution act
2023

� Shi the nancial responsibility of plastic
waste management to producers of plastics
� Ban single use of plastic products
� Prohibit the export of plastic waste

Aquatic MPs Circular economy law
(waste prevention and management) 2018

France � Ban cosmetic products containing plastic
particles

Microbers, microbeads Dra law on combating plastic pollution
(adopted 2022)

� Regulate the loss and leakage of industrial
granules, prohibit intentional usage of
microbeads in detergent, and provide
impact assessment of plastic bers on the
textile industry

Larger plastics Single-use plastics prohibition regulations
(2022)

Canada � Prohibit the manufacture, importation,
and distribution of single-use plastic
products

Aquatic MPs Microbeads in toiletries regulations (2017) � Reduce the amount of plastic microbeads
entering Canadian freshwater and marine
environments

Larger plastics Plastic bag control and management
regulations (2018)

Kenya � Reduce usage, manufacture, and
importation of plastic bags

The wildlife conservation and management
act 2020

� Ban single-use plastic products

Aquatic MPs The plastic reduction and circular economy
act 2021

Australia � Ban the distribution of wash-off personal
care products

Aquatic MPs Waste minimization act through waste
minimization (microbeads) regulations 2017

New Zealand � Prohibit plastic beads as an ingredient in
personal care products

Larger plastics, aquatic
MPs

Environmental permitting regulations 2018 UK � Ban cosmetics and cleaning products
containing microbeads
� Charge levies on single-use carrier bags
� Ban single-use plastics

Aquatic MPs The environmental protection (microbeads)
(Northern Ireland) regulations 2018

Northern Ireland � Prohibit the use of plastic beads

Aquatic MPs 2019 industrial catalogue China � Ban the production and sale of cosmetics
containing microbeads

Aquatic MPs The single-use plastics directive 2019 EU � Target eradicating the 10 most common
single-use plastics found on the beaches and
seas in Europe

Aquatic plastics Clean up The ocean cleanup � Developing technologies to reduce plastics
in the ocean by 90% by 2040

Aquatic MPs, larger plastics Thailand ministry of public health (2019)
through roadmap on plastic waste
management (2018–2030)

Thailand � Ban the production, sale, and distribution
of cosmetics with microbeads as an
ingredient
� Ban single use of plastics

Plastics waste Environmental management act
(the commodities act decree)

The Netherlands � Control packaging and consumer products
� Regulate single-use plastics

Aquatic MPs The microbeads (prohibition) act 2019 Ireland � Ban the use of plastic beads in households
and industrial cleaning products

Larger plastics Plastic waste management (amendment)
2022

India � Phase out single-use plastics

Larger plastics The Germane ordinance on single-use
plastics 2021

Germany � Reduce the impact of plastic waste on the
environment
� Ban some single-use plastic products

Larger plastics The national environmental management
waste act 2008 (amended 2014) through
national waste management strategy 2020

South Africa � Reduce production of single-use plastics
destroying the marine environment

Larger plastics Tax/levies on single-use plastics Wales, Ireland,
Scotland

� Discourage the single use of plastic
products to reduce waste

Larger plastics The single-use foodware and litter reduction
ordinance (2022)

Berkeley, California � Reduce plastic waste in the environment

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Sustainability
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MPs into the aquatic environment, particularly the riverine
environment.336

In addition to legislative measures, voluntary ecolabeling
schemes such as the EU Ecolabel and Blue Angel play a signi-
cant role in promoting environmentally responsible technolo-
gies. These certications assess products based on their entire
life cycle—from raw material sourcing to end-of-life disposal.338

NC and biopolymer-based MP removal systems align with the
criteria of these ecolabels, as they are derived from renewable
resources, are biodegradable, and pose minimal toxicity risks to
ecosystems.339,340 Also, these materials ensure that they break
down naturally in the environment, minimizing long-term
pollution.339 NC and biopolymers are generally less toxic
compared to synthetic materials.341 Their production can also
be optimized to reduce energy use and waste generation,342

thereby supporting circular economy goals.343 Importantly,
alignment with such ecolabels may unlock policy-driven
incentives, including subsidies, grants, or preferential
procurement in public and private sectors. For example,
ecolabel-certied technologies can benet from EU-level fund-
ing schemes (e.g., Horizon Europe, LIFE Programme) and
national green procurement strategies, encouraging broader
adoption of natural MP removal methods.344,345

10. Conclusion and future outlook

Microplastics (MPs) are commonly found in water, posing risks
to the environment and human health, which makes it crucial
to nd practical and sustainable methods for their removal.
This review highlights the key role that natural compounds
(NCs) and biopolymers can play in water treatment due to their
unique properties. NC has a large surface area that effectively
captures MPs and is biodegradable, making it an eco-friendly
choice compared to synthetic materials. It works by sticking
to, ltering, and clumping together pollutants. Biopolymers
also help gather and separate MPs. When NC and biopolymers
are used together, they oen enhance the effectiveness of each
other, resulting in better removal of MPs than when used
separately. Even with these improvements, there are still
signicant areas of research that need to be addressed before
these materials can be effectively utilized in real-life situations.
First, improving the production, surface treatment, and
blending of nanocomposites and biopolymers is essential to
ensure strong performance across different types of MPs,
particularly those with varying shapes and chemical composi-
tions. It is essential to modify the surface properties of these
materials to enhance their interactions with specic
substances. In addition, limited research has been conducted
on their long-term environmental behavior and potential
ecological effects aer use. Comprehensive assessments of their
entire life cycle and environmental impact are necessary to
ensure safe and sustainable large-scale application.

There is a signicant gap in research regarding the identi-
cation, quantication, and understanding of nanoplastics.
These tiny plastic particles can enter into our bodies andmay be
harmful. Unlike larger MPs, nanoplastics are more challenging
to study because they are small, contain a mixture of materials,
RSC Sustainability
and their signals can be weak and difficult to detect. Some
methods, like Raman spectroscopy and nanoscale FTIR, can
help, but they need to be improved and made more sensitive.
Clear guidelines are needed to ensure that results can be
replicated and compared across different studies. Additionally,
developing improved tools for imaging and analyzing nano-
plastics in complex environments is crucial for accurately
tracking these particles. Many studies to date have focused on
specic areas of the environment, such as oceans, rivers, land,
or the air, without adequately considering how MPs and
nanoplastics move between these areas. Future research should
adopt a broader perspective to understand how these particles
travel and transform throughout the environment. This means
investigating how MPs move from wastewater systems to soil
when sludge is applied, from surface waters to living organisms,
and through the interactions between air, soil, and water under
different environmental conditions. It is also important to
conduct experiments that consider various factors, such as pH,
salt levels, organic matter, and temperature, to understand how
these factors inuence the removal of MPs and their behavior.
Studies in regions with poorly managed plastic waste are crit-
ical, as these areas are major spots for MP pollution. Conduct-
ing pilot and large-scale studies is essential to bridge the gap
between laboratory ndings and real-world applications. Such
studies should involve collaboration among researchers,
industry professionals, policymakers, and local communities to
jointly identify problems, design treatment systems, and share
knowledge. Working together in this way not only makes the
technology more relevant but also helps the community accept
it and ensures it aligns with policies. It is also essential to test
these treatment systems on a larger scale with various types of
wastewaters, including those from cities and industries, to
determine if they are practical and cost-effective.

The use of nanocellulose and biopolymer technologies in
wastewater treatment plants presents exciting possibilities;
however, careful consideration is required regarding their
integration with existing systems. There are challenges,
including the risk of clogging, increased operational
complexity, and managing or recycling materials. A modular
approach, which may include additional ltration steps
utilizing these new materials, could provide exibility while
ensuring the primary treatment processes run smoothly. Future
research should focus on developing scalable production
methods, enhancing material durability under real wastewater
conditions, and implementing long-term performance moni-
toring. Additionally, emerging technologies such as machine
learning could enhance traditional treatment processes,
potentially optimizing the management of wastewater through
the use of these advanced materials.

The implementation of new ideas in real-world settings
requires addressing several challenges, including nancial
constraints, technological limitations, and regulatory hurdles.
Some of these challenges involve the high costs of producing
bioplastics, differences in the sources of materials such as
biomass, energy-intensive processing steps, and the lack of
clear safety standards for waste materials. Policy-driven plans
and cross-sector collaboration are essential to address these
© 2025 The Author(s). Published by the Royal Society of Chemistry
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issues. Increasing production by utilizing eco-friendly chem-
istry, leveraging agricultural waste as raw materials, and
exploring methods to reduce energy consumption in produc-
tion can help lower costs and make processes more sustainable.
At the same time, regulatory agencies should create clear
guidelines to assess the safety and effectiveness of bioplastics
and related technologies in environmental applications.
Nanocellulose and biopolymers hold great potential for
removing microplastics; however, effective utilization requires
focused attention on several key areas. This includes improving
materials for enhanced performance, developing more effective
tools for detecting tiny plastics, and conducting real-world pilot
studies to assess their effectiveness. It is also necessary to
implement innovative monitoring systems that provide quick
feedback during use. On the policy front, reducing micro-
plastics can be achieved by linking wastewater management
with solid waste processes, ensuring high standards in recy-
cling, regulating new sources of microplastics, and raising
public awareness. Addressing these challenges will be essential
for making these solutions practical and environmentally
friendly in tackling microplastic pollution in our water systems.
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C. Wu and P. K. S. Lam, Understanding plastic degradation
and microplastic formation in the environment: A review,
Environ. Pollut., 2021, 274, 116554, DOI: 10.1016/
j.envpol.2021.116554.

68 S. Sharma, V. Sharma and S. Chatterjee, Microplastics in
the Mediterranean Sea: Sources, Pollution Intensity, Sea
Health, and Regulatory Policies, Front. Mar. Sci., 2021, 8,
634934, DOI: 10.3389/fmars.2021.634934.

69 T. van Emmerik, T.-C. Kieu-Le, M. Loozen, K. van Oeveren,
E. Strady, X.-T. Bui, M. Egger, J. Gasperi, L. Lebreton,
P.-D. Nguyen, A. Schwarz, B. Slat and B. Tassin, A
Methodology to Characterize Riverine Macroplastic
Emission Into the Ocean, Front. Mar. Sci., 2018, 5, 372,
DOI: 10.3389/fmars.2018.00372.
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