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Sustainability Spotlight

The transition to sustainable biofuels is critical to reducing dependence on finite fossil resources 

and mitigating climate change. This review highlights advancements in bioethanol production by 

exploring diverse feedstocks, including lignin-rich biomass and industrial by-products, 

contributing to circular bioeconomy principles. The integration of genetic engineering, enzyme 

technologies, and green chemistry enhances process efficiency while minimizing environmental 

trade-offs. Transparent life cycle assessments (LCAs) are emphasized to ensure an accurate 

evaluation of sustainability metrics, including biogenic carbon storage. This work aligns with UN 

SDGs 7 (Affordable and Clean Energy), 12 (Responsible Consumption and Production), and 13 

(Climate Action) by promoting renewable energy, resource efficiency, and reduced carbon 

emissions, fostering a more sustainable biofuel industry.
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ABSTRACT  

The depletion of finite fossil fuel reserves, coupled with the ever-growing global demand for 

energy, has raised significant concerns about the long-term sustainability of fossil fuel 

consumption. As these conventional energy sources become increasingly scarce, the need for 

viable alternatives has become more urgent. This pressing challenge has driven researchers, 

policymakers, and industries to explore and develop sustainable energy solutions that can reduce 

dependence on fossil fuels. Bioethanol, a sustainable substitute for gasoline, is produced 

globally, supporting economic growth in both developed and developing nations. It is derived 

from a wide range of feedstocks, including industrial waste and by-products like steel mill gases 

and glycerol from biodiesel production. Different bioethanol generations vary in technological 

readiness and environmental impacts, assessed using Life Cycle Assessment (LCA). This review 

explores the environmental consequences of different bioethanol production pathways, with a 

focus on advances in biotechnological methods. It also highlights the potential of lignin-rich 

biomass, which has been challenging to process but offers significant promise. The review 
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underscores the importance of transparency in biorefinery LCA to fully understand the various 

environmental impacts. Additionally, it examines the role of genetic engineering, enzyme 

technologies, and government policies in promoting sustainable bioethanol production. 

Integrating bioethanol production with green chemistry and circular economy principles can 

strengthen its position in the bioeconomy, delivering long-term benefits to both the biofuel sector 

and society at large. 

KEYWORDS: Bioethanol, Life cycle assessment, Algal biomass, Economics and policies, 

Technology readiness level, Renewable energy 

Abbreviations:  

LCA: Life cycle assessment, DDG: Dry distillers’ grains, LCB: Lignocellulosic biomass, MSW: 

Municipal solid waste, MFCs: Microbial fuel cells, APS: Artificial photosynthetic systems, 

PECs: Photoelectrochemical cells, GHG: Greenhouse gas, TRL: Technology readiness level, 

GM: Genetically modified, GWP: Global warming potential, LUC: Land-use change. 

1.​ Introduction 

Bioethanol, recognized as a renewable and sustainable biofuel, has garnered considerable 

attention as a viable alternative to fossil fuels in global efforts to mitigate greenhouse gas (GHG) 

emissions and combat climate change. As a biofuel, bioethanol is primarily produced through the 

fermentation of sugars derived from various feedstocks, ranging from food crops to agricultural 

residues and dedicated energy crops, with a technology readiness level (TRL) of 8-9 1. The 

ongoing research into alternative feedstocks such as algae, genetically modified (GM) crops, 

industrial gas effluents, glycerol, and direct bioethanol-producing microbes, with TRLs ranging 

from 2 to 8, is evidence of the dynamic nature of bioethanol production 1. The versatility of 
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bioethanol production, coupled with its potential environmental benefits, positions it as a critical 

component of current and future energy needs. However, the production and utilization of 

bioethanol require careful assessment to ensure they deliver genuine environmental and 

economic advantages. 

The selection of feedstocks is a crucial factor influencing the overall sustainability of bioethanol 

production. Feedstocks can be categorized into first-generation (e.g., sugarcane, corn), 

second-generation (e.g., lignocellulosic biomass (LCB), chitin, glycerol), third-generation (e.g., 

algae and seaweed), and fourth-generation (GM feedstocks) 2–4, as summarized in the 

supplementary information (Table S1). Each type of feedstock presents unique advantages and 

challenges. For instance, while first-generation feedstocks are well-established and yield high 

bioethanol outputs, they often compete with food resources and may contribute to food insecurity 

5,6. Second-generation feedstocks offer greater sustainability potential since they use waste 

materials and non-food crops. However, their economic viability is hampered by the high costs 

of the processing technologies, which are still under development to reduce pretreatment 

expenses 7–9. Dedicated energy crops under second-generation, explicitly grown for biofuel 

(biodiesel or bioethanol) production, have higher adaptability and biomass yield per hectare 10–14. 

Examples include energy cane (sugarcane bred for higher fiber content), jatropha and camelina 

(oil-rich seeds for biodiesel, with remaining biomass for bioethanol), and grasses like napier 

grass, switchgrass, giant reed, and miscanthus, known for their high biomass yield and 

adaptability to various climates 15. Third-generation feedstocks (summarized in Table S2 of SI) 

present a promising frontier due to their high yield potential and minimal land use, yet their 

commercial viability is still being explored 16. GM feedstocks are developed to maximize 

bioethanol yields using advanced biotechnological techniques that reduce lignin content while 
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maintaining or improving other key agronomic traits to boost carbohydrate content 15,17. This 

innovation aims to enhance bioethanol production efficiency and economic viability, though it 

presents potential environmental risks if not managed according to proper protocols.18,19. Other 

unconventional feedstocks, such as industrial gas effluents and glycerol from biodiesel 

production facilities, offer innovative opportunities for bioethanol production, contributing to a 

circular economy by reducing waste 20,21.  

Although there are many pathways suitable for different feedstocks for the production of 

bioethanol, making the proper selection is challenging due to various factors like regional 

availability, ease of processing, economic factors, yield, and TRL. Bioethanol yield from various 

feedstocks is typically evaluated using two different metrics. The first expresses yield as liters of 

bioethanol produced per ton of biomass feedstock (L/ton, as shown in Table 1), reflecting 

conversion efficiency and process performance. The second measures bioethanol output 

(generally in liters) per hectare of cultivated land (kL/ha, as shown in Figure 1), which integrates 

conversion efficiency, process performance, and the crop’s agronomic productivity. Further, 

assessing the overall impact of a production pathway on the environment, from raw material 

extraction to processing, distribution, use, and disposal of the product, is vital for selecting a 

bioethanol process.  LCA is a detailed methodology used to assess the overall environmental 

impacts throughout a product's life 22. In bioethanol production, LCA is instrumental in 

evaluating and comparing the environmental advantages and trade-offs of various feedstocks and 

production processes 23. It involves analyzing energy usage, GHG emissions, LUCs, water 

consumption, and other environmental effects 24,25. Using LCA, stakeholders can make informed 

choices regarding the most sustainable and efficient feedstocks and production methods. 
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Table 1. A summary of the current status of the production of different generations of bioethanol. 

L: Liter, t: Metric ton. 

Generation Intermediate Processing Yield (L/t) Cost (US $/gal) TRL Ref 
First Milling, Enzymatic 

Hydrolysis, Fermentation, 
Distillation 

70-590 ~0.9 9 1,26–28 

Second* Route-1: Pretreatment, 
Enzymatic Hydrolysis, 
Fermentation, Distillation. 
Route-2: Gasification, 
Preconditioning, 
Fermentation, Distillation  

40-350 ~1.5 8-9 1,7,28,29 

Third Cultivation, Harvesting, 
Lipid Extraction, 
Fermentation, Distillation 

70-660 - 4-6 1,30,31 

Fourth Novel Pretreatment, 
Engineered Microorganisms/ 
Substrates, Fermentation 

Data not 
fully 
established# 

- 2-3 1 

*Excluding unconventional feedstocks like Glycerol; #Highly variable and depends on the 
specific genetic modifications and synthetic biology strategies employed. However, theoretical 
yields suggest improvements over previous generations. 
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Figure 1. Ethanol yield per hectare (this figure was drawn based on data provided in refs 32–36) 

 

While several studies have explored various feedstocks for bioethanol production and their 

environmental impacts through LCA, no study has comprehensively addressed both feedstocks 

and their life cycle analysis in a unified manner. For instance, Uppalapati et al. 37 focused solely 

on the LCA of sugarcane molasses, while Osman et al. 38 broadened their scope to bioenergy as a 

whole, leaving bioethanol-specific discussions incomplete. Moreover, newer and more 

sustainable feedstocks were not explored in these studies, creating a gap in the literature. Zhan et 

al. 39 analyzed the environmental impact of cassava-based bioethanol production, but their focus 

was limited to first-generation bioethanol and a specific geographic context. Bernstad Saraiva 40 

reviewed LCA studies in biorefineries, focusing mainly on feedstock provision and system 

boundary issues without delving into specific bioethanol feedstocks. Jain et al. 1 examined 

various feedstocks across multiple bioethanol generations, highlighting their technological 

readiness and economic aspects, but neglecting environmental impact. Liu et al. 41 presented an 

LCA review on waste-feedstock biorefineries with a broader focus on various biofuels, diverting 

attention from bioethanol production.  

This study contributes significantly to the existing literature by addressing gaps in current 

reviews and providing a comprehensive overview of bioethanol synthesis. It critically evaluates 

various feedstocks for bioethanol production, considering their suitability, associated yields, 

processing technologies, and TRL. A distinctive feature of this review is the tabulated 

comparison of the key intermediate steps, namely hydrolysis and fermentation, which play a 

crucial role in bioethanol production. The review also highlights the latest advancements, 

efficiencies, and challenges in the bioethanol production landscape. It goes further by examining 
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the economic and policy factors that are often overlooked in other reviews. In particular, it 

underscores the importance of policies that promote sustainable practices and provide consistent 

incentives to ensure the long-term viability of bioethanol as a renewable energy source. A 

significant emphasis of the study is placed on the environmental impacts of bioethanol 

production, assessed through LCA. This approach enhances understanding of the bioethanol 

production process and aids in making informed decisions for researchers, engineers, and 

policymakers working to advance bioethanol technologies. 

The review is organized as follows: Section 1 introduces the topic, outlining the scope and 

objectives of the review on sustainable bioethanol production. Section 2 examines current 

bioethanol production technologies from various feedstocks, highlighting advancements and 

challenges. Section 3 provides a detailed analysis of LCA studies on bioethanol production, 

assessing environmental impacts and identifying key factors influencing sustainability. Section 4 

explores the economics and policies related to bioethanol production, including cost analysis and 

supportive policy frameworks. Section 5 integrates the findings, offering insights and strategies 

to improve the sustainability of bioethanol production. Section 6 concludes the review, 

emphasizing its main objectives. Through a comprehensive analysis of bioethanol production 

from various feedstocks and their environmental impacts, this review seeks to advance the 

dialogue on sustainable bioenergy and guide the development of more sustainable bioethanol 

production practices. 

2.​ Advancements in Bioethanol Production Pathways 

There are numerous feedstocks available for bioethanol production, as discussed in the 

supplementary information (Table S1). Various processing pathways can convert these 
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carbon-rich feedstocks into bioethanol, as illustrated in Figure 2. Typically, these feedstocks go 

through multiple processing stages, which depend on the biomass composition, including the 

weight percentages of carbohydrates, lignin, and other components such as ash, proteins, and oil, 

as well as the degree of polymerization of the carbon source. These include monosaccharides 

(such as glucose, mannose, fructose, rhamnose, galactose, and others), disaccharides (like 

sucrose, lactose, maltose, and cellobiose), oligosaccharides like N-acetyl-D-glucosamine, and 

polysaccharides such as starch, cellulose, and hemicellulose. In recent years, various waste 

streams from industries 42, including effluent gases 43 and atmospheric carbon 44, have been 

explored for bioethanol production potential. This section examines the significant advancements 

in the pathways for converting different feedstocks into bioethanol. 
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Figure 2. Comprehensive overview of bioethanol production pathways from various raw materials. DDG: Dry distillers’ grains; GM: 
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Genetically modified. 
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2.1​Advancements in Biochemical Conversion Pathways 

Bioethanol production through biochemical pathways involves several key steps applicable to all 

four generations of biomass feedstocks. The key conversion steps in bioethanol synthesis are 

hydrolysis and fermentation, which include using biological enzymes and microbes under mild 

processing conditions to convert the substrate into desired products 45. The primary cost involved 

with hydrolysis and fermentation is due to the microbes and enzymes used 46, as the operating 

conditions are close to ambient. First-generation feedstocks, which include sugar-based 

feedstocks, contain readily available monomeric and dimeric sugars that can be fermented to 

bioethanol using either fungal or bacterial fermenting microbes 47. However, starch-based crops 

require additional processing steps to extract the starch through wet or dry milling 48. The 

extracted starch is then hydrolyzed using the enzyme amylase, followed by fermentation to 

produce bioethanol 49,50. The byproduct streams from wet milling, dry milling, and oil crop 

processing (such as hulls, DDG, or oilcake) are rich in lignocellulosic content. They are, 

therefore, used as second-generation feedstocks 14,51,52. However, their nutritional quality makes 

them more suitable as livestock feed 53. Oil from the germ part of starchy crops and oil crops is 

transesterified into biodiesel 54, and the byproduct stream (glycerol) has also been shown to have 

the potential for conversion to bioethanol 55, thus being categorized as a second-generation 

feedstock. 

Second-generation feedstocks require a crucial pretreatment step not needed for first-generation 

feedstocks 7,56. These are generally categorized into four main types, with emerging innovations 

such as hybrid pretreatment and nanotechnology interventions (summarized in Figure 3). The 

discussion about the pretreatment methods is beyond the scope of this review, but has been 

extensively covered in other studies 57,58.  Feedstocks such as LCB, chitin, chitosan, dry distillers’ 
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grains (DDG), oilcake, and brewery waste undergo pretreatment to fractionate lignin and 

concentrate the cellulosic and hemicellulosic substrates 59,60. This is followed by detoxification to 

remove toxicants such as hydroxymethylfurfural, acetic acid, and furfurals, which inhibit enzyme 

and microbial activity during hydrolysis and fermentation 61,62. However, municipal solid waste 

(MSW) is initially sorted to gather only organic-rich material to ensure higher productivity and 

feed consistency 63. The detoxified feed, from LCB or MSW, is hydrolyzed using cellulase and 

hemicellulase enzymes to convert cellulose and hemicellulose into fermentable sugars, followed 

by fermentation 64,65. In some cases, acid hydrolysis is preferred over enzymatic hydrolysis for 

second-generation feedstocks 66, followed by detoxification and fermentation, as depicted in 

Figure 2. 

 

Figure 3. Various pretreatment techniques for second-generation feedstocks. Reproduced from 

our previous work in Sustain. Chem. Clim. Action 5, 100053 (2024) (reference 57) under a 

CC-BY license agreement. 
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Third-generation algal biomass feedstocks are grown in various open pond systems or more 

advanced photobioreactors, each with advantages and disadvantages 67,68. After cultivation, the 

algae are harvested and dewatered, a process associated with high drying costs. Next, the cell 

walls are broken down to extract lipid content, leaving behind carbohydrate-rich feedstocks that 

are hydrolyzed and fermented 69. However, the lipid fraction is used in biodiesel production, and 

the glycerol side stream is used for bioethanol production, similar to the case with oil crops. 

Genetically engineered plants, crops, and algae are designed to have high carbohydrate content 

and are classified as fourth-generation feedstocks. These can be hydrolyzed and fermented, 

producing higher bioethanol yields than previous generations. 18,70,71.  
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Table 2. Hydrolysis and Fermentation (HnF) pathways utilized for different substrates from varied biomass sources for bioethanol 

production. 

Fermentation 
route 

Feedstock Overview Pros Cons Ref 

 DF MDS & 
Glycerol 

Fermenting microbes directly 
convert the substrate to 
bioethanol. 

No complex hydrolysis step is 
needed. 

Substrate may inhibit 
microbes 

72–74 

 SHF PCs  PCs are hydrolyzed to MSs, 
followed by fermentation. 

HnF: operated individually at 
optimum conditions. 

Time-consuming and 
expensive; Cellulase 
inhibition by sugars. 

75–79 

SSF PCs  Simultaneous HnF prevent 
sugar build-up and prevent 
cellulase inhibition. 

HnF carried out in a single 
reactor; Better bioethanol yield. 

Optimal reaction 
temperature may not 
be suitable for 
cellulase or yeast. 

75,80–82 

SSSF PCs  Similar to SSF with 
additional 
pre-saccharification using 
enzymes 

Lower enzyme loading 
compared to SSF; 
Pre-saccharification results in 
higher bioethanol yield. 

Higher operational 
complexity; Longer 
process time. 

83,84  

SF PCs  Microbes thrive on solid, 
low-moisture substrates.  

No water required that reduces 
bacterial contamination and 
effluent generation; Reduced 
space and energy requirements; 
Consistent product formation. 
 

Smaller substrates 
hinder microbial 
growth due to limited 
aeration and heat 
dissipation. 

56,85–87 

NSSF PCs  Simultaneous hydrolysis (50 
°C) and fermentation (30 °C) 

Higher productivity, unlike 
isothermal SSF; Requires fewer 
enzymes (30-40%) than SSF. 

Higher fixed capital 
cost compared to SSF. 

81,88–90  
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in separate reactors at 
respective optimals. 

SSCF PCs  Co-fermentation of xylose 
and glucose. Slow glucose 
release during hydrolysis 
maintains a high 
xylose/glucose ratio, 
compelling fermenting 
microbes to prioritize xylose 
consumption. 

Cost-effective as xylose is also 
converted to give high 
bioethanol yield(Eq. 4); Lowers 
inhibitory effect of xylose on 
fermenting microbes. 

Microorganisms will 
consume ample 
glucose in the broth, 
preventing 
co-fermentation. 

88,91–94 

SSFF PCs  Enzyme recycling 
post-filteration back to 
hydrolysis, while fermenting 
microbes are retained using 
flocculation and settling.  

Fermenting microbes and 
enzymes are reused; Operates at 
optimum conditions; Prevent 
enzymes inhibition, unlike in 
SSF. 

More complex than 
SSF due to an 
additional filtration 
step. 

89,95 

CBP PCs  Microbes directly convert 
biomass to bioethanol in a 
single reactor by releasing 
specific enzymes. 

Single microbe performs enzyme 
synthesis, along with HnF; 
Enzyme inhibition by sugar is 
avoided; Reduces capex and 
opex; No costly enzymes 
needed. 

Under research phase; 
Lower process 
efficiency; GM of 
microbes could 
enhance productivity. 

93,96–99 

VHG MDS Conventional process: 
Normal to high sugar 
concentration. Here, >240 
g/L sugar concentration is 
maintained (very high 
gravity).  
 

High bioethanol yield (15 vol%) 
than conventional yield (<10 
vol%); Lower production cost, 
energy consumption, and 
effluents 

Multiple stresses in 
yeast due to metal 
ions; Yeast inhibition 
by product; Lower pH 
below optimum; 
Temperature rise. 

100–104 
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SGF Syngas*  Wood–Ljungdahl pathway, 
employing acetogenic 
microbes under anaerobic 
conditions. 
 

Industrial exhausts rich in CO 
and H2 can serve as feedstock; 
Lower temperature and pressure 
requirement; Tolerate sulfur in 
feed with no specific CO to H2 
ratio. 

Gas-liquid mass 
transfer resistance; 
Lower productivity; 
Microbes inhibition. 

105–109  

*Typical composition: 30-60% CO, 25-30% H2, 5-15% CO2, and 0-5% CH4; DF: Direct Fermentation; SHF: Separate Hydrolysis and 
Fermentations; SSF: Simultaneous Saccharification and Fermentation; SSSF: Semi Simultaneous Saccharification and Fermentation; 
SF: Solid-state Fermentation; NSSF: Non-isothermal Simultaneous Saccharification and Fermentation; SSCF: Simultaneous 
Saccharification and Co-fermentation; SSFF: Simultaneous Saccharification, Filtration, and Fermentation; CBP: Consolidated 
Bioprocessing; VHG: Very High Gravity Fermentation; SGF: Syngas Fermentation; MDS: Monomeric and Dimeric Sugars;  PCs: 
Polymeric Carbohydrates (e.g., Starch, Hemicellulose, and Cellulose);  MSs: Monomeric Sugars. 
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The various hydrolysis and fermentation pathways for bioethanol production, each with its own 

advantages and disadvantages, are shown in Table 2. Direct Fermentation (DF) is the most 

straightforward process with minimal processing steps, and it is best suited for first-generation 

sugar-based feedstocks 72,73. Separate Hydrolysis and Fermentation (SHF) needs to be optimized 

for both hydrolysis and fermentation stages separately, and it takes a longer processing time 110. 

Contrary to SHF, we have Simultaneous Saccharification and Fermentation (SSF), which reduces 

process time, is carried out in a single reactor, and potentially offers higher yields. Yet, it requires 

compatible enzymes and microbes, making it difficult to optimize both stages simultaneously 

75,80–82. Semi Simultaneous Saccharification and Fermentation (SSSF) is carried out in a single 

reactor for a set time for both hydrolysis and fermentation. However, SSSF gives a better yield 

than SSF, but the process control is more complex 111. Solid-state Fermentation (SF) has low 

water requirements and is suitable for certain biomass types, but offers lower productivity 85–87. 

Non-isothermal Simultaneous Saccharification and Fermentation (NSSF) optimizes temperature 

for each step, potentially increasing efficiency, but requires complex temperature control and 

higher energy 112,113. Simultaneous Saccharification and Co-fermentation (SSCF) pathway is 

efficient for mixed sugar substrates, yielding higher bioethanol outputs 88,91–94. Simultaneous 

Saccharification, Filtration, and Fermentation (SSFF) integrates filtration to reduce inhibitors, 

improving efficiency, but involves higher operational complexity and potential membrane 

fouling 89,95. Consolidated Bioprocessing (CBP) is a novel approach to bioethanol production. It 

is the best example of process integration and optimization, combining enzyme production, 

biomass hydrolysis, and fermentation in a single step 98. This integration reduces the need for 

added enzymes and pretreatment steps, significantly reducing costs and process complexity. 

However, it requires highly efficient and robust microbes that can streamline all three processes: 
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enzyme production, saccharification, and fermentation 93,96–99. Very High Gravity Fermentation 

(VHG) results in higher bioethanol concentrations, reducing distillation costs, but imposes higher 

osmotic stress on cells, demanding robust microbes 100–104. Lastly, it is essential to study 

bioreactor configurations in bioethanol production as it allows the optimization of yield, 

productivity, resource efficiency, process stability, scale-up feasibility, economic viability, and 

product quality, all of which are critical for the success and sustainability of bioethanol 

production processes, summarised in the supplementary information (Table S3). 

The bioethanol produced from microbial fermentation is a lean solution containing less than 10 

vol% bioethanol in water, as high ethanol concentrations cause product inhibition to fermenting 

microbes during fermentation 114. However, novel strains of fermenting microbes have been 

developed to tolerate higher ethanol concentrations 115. Divate et al. 116 performed metabolic 

engineering on the yeast Saccharomyces cerevisiae and produced a strain that demonstrated 

tolerance to ethanol concentrations as high as 14 vol%, whereas the growth of the wild strain was 

inhibited at 6 vol%. Finally, the lean bioethanol solution is concentrated and purified through 

distillation and dehydration to achieve fuel-grade standards 117. Table 3 provides the recent 

advancements in bioethanol production and their yield through various techniques and 

innovations.  
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Table 3. Comparative Analysis of Bioethanol Production from Diverse Biomass Feedstocks: Yields, Methodologies, and Innovations. 

SHF: Separate Hydrolysis and Fermentation; SSF: Simultaneous Saccharification and Fermentation. 

Raw material Yield (L/t) Methodology Advancement/ Innovation Ref 
Sorghum 
Juice and 
Sugarcane 
Molasses 

560* Direct fermentation using yeast. Integrated biorefinery using a mix of juice and molasses. 118 

Water 
hyacinth 

- SSF without pretreatment. Bacterium or fungus-assisted fermentation without 
pretreatment 

119 

Soybean 
waste 

550 Cell adhesion on soybean 
meal-coated (3D printed 
templates) 

Recyclable 3D-printed systems; stable yields after 30 
cycles of reuse. 

120 

Oak 160 Steam explosion followed by 
SHF. 

Explored trade-offs between yields and pretreatment 
costs. 

121 
Poplar 140 
Spruce 60 
Rice straw 300 Chemical pretreatment (H3PO4 

and H2O2) followed by SHF. 
Mesophilic Aspergillus fungi showed high cellulase 
activity. 

122 

Wheat straw 630 Acid hydrolysis, membrane-based 
acid recovery, fed-batch 
fermentation. 

Glucose yield (>90%) using fractional acid hydrolysis 
technology. 

123 

Chitin 770# Solid-state fermentation with 
Pleurotus ostreatus.  

Chitin to bioethanol and mushroom production. 124 

Glycerol 320 Direct microbial fermentation Microbes from an anaerobic digester (wastewater 
treatment) convert glycerol to bioethanol. 

125 

Kappaphycus 
alvarezii (red 
algae) 

340 Fungal pretreatment followed by 
SHF. 

Fungal pretreatment increased sugar yields 2.3-fold and 
bioethanol yield by 38.23% at a lower cost. 

126 
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Genetically 

modified Rice 

straw (Cesa7 

mutant) 

770a Green liquor pretreatment 
followed by SHF.  

GM rice straw cellulose nanofibrils enhanced bioethanol 
yield and reduced production cost. 

127 

*bioethanol yield in L/ton of total reducing sugars in hydrolysate; #Theoretical yield; abioethanol yield in L/ton of cellulose obtained 
from rice straw.  
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2.2 Advancements in Thermochemical Conversion Pathways 

The thermochemical conversion of biomass to bioethanol is a two-step process involving high 

temperatures 128. Initially, biomass is converted into gas or bio-oil, which is then transformed into 

bioethanol via fermentation 129 or catalytic synthesis 130,131. Gasification, pyrolysis, and 

hydrothermal liquefaction are employed to gasify or liquefy the biomass 128. In gasification, 

biomass is converted to syngas (a mixture of CO, H2, and CO2) by gasifying the raw material at 

high temperatures (500-1200°C) with controlled oxygen and/or steam 132. The raw syngas and 

industrial effluent gases from steel mills or refineries contain impurities and undergo 

deoxygenation, tar removal, particulate and sulfur compound removal, and compression 3. In the 

next stage, direct gas fermentation (similar to the LanzaTech process 133) uses acetogenic bacteria 

like Clostridium ljungdahlii 106, Clostridium autoethanogenum 134, Clostridium carboxidivorans 

135, Butyribacterium methylotrophicum 136, and Alkalibaculum bacchi 137, leveraging their unique 

metabolic pathways to convert syngas into bioethanol efficiently 105–109. It is compared with other 

fermentation technologies (Table 2) that vary in process complexity, efficiency, and feedstock 

suitability. Clostridium ljungdahlii produced 198.76 liters of bioethanol per ton of syngas in a 

two-stage continuous fermentation process 106. Alternatively, catalytic conversion involves 

passing cleaned syngas over a catalyst bed, typically composed of metals like copper, zinc, or 

their alloys supported on materials such as alumina or silica, including processes like 

Fischer-Tropsch synthesis 138 or catalytic methanol synthesis followed by methanol-to-ethanol 

conversion 139. These versatile processes can utilize a variety of feedstocks, including LCB, 

MSW, and industrial byproducts such as DDG, lignin, or hulls. LanzaTech employs a proprietary 

strain of Clostridium autoethanogenum, genetically engineered to optimize the conversion of 

industrial waste gases (containing CO & CO₂) into bioethanol and valuable chemicals like 
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2,3-butanediol 140. Ongoing research focuses on optimizing microbial and catalytic performance, 

improving yields, and enhancing the industrial viability of these processes to make bioethanol 

production more efficient and sustainable. 

Another thermochemical conversion pathway is pyrolysis, which thermally degrades biomass 

without oxygen at temperatures between 400-600°C, producing bio-oil, syngas, and char 141. The 

bio-oil is then processed through catalytic upgrading or fermentation to produce bioethanol 142. 

Similarly, hydrothermal liquefaction (HTL) converts wet biomass into bio-crude oil using high 

pressure (200-350 bar) and moderate temperatures (250-350°C) in the presence of water 143. The 

bio-crude is refined and catalytically upgraded to produce bioethanol, much like pyrolysis. Algal 

biomass, sewage sludge, and wet agricultural residues with high moisture content are particularly 

suitable for HTL, as they eliminate the need for costly drying, like in the biochemical conversion 

pathway 144. 

2.3​Advancements in Non-conventional Pathways 

2.3.1​ Microbial and Chemical Lignin Degradation 

Lignin presents a formidable challenge due to its diverse structure and resistance to degradation 

145. Nonetheless, recent advancements in biotechnological and chemical processes have 

significantly enhanced the efficiency of converting lignin into bioethanol. Certain 

microorganisms, including white-rot fungi like Phanerochaete chrysosporium 146 and Trametes 

versicolor 147, bacteria such as Pseudomonas putida, and select species of Clostridium 148, as well 

as various genetically engineered microbes, have demonstrated the capability to degrade and/or 

metabolize lignin-derived compounds (either by thermal, chemical, or biological routes), such as 

aromatic substances, directly into bioethanol and other biofuels 149,150. 
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Salvachúa et al. 148 recently showed that lignin with high molecular weight can be broken down 

into smaller oligomers and monomers using microbes' extracellular ligninolytic enzymes, such as 

laccases and peroxidases, through biological conversion pathways. Certain microbes can 

metabolize these lower molecular weight aromatic compounds (derived from lignin) and convert 

them into triacylglycerides 151,152, or polyhydroxyalkanoates 149, depending on the specific 

microbe. Triacylglycerides can be further processed into bioethanol, as discussed in other studies 

153,154. Several microbes, including Pseudomonas putida, Rhodococcus opacus, Pseudomonas 

fluorescens, and Acinetobacter baylyi, have shown potential for the valorization of lignin-derived 

aromatic monomers 148,149,151,152,155. Yuan et al. 156 demonstrated that adding commercial laccase to 

degrade Kraft lignin into monomers, which were then consumed by Rhodococcus opacus, 

produced 145 mg of triacylglycerides per liter of solution. These ligninolytic microbes break 

down complex lignin substrates and catabolize the resulting monomers into target compounds 

such as bioethanol. 

There are also chemical methods for processing monomeric lignin-derived compounds. Aromatic 

compounds can be transformed into cyclohexanol through hydrodeoxygenation, which involves 

reacting these compounds with hydrogen gas under controlled conditions, typically at 

temperatures between 100-250°C and pressures of 10-50 atm, using catalysts 157–160. Typical 

catalysts include metals like nickel (Ni), palladium (Pd), platinum (Pt), and ruthenium (Ru), 

which facilitate the hydrogenation of aromatic rings 160. Once cyclic alcohols like cyclohexanol 

are produced, they are mixed with low-grade hydrous bioethanol for use in spark-ignition 

gasoline engines by combining gasoline, low-grade bioethanol, and cyclohexanol 161–163. This 

oxygenated additive enhances performance and reduces emissions 161. At the same time, 

biological methods tend to produce lower bioethanol yields from lignin due to less direct 
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conversion. Chemical methods, while more efficient, often involve high energy demands and 

added complexity since they do not directly yield bioethanol. 

2.3.2​ Microbial Glycerol Fermentation 

Glycerol (C3H8O3), or glycerin, is a byproduct of biodiesel production resulting from the 

transesterification of triglycerides found in vegetable oils or animal fats 164. Depending on its 

origin and purity level, glycerol may need pretreatment to remove impurities that could 

negatively impact fermentation, making it suitable as a feedstock for microbial processes 165. 

Common microorganisms used are GM bacteria (such as Escherichia coli, Clostridium 

pasteurianum, Klebsiella pneumoniae, and Zymomonas mobilis) 74,166–168 and yeasts (like 

Saccharomyces cerevisiae, Kluyveromyces marxianus, and Pichia pastoris) 169–171 that possess the 

metabolic pathways necessary for efficient glycerol conversion into bioethanol. Genetic 

engineering has improved these microbes for better glycerol utilization and higher bioethanol 

production rates 169. The choice of microbes depends on factors like substrate concentration, pH, 

temperature, and environmental conditions, all of which affect fermentation efficiency 154. The 

process typically starts with glycerol being converted into pyruvate through glycolysis, followed 

by bioethanol production via specific fermentation pathways of the microorganisms 172. 

Depending on the method and microbe used, byproducts like acetate, lactate, or succinate may 

also be generated, which can be processed or repurposed for other industrial uses to improve 

overall efficiency and sustainability 173. Liu et al. 174 reported the highest bioethanol yield of 

0.27g/g of glycerol by engaging the Pachysolen tannophilus fermenting microbe. Khattab et al. 

175 reported a bioethanol yield of 0.47g/g of glucose and glycerol mixture by engaging 

engineered yeast Saccharomyces cerevisiae. Research continues to optimize these yields to make 

bioethanol production viable at the industrial level. 
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2.3.3​ Microbial Fuel Cells (MFCs)  

Microbial fuel cells are bioelectrochemical systems that leverage microorganisms’ catabolism to 

convert the chemical energy found in organic compounds into electrical energy 176. In bioethanol 

production, MFCs offer an innovative approach by combining the microbial conversion of 

organic materials with electricity generation, all while minimizing GHG emissions 177,178. These 

cells generate low to moderate electrical power, which is affected by microbial activity, substrate 

concentration, electrode design, and operating conditions 178–180. The bioethanol yield from MFCs 

is influenced by how effectively microbes metabolize substrates and the availability of 

appropriate feedstocks 181–183. MFCs can utilize various organic substrates, including sugars like 

glucose, organic acids, and even ethanol 184. For bioethanol production, LCB serves as an 

effective feedstock, which can be enzymatically broken down to release sugars that 

microorganisms in the MFC can then ferment into bioethanol. MFCs use microbial metabolism 

to oxidize organic compounds, releasing electrons that are transferred to an anode and generating 

an electric current 185. At the cathode, these electrons combine with protons and an electron 

acceptor, such as oxygen, completing the electrochemical circuit and forming water or other 

reduced products 186,187. 

2.3.4​ Artificial Photosynthetic Systems (APS)  

This cutting-edge method for bioethanol production is categorized as fourth-generation 

bioethanol production 188. Unlike traditional algae cultivation and gas fermentation processes that 

rely on carbon-rich gas sources, this approach utilizes atmospheric CO2 and H2O 189. These 

systems mimic natural plants, which convert sunlight into carbohydrates and lipids, but instead, 

they directly generate bioethanol. They consist of a carefully designed assembly of components 

housed in a reaction chamber known as photoelectrochemical cells (PECs) aimed at maximizing 
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bioethanol yields 190. Semiconductor materials like titanium dioxide serve as photocatalysts to 

capture sunlight and create electron-hole pairs 191. These are enhanced by organic dyes or metal 

complexes that act as photosensitizers, efficiently absorbing light 192–194. The solar energy 

harnessed by these components is then transferred to catalytic sites to drive reduction reactions. 

In PECs, the anode facilitates the oxidation of water to oxygen, while the cathode enables the 

reduction of CO2 to bioethanol or other intermediates 195. Specific enzymes and engineered 

microbes, which function as biocatalysts, are immobilized on the electrode surface to improve 

the selectivity and efficiency of CO2 reduction to bioethanol 196,197. This multi-step process 

involves creating intermediates like formate and carbon monoxide, which can be further 

converted chemically or biologically into bioethanol, often employing engineered microbes or 

specialized enzymes 197. 

3. Comparative life cycle assessment of various bioethanol generations 

Several intermediate processing steps are required for bioethanol production, as discussed earlier. 

A comprehensive LCA is essential to evaluate and optimize the sustainability of bioethanol 

production, guiding future research, policy development, and industrial practices toward more 

sustainable bioenergy solutions. This assessment must encompass all stages of production, from 

cultivating feedstocks to their final use and disposal. This section reviews the life cycle impact of 

first and second-generation bioethanol production. The limited literature on third-generation 

biorefineries focuses on LCA for micro and macroalgae growth and non-energy applications 

198,199. When energy generation is considered using algal feedstock, it often focuses on biodiesel 

due to the higher lipid content 200–202. Third and fourth-generation bioethanol production, at lower 

TRL, lacks substantial data on environmental impact. This section provides a holistic 
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understanding of LCA, encapsulating different feedstocks and system boundaries related to those 

biorefineries.  

Various feedstocks are compared using different environmental impact parameters across the 

entire value chain, product, or service, as shown in Table 4 and Table 5.  All values in the tables 

are based on the production of one kg of bioethanol (functional unit chosen). Many system 

boundaries exist, and we have limited ourselves to a few, expressly: cradle-to-gate (all emissions 

from feedstock production to the end product), cradle-to-grave (emissions from feedstock 

production, refining, and disposal after the product's end of life), and well-to-tank (emissions 

from raw material acquisition, biorefining, and distribution to storage fuel tanks). Users are free 

to choose the system boundaries during the LCA study. However, the cradle-to-grave approach 

considers most emissions, from raw material generation to disposal 203. The newly emerging 

cradle-to-cradle approach is increasingly appreciated due to its emphasis on sustainable 

development 204,205. It aims to create products and systems with positive environmental and 

societal impacts throughout their life cycles 204. Unlike traditional linear cradle-to-grave systems, 

where products end up as waste, cradle-to-cradle systems strive for continuous cycles of use and 

reuse 206,207. Products are designed to return safely to natural systems (biological nutrients) or be 

perpetually recycled as technical nutrients in industrial processes 208. 
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Table 4. Comprehensive Life Cycle Impact Assessment of Bioethanol Production from First-Generation Feedstocks (Functional Unit 
= 1 kg of bioethanol). C-GT: cradle to gate; C-GRV cradle to grave; W-T: Well to tank; SE: System expansion; En: Energy; EC: 
Economic; BC: Biochemical conversion. 

A.)​Environmental Impact 
Category 

Corn Corn Cassava Cassava Sweet 
Potato 

Sweet 
Sorghum 

Sugar 
Beet 

Wheat Sugarcane Sugarcane 

A1.) Ecosystem Quality 
GWP (kg 
CO2-eq.) 

Short Term 91.48 - - 0.69-1.3
0 

- - - - 0.53 - 

Long Term 88.95 0.21 0.25 - 2.53 0.21 1.29 1.26-2.
04 

- 0.64 

Acidification 
Potential (kg 
SO2-eq.) 

Freshwater 1.13 × 
10-6 

4.60 × 
10-3 

4.70 × 
10-3 

- 8.30 × 
10-3 

2.05 × 
10-2 

3.26 
× 10-3 

 2.41 × 10-2 1.07 × 10-2 

Terrestrial 9.49 × 
10-4 

Eutrophication 
Potential  

Freshwater 
(kg PO4-eq.) 

2.6 × 
10-3 

1.50 × 
10-3 

1.70 × 
10-3 

- 1.01 × 
10-2 

4.30 × 
10-3 

1.38 
× 10-4 

- 5.57 × 10-5 2.61 × 10-3 

Marine (kg 
N-eq.) 

1.31 × 
10-2 

- 3.54 × 10-3 - 

Photochemical Oxidant 
Formation (kg ethylene-eq.) 

7.34 × 
10-1 * 

7.60 × 
10-3 

8.90 × 
10-3 

- 6.70 × 
10-3 

8.20 × 
10-3 

1.46 
× 10-4 

- 5.44 × 10-3 

* 
1.10 × 10-3 

Ozone Layer Depletion (kg 
CFC-11-eq.) 

1.08 × 
10-5 

- - - - - 2.40 
× 10-7 

- 3.80 × 10-8 4.26 × 10-8 

Ionizing Radiation (kg U235 eq.) 8.69 × 
10-6 c 

- - - - - - - 4.59 × 10-7 

c 
3.14 × 10-7 

Land (m2.yr 
Arable) 

Transformation, 
Biodiversity 

2.40 × 
10-2 

- - - - - - - - - 
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Occupation, 
Biodiversity 

3.72 - - - - - - - - 1.62 

Water Scarcity (m3 world eq.) 11.94 - - - - - - - - - 
A2.) Human Health 
Freshwater Ecotoxicity (kg 
1,4-DB eq.) 

- - - - - - 2.09 
× 10-2  

- - 5.63 × 10-2  

Human 
Toxicity 
Potential (kg 
1,4 DB eq.) 

Cancer 2.04 × 
10-5 # 

1.07 × 
10-2 

6.00 × 
10-4 

- 4.60 × 
10-3 

1.42 × 
10-2 

2.85 
× 10-1 

- - 1.77 × 10-1  

Non-cancer 1.34 × 
10-5 # 

-  

Particulate Matter Formation (kg 
PM 2.5 eq.) 

5.49 × 
10-2 

- - - - - - - 1.39 × 10-3 - 

A3.) Resources 
Abiotic 
depletion (kg Sb 
eq.) 

Fossil and 
Nuclear 
Energy Use  

1222.45a - - - - - 9.32 
× 10-3 

- 9.24 × 10-6 2.06 × 10-3 

Mineral 
Resources 
Use 

6.93b - - - - - 

B.)​System Boundaries C-GT  C-GRV C-GRV C-GRV C-GR
V 

C-GRV C-GT W-T C-GT C-GRV 

C.)​Allocation Methods SE SE  SE SE SE SE - SE En EC 

D.)​Production Pathway BC BC BC BC BC BC BC BC BC BC 

E.)​Ref 
209 210 210 211 210 210 212 213 214 215 

# Reported in CTUh (Comparative Toxic Unit for humans); * reported in kg NMVOC-eq./kg bioethanol (NMVOC: Non-Methane 
Volatile organic content equivalent); a MJ deprived; b kg deprived; c 1 kg U235 = 80011 kBq U235. 
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Table 5. Comprehensive Life Cycle Impact Assessment of Bioethanol Production from Second-Generation Feedstocks (Functional 
Unit = 1 kg of bioethanol). C-GT: Cradle to gate; C-GRV cradle to grave; SE: System expansion; En: Energy; BC: Biochemical 
Conversion; TC: Thermochemical Conversion; eq. : Equivalent. 

A.)​Environmental Impact 
Category 

Wheat 
Straw 

Switchgrass Corn 
Stover 

Forest 
Residue 

MSW Poplar Bagasse 

Blend E100 E100 E100 E100 E100 E10 E85 E100 E100 
A1.) Ecosystem Quality 
GWP (kg 
CO2-eq.) 

Short Term 0.87 0.84 1.14 0.23 0.14 0.246 0.125 0.096 0.24 
Long Term 0.85 0.81 1.10 0.22 0.09 - - - - 

Acidification 
Potential (kg 
SO2-eq.) 

Freshwater 7.98 × 
10-9 

3.36 × 10-8 3.97 × 
10-8 

1.68 × 
10-8 

1.27 × 
10-8 

1.13 
× 
10-3 

5.3 × 
10-3 

6.58 × 
10-3 

7.09 × 10-3 

Terrestrial 8.06 × 
10-6 

3.64 × 10-5 4.70 × 
10-5 

1.42 × 
10-5 

1.80 × 
10-5 

Eutrophication 
Potential  

Freshwater 
(kg PO4-eq.) 

2.99 × 
10-5 

1.08 × 10-5 1.76 × 
10-5 

8.86 × 
10-6 

-3.75 × 
10-5 

1.63 
× 
10-4 

1.09 
× 
10-3 

1.38 × 
10-3 

2.03 × 10-5 

Marine (kg 
N-eq.) 

7.95 × 
10-5 

3.44 × 10-4 4.95 × 
10-4 

1.14 × 
10-4 

2.57 × 
10-4 

- - - 1.65 × 10-3 

Photochemical Oxidant 
Formation (kg NMVOC-eq.) 

2.31 × 
10-3 

8.14× 10-3 9.24 × 
10-3 

9.67 × 
10-3 

2.33 × 
10-3 

0.166 
c 

0.252 
c 

0.273 c 4.43 × 10-3 

Ozone Layer Depletion (kg 
CFC-11-eq.) 

6.88 × 
10-8 

5.73 × 10-8 9.56 × 
10-8 

5.47 × 
10-8 

8.76 × 
10-8 

3.07 
× 
10-8 

2.22 
× 
10-8 

2.00 × 
10-8 

7.97 × 10-9 

Ionizing Radiation (kg U235 eq.) 3.68 × 
10-5 

3.24 × 10-5 4.79 × 
10-5 

2.17 × 
10-5 

3.18 × 
10-5 

- - - 2.21 × 10-7 

Land (m2.yr 
Arable) 

Transformation, 
Biodiversity 

1.50 × 
10-4 

-5.99 × 10-3 -2.06 × 
10-3 

7.45 × 
10-5 

-5.40 × 
10-3 

- - - - 
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Occupation, 
Biodiversity 

0.11 0.06 0.04 0.01 -0.63 

Water Scarcity (m3 world eq.) 8.46 0.65 0.69 0.26 3.06 - - - - 
A2.) Human Health 
Freshwater Ecotoxicity (kg 
1,4-DB eq.) 

15062.92 
* 

15069.82* 15620.41* 6288.05* 6204.06* 2.43 
× 
10-3 

3.27 
× 
10-3 

3.55 × 
10-3 

- 

Human 
Toxicity 
Potential (kg 
1,4 DB eq.) 

Cancer 1.16 × 
10-7 # 

6.52 × 10-8 # 7.16 × 
10-8 # 

2.68 × 
10-8 # 

3.93 × 
10-8 # 

1.40 
× 
10-2 

1.90 
× 
10-2 

2.10 × 
10-2 

- 

Non-cancer 2.83 × 
10-7 # 

1.59 × 10-7 # 1.66 × 
10-7 # 

2.09 × 
10-7 # 

6.79 × 
10-8 # 

Particulate Matter Formation (kg 
PM 2.5 eq.) 

3.01× 
10-4 

5.53 × 10-3 5.71 × 
10-3 

2.06× 
10-3 

1.81 × 
10-3 

- - - 2.41 × 10-4 

A3.) Resources 
Abiotic 
depletion (kg 
Sb eq.) 

Fossil and 
Nuclear 
Energy Use 

3.74 a 7.84 a 11.53 a 3.87 a 12.73 a 1.58 
× 
10-3 

7.21 
× 
10-4 

4.55 × 
10-4 

1.64 × 10-5 

Mineral 
Resources Use  

1.73 × 
10-2 b 

2.10 × 10-2 b 2.40 × 
10-2 b 

7.28 × 
10-3 b 

1.32 × 
10-2 b 

B.)​System Boundaries C-GT 
 

C-GT C-GT C-GT 
 

C-GT C-G
RV 

C-G
RV 

C-GRV C-GRV 

C.)​Allocation Methods SE SE SE SE SE SE SE SE En 

D.)​Production Pathway BC BC BC TC BC BC BC BC BC 

E.)​Ref 209 209 209 209 209 216 216 216 214 

# Compared in CTUh (Comparative Toxic Unit for humans); * Compared in CTUe (Comparative Toxic Unit for ecosystem); a MJ 
deprived; b kg deprived; c reported in g ethylene eq./kg bioethanol.  
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When assessing the impact of a process on carbon emissions, factors like land-use changes 

(LUCs) must be considered, as they can significantly affect results 217. Dłuzewski et al. 218 note 

that LUCs can disrupt carbon stocks in soil and vegetation, increasing GHG emissions. LUC is 

further subdivided into two: direct LUC and indirect LUC 209. Direct LUC occurs when land is 

shifted for feedstock production (e.g., converting forests or grasslands), leading to higher CO2 

emissions than in the typical case of moving toward renewable energy sources from conventional 

petroleum 219. Indirect LUC happens when bioethanol production causes food shortages, 

prompting deforestation to expand croplands and further increase emissions 220. LCAs with 

narrow boundaries may overlook these global impacts. For second-generation bioethanol, it is 

crucial to allocate the environmental effects from cultivation, including fertilizer and pesticide 

use, before conducting an LCA 221. 

We have compared the three major categories of the environmental impact of biorefineries: 

ecosystem quality, human health, and resources. The occupational land use is significantly higher 

for first-generation feedstocks used in bioethanol production compared to second-generation 

feedstocks. Corn, first-generation feedstocks require 3.72 m².yr of arable land per kilogram of 

bioethanol, which is more than twice that of sugarcane (Table 4). This is consistent with the fact 

that bioethanol yield from corn is almost half that of sugarcane (Table 6), making sugarcane 

more efficient in terms of arable land use for bioethanol production. However, the global 

warming potential (GWP) is higher for sugarcane-based bioethanol than corn-based bioethanol 

(Table 4). GWP, measured in CO2 equivalents, reflects the potential of gases to cause global 

warming over a specified period, typically 100 years 222. As shown in Table 4 and Table 5, GWP 

is generally higher for first-generation feedstocks than second-generation feedstocks. 

Nevertheless, certain food-based feedstocks have exceptionally high bioethanol yields and thus 
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exhibit a lower GWP, such as 0.21 kg CO2-equivalent per kilogram of bioethanol from corn 210, 

which is significantly lower than corn stover’s 1.4 kg CO2-equivalent 209. While the short-term 

effects of switching from conventional gasoline to renewable bioethanol are immediately 

noticeable within a decade, long-term GWP considers impacts over 100 years or more. Over the 

long term, renewable resources exhibit lower GWP and can contribute to environmental 

mitigation by reducing carbon emissions 223. 

The acidification potential from synthesizing one kilogram of bioethanol is higher with 

first-generation feedstocks, primarily due to the use of fertilizers and pesticides during crop 

cultivation 38. This potential is measured in SO2 equivalents, reflecting the cumulative effect of 

all acids released as if they were specific amounts of SO2, detailed in Table 4 and Table 5. 

Similarly, the eutrophication potential, which denotes nutrient overloading in water bodies 

causing excessive growth of aquatic plants and algae, ranges from 10-5 to 10-1 kg PO4-eq. 

(phosphate equivalent) for freshwater and kg N-eq. (nitrogen equivalent) for marine water 214. 

Alongside these, environmental impact indicators like photochemical oxidant formation potential 

(measured in kg NMVOC-eq. or kg ethylene-eq.), ionizing radiation potential (measured in kg 

U235 eq.), and ozone layer depletion potential (measured in kg CFC-11-eq.) also vary between 

first and second-generation bioethanol (Table 4 and 5). These impacts are more pronounced in 

first-generation feedstocks due to the larger agricultural inputs required, contributing 

significantly to acidification and eutrophication. Nitrogen-based fertilizers, in particular, can lead 

to nutrient loading in water bodies 224. First-generation bioethanol production involves 

energy-intensive methods, often relying on fossil fuels for heat and power, leading to higher 

emissions of pollutants such as SO2, NOx, and VOCs, contributing to ground-level ozone 

formation 225. Additionally, the expansion of agriculture for first-generation feedstock can lead to 
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LUCs, including deforestation, impacting air quality, biodiversity, and carbon emissions 220. 

Conversely, second-generation bioethanol technologies, such as enzymatic hydrolysis and 

fermentation of LCB, are more efficient and have lower energy requirements 57. They often use 

marginal lands or agricultural residues, reducing competition with food crops and minimizing 

environmental impacts 226. The transition from first to second-generation bioethanol production 

aims to mitigate these impacts while ensuring sustainable biofuel production. Moreover, 

cultivating high water-intensive crops like sugarcane and corn for first-generation bioethanol can 

exacerbate water scarcity, affecting ecosystem quality 227. 

Human health is also a significant consideration in energy production from various feedstocks. 

Each feedstock involves processing units that use chemicals or produce by-products impacting 

the ecosystem, leading to freshwater ecotoxicity and human toxicity, ranging from 10-3 kg to 10-1 

kg, and 10-8 kg to 10-1 kg 1,4-dichlorobenzene equivalents, respectively (Table 4 and Table 5). 

Additionally, particulate matter (PM-2.5) emissions, ranging from 10-4 to 10-1 kg 

PM-2.5-equivalent per kg of bioethanol produced, pose risks, especially during the production of 

first-generation feedstocks, engaging transportation, ploughing, and harvesting 214. Moreover, the 

production process affects abiotic resources (non-living natural resources), including minerals 

and energy resources like nuclear and fossil fuels, typically expressed in kilograms of antimony 

(Sb) equivalent per kilogram of bioethanol produced 209. This category considers the extraction 

and depletion of various minerals and metals used in production processes, energy generation, 

and bioethanol-related infrastructure. Abiotic depletion potential (ADP) is generally higher in 

first-generation bioethanol due to the intensive use of non-renewable resources such as fossil 

fuels, fertilizers, and minerals during feedstock cultivation, processing, and infrastructure 

development (Table 4 and Table 5). In contrast, second-generation bioethanol, focusing on 
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non-food biomass and advanced production technologies, tends to have a lower ADP by 

minimizing the depletion of abiotic resources and promoting sustainable resource management 

practices.  

Furthermore, there are concerns about the actual environmental benefits of dedicated feedstocks. 

For example, an LCA study found that China's corn bioethanol and soybean biodiesel GWP was 

40% and 20% higher than fossil petrol and diesel, respectively. This difference is mainly due to 

heavy fertilizer use, high energy consumption during processing, and China's reliance on 

coal-based energy 228. However, using renewable energy for processing and adopting sustainable 

farming practices, like no-till farming and crop rotation, can help reduce emissions 229. 

Additionally, higher-yielding crops can reduce the land needed for the same bioethanol 

production 230. Non-traditional feedstocks, such as glycerol, industrial waste gases, and GM 

crops, possess significant potential for reducing GHG emissions 231,232. Thus, the improved 

efficiency of the production processes and the co-product utilization can offset emissions and 

improve overall sustainability. 

A comprehensive LCA study by Muñoz et al. 233 compared bioethanol production from various 

feedstocks, including sugarcane, maize, sugar beet, and wheat, across different regions. The 

cradle-to-gate approach had much lower GHG emissions of 0.7 to 1.5 kg CO2-eq. per kg of 

bioethanol compared to both cradle-to-grave of 1.3 to 2 kg CO2-eq. and fossil-based ethanol of 

1.3-3.7 kg CO2-eq. Moreover, maize stover in the USA (GWP: 1.25) and sugar beet in France 

(GWP: 1.27) were found to have the lowest impact from a GHG emission perspective, although 

when other impact categories are considered, trade-offs were encountered. Jeswani et al. 228 

carried out an in-depth analysis of the environmental impact of producing different types of 

liquid biofuels, including bioethanol. Their findings indicated that, when LUC is excluded, 
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first-generation biofuels generally emit fewer GHGs than conventional fossil fuels 228. However, 

for the majority of feedstocks, the achieved emission reductions did not meet the 60% GHG 

savings threshold required by the European Union’s Renewable Energy Directive (RED) 228,234. 

In contrast, second-generation biofuels demonstrated a stronger capability to cut emissions, 

provided that no LUC takes place. Third-generation biofuels, however, remain technologically 

premature and currently produce higher GHG emissions than their fossil fuel counterparts 228. 

The authors also emphasized that reductions in GHG emissions are frequently offset by increase 

in the other environmental impacts such as acidification, eutrophication, depletion of water 

resources, and loss of biodiversity 228. For first-generation bioethanol, the GWP without 

accounting for LUC was found to range between 0.08 and 4.4 kg CO2 eq. per kg of bioethanol 

produced (Figure 4(a)). Among all the feedstocks analyzed, only sugarcane-based bioethanol 

achieved the 60% GHG reduction target set by the RED compared to fossil fuels (4.3 kg CO2 

eq.). This superior performance arises from sugarcane’s relatively high crop yield, lower 

dependency on chemical fertilizers and pesticides, and the additional carbon credits gained from 

co-generated electricity within integrated biorefineries 228. Nevertheless, when LUC impacts 

were considered, none of the first-generation pathways achieved the RED target 228. In contrast, 

the second-generation pathways revealed a wider spectrum of GWP values (-3.1 to 4.7 kg CO2 

eq.), depending heavily on both the feedstock used and the processing technology applied 

(Figure 4(a)). These advanced systems often utilise lignin byproducts as a source of electricity or 

as value-added products, which helps offset GHG emissions, sometimes even resulting in 

carbon-negative balances (Figure 4(b)). For third-generation biofuels, the variability was even 

more pronounced, with reported GWP values ranging from −65 to 78 kg CO2 eq. (Figure 4(a)). 

This broad variation stems largely from inconsistent methodological boundaries, differences in 
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feedstock cultivation assumptions, nutrient inputs, and treatment of co-products across studies 

228. 

Although second- and third-generation bioethanol pathways generally exhibit lower GWP than 

fossil fuels, their production is substantially more water-intensive, requiring approximately 55 to 

246 times more water than fossil fuel production Figure 4(c)), which typically consumes about 

3.5–8.5 liters per kilogram of gasoline 235,236. Water use in bioethanol production varies widely 

with regional climatic conditions and irrigation practices, ranging from as low as 20 to 200 liters 

per kilogram of first-generation bioethanol in rain-fed systems Figure 4(c)). In contrast, 

corn-based bioethanol produced under intensive irrigation conditions, such as in Portugal, can 

require exceptionally high water inputs of around 2,320 liters per kilogram of bioethanol 236. 

Bioethanol production, regardless of generation (first to fourth), also poses significant threats to 

biodiversity. Large-scale cultivation of biofuel crops can cause habitat loss, soil and water 

pollution through nutrient runoff, and, in some cases, promote invasive species 237–239. Intensive 

agricultural practices and heavy agrochemical use for first-generation feedstocks represent direct 

hazards to local flora and fauna 237,240,241. The conversion of forests or other ecosystems into 

croplands for biofuel production further amplifies biodiversity loss by destroying wildlife 

habitats 228,242. Compared to first-generation fuels, second-generation biofuels generally exhibit 

fewer negative ecological effects and may, under specific conditions, even enhance biodiversity 

1,228. Lignocellulosic crops, which typically require minimal fertilizers and pesticides and grow 

over longer cycles, can promote more sustainable land use, especially when cultivated on 

degraded or marginal land 243–245. Utilizing agricultural residues or forestry byproducts as biofuel 

feedstocks generally causes less disturbance to ecosystems; however, excessive removal of such 

residues may deplete organic matter, disturb wildlife habitats, and increase herbicide use by 
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encouraging weed proliferation 246–248. The ecological consequences of third-generation (algal) 

biofuels are still uncertain. Algal cultivation could pose serious threats to coastal biodiversity by 

introducing invasive algal species into sensitive ecosystems such as mangroves, coral reefs, 

seagrass beds, and mudflats 228. Accurately quantifying biodiversity loss remains difficult due to 

the absence of standardized methods for assessing biofuel-related ecological changes. Overall, 

although biofuels can substantially reduce GHG emissions relative to fossil-based fuels, these 

benefits are often counterbalanced by other environmental drawbacks. For instance, 

first-generation bioethanol has been shown to possess up to three times greater acidification 

potential and between three and twenty times higher eutrophication potential than fossil fuels 228. 
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Figure 4. Comparative Life Cycle impact ranges. Functional unit: 1 kg of bioethanol (this figure was drawn based on data provided in 

ref 228). GWP: Global warming potential; LUC: Land-use change. Colour Scheme: First-generation (red), Second-generation (green), 

Third-generation (blue). 
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Neto et al. 249 highlighted several industrial initiatives that convert effluent gases into bioethanol 

via fermentation, with LanzaTech emerging as a key leader. Large-scale facilities producing 

approximately 46,000 and 125,000 tons of bioethanol annually have been established in China 

and Europe, respectively, utilizing steel mill off-gases as carbon sources 249. LCA studies indicate 

that the environmental performance of syngas fermentation is highly dependent on both the 

feedstock origin and the extent of process integration 250,251. Comparative studies suggest that 

when syngas is derived from waste gases or biomass residues, and when energy recovery 

systems are incorporated, the overall impacts can be comparable or even superior to conventional 

biomass-to-biofuel pathways 252,253. For microbial electrosynthesis and other CO2-to-bioproduct 

routes, LCAs consistently identify the electricity mix and the choice of reactor materials (such as 

electrodes and membranes) as the most influential factors. Under scenarios using renewable 

electricity and optimized system design, MES can achieve significantly reduced or even 

net-negative GHG emissions for certain products 254,255. In contrast, reliance on grid electricity 

and current pilot-scale materials often results in higher impacts than traditional production 

methods 256. Moreover, pilot-scale assessments emphasize that unrecovered off-gases and 

inefficient resource utilization can substantially increase environmental burdens unless effective 

capture or reuse strategies are implemented 255. 

After thoroughly examining the environmental impact parameters in Table 4 and Table 5, Table 6 

presents an in-depth comparative analysis of diverse feedstocks used in bioethanol production. 

This analysis considers the yield and environmental effects to assess their sustainability. As 

shown in Table 6, the bioethanol yield is high in the case of first-generation feedstocks. Still, it 

has significant environmental impacts due to intensive agricultural practices and high water and 

energy consumption, leading to high GHG emissions. Second-generation feedstock utilizes waste 
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materials and non-food crops, lowering environmental impacts compared to first-generation 

feedstocks. Third-generation also has higher yield potential with minimal land use requirements. 

The algal feedstocks possess tremendous potential for future scalability with advancements in 

cultivation and processing technologies. Fourth-generation feedstocks utilize advanced 

biotechnological approaches to improve efficiency and sustainability. The yield and 

environmental impacts vary significantly depending on specific genetic modifications and 

synthetic biology strategies. These are in early-stage development, having TRL 2, with the 

potential for significant future advancements 1. Lastly, the fermentation of non-traditional 

industrial effluents offers solutions to cut down GHG emissions by sequestrating carbon right at 

its source, producing bioethanol. It lowers environmental impacts by utilizing GHGs as a 

feedstock. Integrating it with the iron and steel industries can help in significant ecological 

mitigation.  
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Table 6. Comparative Analysis of Different Feedstocks. GM: Genetically modified; MSW: Municipal Solid Waste. 

Severity Low to negative Low Low to moderate Moderate High 
Colour scheme      

 

Feedstock Bioethanol yield 
(kL/ha) 

GHG Emissions Energy 
Consumption 

Water Usage Land Use Ref 

First-Generation 
Sugarcane 5.9-9.9     228,257 
Corn  3.8-4.2  228,258,259 
Second-Generation 
Syngas Variable#     3,228 
Lignocellulosic biomass 1-11  32,33,228,260–262 
MSWa -    228,260 
Third-Generation 
Algaed 47-141     33,228,263 
Fourth-Generation 
GM feedstock Variableb       264 
Non-Traditional 
Effluent Gases Variable*     265 
Glycerolc Variable*  266 
Synthetic Biology Approaches Variable*  267 

#depends on feedstock and gasification efficiency; *depends on microbes/process involved based on their conversion efficiency; 
aEnergy consumption is high due to additional sorting step; bdue to variable carbohydrate content; cbyproduct of oil crop to biodiesel 
production; dGHG emissions can vary significantly as shown in Figure 4, but mainly it lies on the lower to negative side. ​  
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4. Economic and Policy Considerations 

The global push towards sustainable energy solutions has brought bioethanol to the forefront of 

renewable fuel alternatives, influenced by economic, technological, policy, and environmental 

factors 268,269. Feedstock availability and cost are crucial determinants of its economic feasibility. 

First-generation feedstocks, such as corn and sugarcane, dominate bioethanol production due to 

their high fermentable sugar content 270. Corn, with costs typically ranging from 130 to 350 

US$/ton 271, accounts for approximately 95% of bioethanol production in the United States 272. 

However, their use raises concerns about food competition and environmental impacts 273. 

Second-generation feedstocks derived from LCB offer a more sustainable option, although 

production costs remain high, i.e., ~1.5 US$/liter of bioethanol 28. Technological advancements 

have significantly enhanced the efficiency and cost-effectiveness of bioethanol production. 

Innovations in pretreatment, enzymatic hydrolysis, and consolidated bioprocessing have 

improved conversion efficiency and reduced costs (up to 25%) 57,274,275. Genetic engineering of 

microbial strains has further boosted bioethanol yields and tolerance, making bioethanol 

production more commercially viable 276. 

The economic viability of bioethanol is tied to market dynamics such as fluctuating oil prices, 

government subsidies, and renewable fuel demand 277. Policy instruments like the U.S. 

Renewable Fuel Standard have increased demand 273,278, contributing to a growing global market, 

projected to expand from US$ 83.4 billion in 2023 to US$ 114.7 billion by 2028 279. However, oil 

price volatility and inconsistent policies (such as changes in the U.S. biofuel policy) remain a 

challenge 280,281. Thus, policy frameworks play a pivotal role in the bioethanol industry. Initiatives 

like the EU’s Renewable Energy Directive (RED II) set ambitious renewable energy targets 

(aiming for a 14% share by 2030 282), while tax incentives and subsidies encourage investment. 
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However, inconsistencies in policies, particularly in emerging economies like India and China, 

pose challenges. For example, the consumption of fuel ethanol in these countries remains 

considerably lower than that of gasoline. To illustrate, in 2022, the market penetration of fuel 

ethanol in India was approximately 5.1 billion liters, with a forecast to reach around 6.2 billion 

liters in 2023. In contrast, the gasoline market penetration was projected to increase to 53 billion 

liters in the same year, nearly ten times higher than fuel ethanol 283. This disparity underscores 

the need for targeted policies to expand bioethanol consumption in these regions.  

Supportive public policies have been key to boosting bioethanol’s cost competitiveness. The 

Proálcool program, launched in Brazil in 1975 to promote energy self-reliance, combined 

blending mandates, concessional financing, and infrastructure investments that encouraged 

large-scale bioethanol production 284,285. Productivity increased dramatically (from ~2.4 to ~5 

kL/ha) through improved crop varieties, efficient field management, and the reuse of stillage as 

fertilizer, leading to an average cost reduction of 3.5% per year between 1976 and 1994 284. 

Goldemberg 286,287 estimated that combined savings from both agricultural and industrial 

improvements could further reduce bioethanol costs by 23% 284. However, the withdrawal of 

public investment and subsidies in 1984 caused bioethanol-powered car sales to fall sharply from 

94.4% to 51% of total vehicle sales 284. In response, the government introduced new incentives to 

revive production, and by 1991, annual bioethanol vehicle output had doubled from 0.7 million 

to 1.4 million cars, reaffirming Brazil’s global leadership in bioethanol development 284. Chen et 

al. 288 found that technological improvements reduced overall bioethanol costs from sugarcane by 

67% with a reduction of >70% in processing cost, stressing that factors like market 

competitiveness, economies of scale, and learning-by-doing are significantly shaped by policy 

measures. 
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In the U.S., the Renewable Fuel Standard (RFS) and accompanying tax credits spurred capacity 

expansion and process improvements, boosting bioethanol production and consumption nearly 

tenfold between 2002 and 2019 289. Annual blending mandates and tradable Renewable 

Identification Numbers (RINs) reduced market uncertainty, attracting private investment, while 

learning-by-doing improved efficiency despite corn price fluctuations 290–292. McPhail et al. 293 

found that eliminating U.S. federal tax credits and tariffs would reduce bioethanol production by 

18.6% and lower corn prices by 14.5%, underscoring that policy support rather than market 

forces alone has been a key driver of price and production dynamics of bioethanol. However, 

when gasoline prices exceed $3 per gallon, bioethanol production remains profitable without 

policy support, allowing output to rise from 6.5 to 14 billion gallons and corn prices to stabilize 

near $4 per bushel 293. Timilsina and Shrestha 294 assessed the impacts of biofuel expansion on 

global food prices, summarizing studies that projected increases of 23–72% for maize, 8–30% 

for wheat, 18–76% for oilseeds, and 11.5–66% for sugar under planned biofuel expansion 

scenarios by 2020. They further noted that the 2007–2008 food crisis was partly driven by the 

rapid growth of first-generation biofuel production 294. In 2008, Rosegrant et al. 295 concluded 

that restricting biofuel production from food-based feedstocks could lower maize prices by 6% 

by 2010 and 14% by 2015, with smaller reductions for other crops, while a global moratorium 

could further decrease prices of maize, cassava, sugar, and wheat by 20%, 14%, 11%, and 8%, 

respectively. In the EU, RED II enhanced cost competitiveness through sustainability 

certification and technology differentiation, granting compliance credits and preferential market 

access to low-carbon fuels 296–299. This boosted investor confidence and funding for advanced and 

waste-derived bioethanol 300. Emerging economies like India and China adopt hybrid models 

with blending targets (E10–E20), concessional financing, subsidies, and infrastructure grants, 
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and raising rural incomes via agricultural residues 301–303. These examples show how early-stage 

policy interventions can offset high capital costs and accelerate industry development. Table 7 

provides a consolidated overview of the various policies along with their corresponding 

summaries. 
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Table 7. Bioethanol policies: year, provisions, impact. 

Nations Policy Year Provisions/ Features Impact Remarks Ref 
USA Renewable Fuel 

Standards (RFS) 
2007 Mandated annual renewable fuel volumes 

and blending; Tradable RINs; Tax credits. 
Increased bioethanol 
production and private 
investors.  

Updated annually  273,278,289–2

92,304 

Brazil Proálcool 1975 Energy self-reliance; Blending mandates; 
Concessional financing; Infrastructure 
investments. 

Rapid industry build-out; 
Cost-cutting due to improved 
farming; Ethanol-based 
vehicles. 

Reduced oil 
import; Long 
legacy as frontier 
in bioethanol. 

284,285 

Brazil RenovaBio 2017 Market for carbon-intensity certificates; 
Efficiency certification for producers. 

Attracted investment; 
incentivised low-carbon 
bioethanol. 

Improved 
sustainability 
metrics 

305,306 

EU Renewable 
Energy 
Directive 

2009 Binding renewable energy targets; Tax 
incentives; Subsidies. 

Increased investment in 
low-carbon fuels; Higher 
research funding for 
advanced and waste-derived 
bioethanol. 

Proactive updates 
on targets and 
ILUC rules. 

282,296–300 

China Bioethanol 
policy 

2001 Pilot E10 rollouts; Fuel-grade bioethanol 
standards; Production and quality 
regulation. 

Scale-up of Pilot plants; 
Regional blending trials. 

Still in place 307 

India National Policy 
on Biofuels 
(NPB) 

2018 Bioethanol from surplus/damaged grains; 
Blending targets; Stopped import and 
export of biofuels. 

Rapid blending growth; 
Spurred 2G biorefinery 
growth in integration with 
petroleum refineries. 

Government 
procurement and 
support 

1,308 

RIN: Renewable Identification Numbers; ILUC: Indirect Land Use Change. 
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So in a nutshell, policy frameworks have made bioethanol economically viable through three 

synergistic mechanisms: (i) demand creation, (ii) cost mitigation, and (iii) market differentiation. 

Demand was driven by blending mandates and volume targets, ensuring stable markets, lowering 

investor risk, and encouraging capacity growth. Cost reduction involved subsidies, concessional 

loans, and R&D support to foster technological learning and economies of scale. Market 

differentiation rewarded renewable markets via sustainability certifications like RED II and RFS 

309,310. Together, these measures have closed the cost gap with fossil fuels while delivering social 

and environmental benefits, including rural employment and lower import dependence 60. Thus, 

the sustainability of bioethanol production is shaped by a complex interplay of factors, including 

feedstock availability, technological advances, economic viability, policy support, and 

environmental considerations. Overcoming the challenges in feedstock costs and efficiency 

through innovation, such as utilizing waste streams and advanced microbial technologies, holds 

promise for improving the competitiveness of bioethanol. Stable, transparent, and socially 

inclusive policy frameworks, supported by certification schemes ensuring environmental and 

economic integrity, will be essential to secure bioethanol’s long-term viability as a cornerstone of 

the global renewable energy transition.  

5. Potential Improvements and Future Directions 

A comprehensive summary of the four generations of bioethanol production is provided in Table 

8, offering a holistic analysis that includes decision support, TRL, policies, and overall 

environmental impacts in terms of carbon emissions and GHG potential. As we progress from 

the first to the fourth generation, there is a noticeable increase in sustainability, reduced land use, 

and a shift toward carbon neutrality 226,311. First-generation bioethanol sometimes has higher 

carbon emissions compared to gasoline 312. Each generation presents evolving technologies and 
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challenges, with later generations showing more promise but requiring continued research and 

development. Policies supporting bioethanol production have evolved, laying the foundation for 

more sustainable and environmentally friendly alternatives. Notable policies, like the U.S. 

Renewable Fuel Standard (RFS) 273,278, the EU's Renewable Energy Directive (RED II) 313, 

Brazil's RenovaBio 305, and others in China and India 308,314, aim to reduce carbon emissions 

through the promotion of advanced biofuels. However, inconsistent regulations and policy 

uncertainties can hinder market stability, affecting long-term investments and planning 315,316. 
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Table 8. Summary of bioethanol production from four generations of feedstock. 

Severity Very High High Moderate to high 
Colour Scheme    

 

Generation Carbon 
Emissions* 

GHG 
reduction 
Potential# 

Holistic 
Perspective 

Technology 
Readiness 
Level (TRL)  

Decision Support  Policy and regulation Ref 

First 0.08 to 4.4 Moderate 
to higha 

Food-versus-fuel 
conflict, Minimal 
environmental 
benefits. 

9 Established 
infrastructure, widely 
adopted.  

U.S. Renewable Fuel 
Standard supported 
blending in gasoline. 

226,228,273,

278,311,317 

Second -3.1 to 4.7 High Non-food-based 
feedstock offers 
higher 
sustainability. 

8-9 Costly pretreatment 
improving with R&D.  

EU Renewable Energy 
Directive supported 2G 
bioethanol using incentives 
 

1,228,313,31

8,319 

Third -65 to 78 High High yield per 
hectare; grow on 
non-arable land; 
reduces land-use 
impacts. 
 

4-5 Scale-up challenge, 
higher sustainability.  

Emerging technologies, 
limited policies, research 
funding and incentives 
required. 
 

1,228,320 

Fourth - Very high Carbon-neutral/n
egative. 

2 Early-stage technology; 
can revolutionize 
sustainability.  

Currently speculative; 
require new regulatory 
frameworks. 

1 

*kg CO2-eq./kg of bioethanol produced; #compared to gasoline (94 g CO2 eq./MJ); adata not well-established; asometimes even higher 

than gasoline. ​ 
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Recent innovations in bioethanol production have radically transformed the bioenergy landscape. 

For example, Artificial Photosynthesis systems, which harness sunlight directly 188, significantly 

reduce external energy input and can be integrated with other renewable energy sources like 

solar or wind to build a more resilient energy infrastructure. Microbial Fuel Cells (MFCs), 

generating both bioethanol and electricity, offer a novel approach to sustainable energy 

production 176. Furthermore, advances in materials science, biotechnology, and process 

engineering are essential for overcoming current limitations. Biomass gasification and 

fermentation processes provide versatility, as syngas can be used as feedstock for multiple 

biofuels and chemicals 321, offering greater efficiency and feedstock flexibility than conventional 

bioethanol production. Challenges remain, including the operational complexity of maintaining 

precise temperature, pressure, and gas composition conditions, as well as capital investment in 

specialized equipment 322. Catalytic synthesis is also a promising avenue for reducing carbon 

footprints in bioethanol production, although it faces hurdles such as catalyst performance and 

process integration 323. 

Consolidated Bioprocessing, a key breakthrough, integrates enzyme production, biomass 

hydrolysis, and fermentation into a single step, eliminating the need for additional enzymes and 

pretreatment processes 324. This innovation reduces both costs and process complexity. 

Additionally, continuous fermentation systems, which maintain optimal conditions for microbial 

growth, can enhance productivity and overall process efficiency 93,325,326. Nanotechnology 

improves enzyme stability and reusability, particularly in biomass pretreatment and enzyme 

immobilization, making bioethanol production more cost-effective and sustainable 57. Beyond its 

role as a biofuel, bioethanol is becoming an increasingly versatile chemical with applications in 
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various downstream industries (discussed in SI). In synthetic biology, engineered 

microorganisms convert bioethanol into high-value chemicals and pharmaceuticals, reducing 

dependence on petrochemical routes 327. This expands bioethanol's role as a sustainable carbon 

source for bio-manufacturing. 

Food-based, first-generation bioethanol has been produced for several decades, with Brazil and 

the United States leading global output through the use of sugarcane and corn as primary 

feedstocks, respectively 328. This technology is fully mature and operates at a TRL of 9, with 

numerous commercial-scale plants established worldwide 1. In contrast, large agricultural nations 

such as India and China are currently accelerating efforts to advance second-generation 

bioethanol technologies toward full commercialization (TRL 9), leveraging their abundant 

supplies of agricultural residues and other lignocellulosic feedstocks. In India, companies such as 

Praj Industries Limited 329 and Nuberg Green Energy 330 have already developed and 

demonstrated technologies capable of converting these residues into bioethanol and are operating 

at TRL 9. Similarly, in Brazil, firms like GranBio and Raízen are pursuing second-generation 

bioethanol production and have achieved TRLs in the range of 8 to 9, reflecting near-commercial 

maturity 331. Meanwhile, in the United States, companies including Mascoma Corporation 332 and 

Qteros Inc. 333 remain at comparatively earlier stages of technological deployment, operating at 

TRLs between 6 and 7, as their projects are still at the pilot or early demonstration level. Jain and 

Kumar 1 reported the TRL of 7–8 for bioethanol production via gas fermentation, with 

LanzaTech emerging as the leading industrial developer in this field. Algal-based 

third-generation bioethanol is still limited to the laboratory or pilot scale, corresponding to TRLs 

between 4 and 6 1. Algenol Biofuels (USA), which demonstrated a semi-commercial 

photobioreactor system for bioethanol production, achieving a TRL of around 6 before scaling 
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back operations due to economic constraints 334. The European initiative under the EU Horizon 

framework, such as the BIOFAT, has reached similar pilot-scale advancements 335. Lastly, 

fourth-generation bioethanol technologies remain predominantly at the research and laboratory 

scale, reflecting low TRL typically between 2 and 3 1. 

The central discussion ultimately revolves around identifying which type of biomass is most 

suitable for sustainable bioethanol production. There is, however, no universal answer, as the 

selection must be region-specific and guided by the availability of local resources, climatic 

conditions, and socioeconomic context. Such decisions should be supported by detailed life cycle 

and techno-economic analyses to ensure environmental sustainability and economic feasibility. 

Food-based first-generation feedstocks are generally less suitable due to their high agricultural 

input requirements and the ongoing food-versus-fuel debate 1,220. Hence, alternative non-food 

biomass should be prioritised. Second-generation lignocellulosic residues hold strong potential 

for countries such as Brazil, China, and India, where vast amounts of agricultural residues are 

produced annually 336,337. These lignocellulosic feedstocks can be efficiently utilized in 

decentralized biorefineries, which would minimize transportation costs and ensure a steady 

biomass supply by taking advantage of the abundant crop residues generated from multiple 

seasonal harvests throughout the year 60,338. Also, it will help generate employment in the rural 

and remote areas 60. In contrast, third-generation algal feedstocks may be impractical in regions 

with limited sunlight, as their cultivation in photobioreactors can demand significant energy 

inputs that compromise sustainability, particularly if derived from non-renewable sources. Even 

if renewable energy is used to produce algal biomass, subsequently converting that biomass back 

into bioethanol for energy use may not be carbon-intensive, but it represents a redundant and 

inefficient pathway. Fourth-generation and other advanced bioethanol technologies demonstrate 
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promise at the laboratory scale but often face scalability and biosafety challenges, especially 

those involving GM organisms, necessitating rigorous protocols prior to deployment 339–341. 

Despite this, bioethanol production also raises social and ethical concerns, particularly the "food 

vs. fuel" debate 342, as large-scale production from food crops can exacerbate food insecurity and 

drive up prices 343. Additionally, land-use changes can displace communities and harm 

biodiversity 344. Balancing energy needs with food security and social equity is essential. 

Environmentally, bioethanol offers potential GHG reductions compared to fossil fuels, with 

cellulosic bioethanol providing greater benefits (86% GHG reduction) than first-generation corn 

(52% GHG reduction) 345. However, land-use changes can offset these gains 344, emphasizing the 

need for sustainable land management and feedstock selection to maximize environmental 

advantages. 

Continued research and development efforts are required to ensure complete resource utilization 

and to make the process economical both in terms of “atoms” and “capital.” Jain et al. 346,347 

proposed the complete valorization of LCB, and suggested converting holocellulose into 

bioethanol or bio-oil, inorganic ash into high-purity silica for applications such as catalysis or 

adsorption, and lignin into bio-oil for potential material uses, including biopolymers. 

Comprehensive techno-economic and life cycle assessments can further guide the identification 

of best practices for specific regions while considering system boundaries at a global scale. Prior 

feedstock characterization is essential for selecting the most suitable biomass for bioethanol 

production. For instance, second-generation feedstocks with high lignin content or 

third-generation feedstocks with high lipid content may not be suitable for standalone bioethanol 

production. However, these materials can be integrated with other processing units to achieve 

complete feedstock utilization and higher atom efficiency. Statistical tools like response surface 
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methodology can optimize pretreatment conditions, minimize inhibitors, and improve process 

scalability. Ultimately, the successful scale-up of carbon-negative and integrative bioethanol 

technologies could offer the most sustainable route for future biofuel production. 

A promising direction for bioethanol production involves integrating carbon capture and 

utilization (CCU) technologies, where CO2 produced during fermentation is captured and 

repurposed for other industrial uses, creating a closed carbon loop 348. However, unsustainable 

agricultural practices, deforestation, and land use changes can offset the environmental benefits 

of bioethanol production 349. In the transportation sector, vehicle electrification is on the rise, but 

bioethanol still offers a viable alternative for powering electric vehicles. Technologies like Solid 

Oxide Fuel Cells that convert ethanol into electricity have demonstrated superior energy 

efficiency and sustainability compared to battery-powered electric vehicles (BEVs) 350. For 

instance, with its higher energy density, sugarcane bioethanol results in lower GHG emissions 

than BEVs, which in Brazil emit 65 grams of CO2 per kilometer, compared to the 58 grams 

emitted by ethanol-powered flex-fuel vehicles 351. In contrast, hybrid electric vehicles using 

bioethanol, already available in the Brazilian market, emit just 29 grams of CO2 per kilometer 351. 

Direct Ethanol Fuel Cells, still in the research phase, also hold promise for portable and 

stationary power applications, offering high energy density and low emissions 350,352. 

Fluctuations in fossil fuel prices affect the economic competitiveness of bioethanol, making it 

less attractive when oil prices drop. Therefore, supportive policies, subsidies, and incentives are 

necessary to drive the growth of the bioethanol industry. Integrating bioethanol into biorefineries, 

green chemistry, and the circular economy will further enhance its role in the bioeconomy. 

Genetic engineering in fourth-generation feedstocks, along with innovations in enzyme 
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technology and process integration, holds the potential for significant advancements in 

production efficiency and sustainability. Additionally, future approaches, such as optimizing 

local biomass mixtures for improved lignin extraction and hydrolysis, can address challenges in 

feedstock collection and transportation 60. Decentralized biorefineries and Industry 4.0 

technologies can streamline the bioethanol value chain, improving operational viability 338,353. 

Advanced research, such as molecular modeling and machine learning to optimize pretreatment 

processes, will drive further improvements in bioethanol production 57. Life cycle and 

techno-economic assessments are essential to balance costs, energy use, and environmental 

impacts, guiding the development of more sustainable and economical biofuel solutions. As the 

technologies evolve, they promise the future of renewable energy and the bioeconomy. 

6. Conclusion 

The Circular Bio-society 2050 vision (Bio-based Industries Consortium, 2018) highlights a 

promising future where sustainable energy, food, and products are sourced through circular 

bioeconomy principles. This review underscores bioethanol production potential from diverse 

feedstocks, particularly from lignin-rich biomass, which has traditionally been a challenging 

material. However, recent breakthroughs in biotechnology and chemical processes have opened 

new pathways for efficiently converting lignin into bioethanol. The review also calls for more 

transparency in biorefinery life cycle assessments, emphasizing the need to evaluate the entire 

value chain to understand the full impact and benefits, including biogenic carbon storage. While 

fluctuations in fossil fuel prices can affect the economic feasibility of bioethanol, government 

support, subsidies, and incentives are essential to fostering growth in the bioethanol sector. 

Integrating bioethanol production into biorefineries and aligning it with green chemistry and the 

circular economy can further strengthen its role in the bioeconomy. Moreover, conducting 
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detailed LCAs of first- and second-generation bioethanol enables the identification of 

environmental trade-offs and hotspots, providing critical insights to guide policy and technology 

development. Incorporating emerging metrics such as resource efficiency and 

socio-environmental benefits into LCAs can enhance decision-making and support the transition 

to sustainable biofuels. The continued advancement in genetic engineering, enzyme technology, 

and process integration is expected to significantly improve bioethanol production's efficiency 

and sustainability. As these innovations progress, they hold the potential to shape a more 

sustainable and renewable energy future, offering long-term benefits for both the biofuel industry 

and the broader bioeconomy. 
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