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Order-disorder transition in soft and deformable particle assembly with dynamic size-

dispersity in two dimensions

Rahul Kumar1, Sangwoo Lee1, Patrick T. Underhill1

1Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, 

New York 12180

ABSTRACT 

Soft and deformable objects are widespread in natural and synthetic systems, including 

micellar domains, microgel particles, foams, and biological cells. Understanding their phase 

behavior at high concentrations is crucial for controlling long-range order. Here, we employ a 

Voronoi-based model to study the packing of deformable particles in two dimensions under 

thermal fluctuations. Particles are represented as interconnected polygons, with the system energy 

comprising penalties for deviations in area and perimeter from preferred values. The strengths of 

these penalties capture two key features of packing: dynamic size dispersity, mimicking chain 

exchange in block copolymer micelles or solvent exchange in microgels, and particle line tension, 

reflecting the energy cost of shape changes. The model exhibits an order–disorder transition 

(ODT): low perimeter penalties yield disordered states, while higher penalties produce a hexagonal 

crystal lattice. Large dynamic size dispersity shifts the ODT to higher perimeter penalties. We 

explain this by analyzing particle sizes, defect formation barriers, and Voronoi entropy, which 

show that defect formation is easier when area penalty term is smaller, providing a mechanistic 

basis for the ODT trends. In regimes far from the ODT, deviations from the hexagonal lattice are 

accurately described by normal mode displacement fields, confirming that thermal fluctuations 

rather than defects govern the structure.
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1 Introduction 

Materials composed of soft and deformable constituent particles are ubiquitous in both natural and 

synthetic systems. Examples of such deformable particles include grafted core–shell particles,1–4 

dendrimers,5,6 star polymers,7,8 block copolymer micelles,9–11 vesicles,12,13 microgels,14,15 

emulsions,16,17 foams,18 and biological cells.19,20 A key characteristic of deformable particles is 

their ability to shrink and/or deform in response to interactions with neighboring particles under 

crowded conditions. For example, densely packed microgels exhibit faceting and interpenetration 

of polymer chains,15,21 and can nearly eliminate interstitial voids, thereby approaching space-filling 

configurations. Collectively, these physical systems can be modeled as packing of soft, deformable 

particles. By contrast particles such as silica microspheres, metallic nanoparticles are significantly 

less deformable. The maximum packing efficiency of monodisperse hard spheres is limited to 

~74% in three dimensions, forming close-packed structures such as face-centered cubic, and to 

~91% for hard discs in a hexagonal close-packed arrangement in two dimensions. The packing of 

hard particles has been the subject of extensive theoretical, computational, and experimental 

investigation over several decades.22–24 In comparison, the packing behavior of deformable 

particles remains far less understood, despite its relevance to diverse soft-matter and biological 

systems.15,16,21 

Owing to their deformability, such particles can adapt their shape in response to external 

stimuli, enabling the design of adaptive materials for stretchable electronics, soft robotics, and 

responsive surfaces.25 Thin film self-assembly studies have direct applications in advanced 

coatings and membranes to functional interfaces.26 Moreover, quasi-2D studies, particularly 

through simulations and model experiments, have provided fundamental insights into jamming, 

collective dynamics, and melting in two dimensions,27–29 which often differ from their three-
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dimensional counterparts. Two-dimensional melting, in particular, has attracted considerable 

recent attention, especially with respect to the possible existence of intermediate hexatic phases 

and the nature of the melting transition, including continuous versus weakly first-order 

scenarios.28,30 Recent efforts have also focused on understanding the packing behavior of hard 

disks with static polydispersity.31,32 In contrast, the impact of dynamic size dispersity on packing 

structure remains relatively underexplored, despite its widespread relevance in experimental 

systems where particle sizes can fluctuate. For instance, the size of block copolymer micelles can 

fluctuate due to the exchange of copolymer chains between micelles,33 and microgel particles can 

swell or deswell in a solvent, thereby altering their size within dense packings.34

To understand packing behavior, it is instructive to distinguish between packing and tiling, 

a distinction that becomes essential in nearly confluent assemblies of deformable particles. Packing 

refers to the arrangement of objects within a space, whereas tiling describes the partitioning of that 

space into distinct, non-overlapping compartments. In nearly confluent systems of densely packed 

deformable particles, the distinction between packing and tiling vanishes, as particle deformation 

allows them to collectively fill space without significant voids. In this regime, many-body 

interactions naturally emerge,1,35 breaking down the common simplifying assumption of pairwise 

additivity that is often employed in computational simulations. To capture these collective effects, 

several modeling frameworks have been developed, including machine learning approaches for 

polymer-grafted nanoparticles,1,2,35 deformable particle model representing particles as 2D spring 

rings,36 Vertex,19,37–39 and Voronoi-based,40,41 models commonly used to describe epithelial 

monolayers with polygonal cells.

In this study, we adopt a Voronoi-based model to investigate the packing behavior of soft 

and deformable particles in 2D where Voronoi cells represent the faceted polygonal particles under 
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dense packing. We sample the system configurations from Boltzmann distributions at a fixed 

temperature, quantifying the effect of thermal fluctuations on the self-assembly. We further 

examine the impact of dynamic size dispersity on phase behavior, mimicking experimental 

scenarios in which the size of constituent particles fluctuates. We quantify topological defects in 

such systems and show its effect on the order of the system. Finally, we perform normal mode 

analysis on the ordered structures and discuss the resemblance between our model and harmonic 

spring network.        

2 Materials and Methods

2.1 Voronoi model

We adopt a Voronoi-based model to simulate the 2D assembly of densely packed (no gaps between 

particles) soft and deformable particles. The phase behavior of such dense packings has been 

explored previously in three dimensions.42,43 In the model, the Voronoi diagram represents the 

system configuration with Voronoi cells describing the faceted deformed particles. The Voronoi 

and Vertex models are closely related. While polygon centers serve as the degrees of freedom in 

the Voronoi model, polygon vertices are the degrees of freedom in the Vertex model.  The energy 

of the system in our Voronoi model is given by the following expression

𝐸 =
𝑁

𝑖=1

1
2 𝑘(𝐴𝑖 ― 𝐴0)2 + 𝛾(𝑃𝑖 ― 𝑃𝑐𝑖) (1)

where 𝑁 is the total number of particles. The first term in the energy equation captures the area 

elasticity and imposes an energy penalty when the instantaneous area 𝐴𝑖 of the particle 𝑖 deviates 

from its preferred area 𝐴0 and 𝑘 controls the strength of the penalty, thereby controlling the degree 

of dynamic area-dispersity (size-dispersity) of the assembly in the system. The second term 

quantifies the perimeter penalty on the particle whose instantaneous perimeter 𝑃𝑖 deviates from 
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the preferred perimeter 𝑃𝑐𝑖 which is taken as the perimeter of an equivalent circle of area 𝐴𝑖 i.e., 𝑃𝑐𝑖

≡ 2 𝜋𝐴𝑖. The strength of perimeter penalty is controlled by the line tension, 𝛾. The choice of 𝑃𝑐𝑖 

reflects that an isotropic circle geometry has the minimum perimeter density for the lowest line 

tension energy. The parameters 𝑘 and 𝛾 capture two key aspects of packing behavior in soft, 

deformable particles. In experiments, 𝑘 scales the energy penalty by the particle size fluctuations—

accounting for chain exchange in block copolymer micelles and the resulting size dispersity—

while 𝛾 quantifies particle deformability via the energy cost of shape changes. For example, in 

emulsion systems, 𝛾 can be mapped onto the effective interfacial tension of emulsion droplets, 

while in polymeric microgels or block copolymer micelles, 𝛾 reflects the energetic cost of particle 

deformation arising from polymer stretching.

We nondimensionalize the quantities in eqn (1) by scaling energies with thermal energy 𝑘𝐵

𝑇, where 𝑘𝐵 is Boltzmann’s constant and 𝑇 is absolute temperature, and by scaling lengths with 

𝐴1/2
0 . In nondimensional form, eqn (1) becomes

𝐸 =
𝑁

𝑖=1

1
2𝑘 𝐴𝑖 ― 1

2
+ 𝛾 𝑃𝑖 ― 𝑃𝑐𝑖 (2)

where 𝐸 = 𝐸/𝑘𝐵𝑇, 𝑘 = 𝑘𝐴2
0/𝑘𝐵𝑇, 𝐴𝑖 = 𝐴𝑖/𝐴0, 𝛾 = 𝛾𝐴1/2

0 /𝑘𝐵𝑇, 𝑃𝑖 = 𝑃𝑖/𝐴1/2
0 , and 𝑃𝑐𝑖 = 𝑃𝑐𝑖/

𝐴1/2
0 . Quantities denoted with tildes are dimensionless, and this convention is used consistently 

throughout the paper.

2.2 Monte Carlo simulations 

We performed Monte Carlo (MC) simulations in the canonical ensemble for a two-dimensional 

system of 𝑁 = 3600 particles. The simulation box dimensions were set to 55.836 × 64.476, 

ensuring a preferred area of one in dimensionless units per particle. Also, the box dimensions are 

commensurate with hexagonal crystal lattice. Periodic boundary conditions were applied along 
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both the 𝑥- and 𝑦-directions. Each Monte Carlo move consisted of selecting a particle at random 

and displacing it by a random vector with magnitude up to a prescribed maximum displacement. 

After every move, we constructed the Voronoi tessellation of the particle configuration, using 

particle positions as the centers. This was implemented with MATLAB’s “delaunayTriangulation” 

library.44 The system energy was evaluated from the Voronoi diagram using eqn (2), and 

equilibrium configurations were sampled via the standard Metropolis algorithm. We refer to these 

as “thermal systems,” reflecting the inclusion of thermal energy in the simulations. Based on eqn 

(2), increasing 𝑘 or 𝛾 reduces the relative thermal energy in the system and vice-versa. The 

maximum displacement was chosen such that an acceptance ratio lies in the range of 30 ― 60%. 

We equilibrated our system for at least 40000 Monte Carlo cycles where one cycle consists of 𝑁 

displacement moves. At least 100 simulation snapshots, evenly sampled from 20000 Monte Carlo 

cycles in the production run, were used to calculate the ensemble average of thermodynamic 

properties. Errors were estimated as the standard deviation of five block averages from the mean.   

We investigate the phase behavior of particles interacting with the energy functional 

written in eqn (2) in three different regimes of dynamic size-dispersity. To do so, we choose three 

different values of 𝑘 to obtain different degrees of dynamic size-dispersity in the system, 𝑘 = 1000

, 𝑘 = 100, 𝑘 = 30, to ensure low, moderate, and high dynamic size-dispersity, respectively. The 

initial configurations for Monte Carlo simulations were prepared in a perfect hexagonal lattice, 

oriented such that the two farthest-separated vertices of any hexagon lie along the 𝑥-axis. Three 

series of simulation runs were carried out with 𝑘 = 1000, 𝑘 = 100, 𝑘 = 30, each over a range of 

𝛾 values. Since energy is scaled by the thermal energy, a decrease in 𝛾 corresponds to an increase 

in the relative thermal energy of the system. To examine the system-size effect, we also simulated 

systems with 𝑁 = 900 and 𝑁 = 2500 in the boxes with dimensions commensurate with a 

Page 6 of 29Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 4

:4
1:

12
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5SM01097G

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm01097g


7

hexagonal crystal lattice for the case of 𝑘 = 100 at varying values of 𝛾 (see Fig. S1 in the 

Supporting Information). The system behavior appears to be independent of system size. We chose 

a moderate system size of 𝑁 = 3600 to focus on the two dominant phases of interest, ordered and 

disordered, that are robustly captured within this regime. We also assessed the influence of initial 

conditions on the equilibrium phases (see Fig. S2 in the Supporting Information). Simulations 

initialized from both a perfect hexagonal lattice, and a configuration obtained after equilibrating 

at a nearby values of 𝛾 converge to the same equilibrium state, demonstrating robustness to initial 

conditions enabled by sufficient Monte Carlo sampling.

2.3 Structure factor

We characterize the system structure by computing the structure factor 𝑆 𝑞  of the particle 

assembly by

𝑆 𝑞 =
1
𝑁 ⟨| 𝑁

𝑖=1
𝑒i𝑞⋅𝑟𝑖|2⟩(3)

 where 𝑟𝑖 is the position vector of the Voronoi center of 𝑖th particle, 𝑁 is the total number of 

particles in the system, 𝑞 is a wave vector, and 〈…〉 denotes an average over at least 100 evenly-

spaced simulation snapshots. The allowed wave vectors were determined by discretizing the 

simulation box spatially into 300 ×  300 grids. Then we obtain azimuthally-averaged 𝑆(𝑞) from 𝑆

𝑞  where 𝑞 is the magnitude of 𝑞. For this, 𝑞 was assigned to discrete radial bins spanning the 

desired 𝑞-range. Within each bin, the corresponding 𝑆 𝑞  values were averaged to yield the 

powder-averaged 𝑆 𝑞 . 

2.4 Orientational order parameter 
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We characterized the system structure by quantifying the hexatic order in the system since the 

honeycomb structure of uniform hexagons has the least line tension energy.45 We compute the 

local bond-orientational order parameter 𝜓6 for each particle by eqn (4). 

𝜓6,𝑖 =
1
𝑧𝑖

𝑧𝑖

𝑗=1
𝑒i6𝜃𝑖𝑗(4)

Ψ6 = ⟨1
𝑁

𝑁

𝑖=1
𝜓6,𝑖⟩(5)

In the eqn,  𝑖 is the particle identity, 𝑧𝑖 is the coordination number of the ith particle (same as the 

number of vertices of the particle), 𝜃𝑖𝑗 is the angle between the positive 𝑥-axis and the vector 

joining the Voronoi center of the particle to the vertex 𝑗. We refer to 𝜃𝑖𝑗 as the vertex angle. In the 

expression, 6 denotes the six-fold (hexatic) symmetry of the regular hexagon. By construction, 

𝜓6,𝑖 is a complex number, where the magnitude |𝜓6,𝑖| quantifies the local six-fold order of the 

particle, and the phase arg(𝜓6,𝑖) indicates the orientation of the particle relative to the positive 𝑥-

axis. After computing 𝜓6 for all the particles, we obtain the mean global bond orientational order 

parameter Ψ6 of a system configuration by using eqn (5) where 〈…〉 denotes an average over at 

least 100 evenly-spaced simulation snapshots. For our initial configuration where two farthest-

separated vertices of hexagons lie along the 𝑥-axis, Im(Ψ6), the imaginary component of Ψ6, is 

zero, and Re(Ψ6), the real component of Ψ6 is one. Moreover, for a completely disordered 

arrangement of polygons under the constraint where mean coordination number of polygons is 6, 

Ψ6 is essentially zero.

2.5 Voronoi entropy 

We also compute the Voronoi entropy 𝑆vor which is Shannon entropy of the Voronoi tessellations 

to compute the structural order in the system defined as
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𝑆vor = ⟨ ―𝑧𝑃𝑧 ln 𝑃𝑧⟩(6)

where 𝑃𝑧 denotes the fraction of Voronoi polygons with coordination number 𝑧, and 〈…〉 denotes 

an average over at least 100 evenly-spaced simulation snapshots. This entropy measures the 

deviation of the observed Voronoi cell distribution from that of an ideal single crystal, and 

therefore vanishes for a perfect hexagonal arrangement. While orientational order parameters and 

structure factor calculations primarily quantify long-range structural order, Voronoi entropy 

provides a complementary measure that captures the degree of disorder in the system.

2.6 Athermal defect formation simulations 

We map the energy landscape of defect formation in a system of 𝑁 = 400 particles with no thermal 

fluctuations. To introduce 5-7-7-5 bound dislocation pairs, we select a 6-6-6-6 four-particle cluster 

composed of two neighboring particles along the 𝑦-axis and their two immediate neighbors along 

the 𝑥-axis. The system is initialized in a perfect hexagonal configuration. We then actively 

modulate the interparticle distances 𝑙𝑥 and 𝑙𝑦, defined as the separations between opposite particles 

in the 𝑥- and 𝑦-directions of the chosen four-particle cluster, while allowing all surrounding 

particles to relax in order to minimize the total energy. Specifically, we vary 𝑙𝑦 first while keeping 

𝑙𝑥 fixed, and then vary 𝑙𝑥 for each chosen value of 𝑙𝑦. We compute the energy of the relaxed system 

in the 𝑙𝑥 ― 𝑙𝑦 plane. 

2.7 Normal mode analysis 

We perform normal mode analysis to characterize the collective vibrational (phonon) modes of a 

system of 𝑁 = 3600 particles arranged in a perfect hexagonal configuration. To do so, we 

construct the Hessian matrix from the second derivatives of the total energy with respect to particle 

displacements using the expression 
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𝐻𝑖𝑗
𝜇𝜈 =

𝛿2 𝐸
𝛿𝑢𝑖

𝜇𝑢𝑗
𝜈
(7)

where the indices 𝑖/𝑗 are particle identity, 𝜇/𝜈 are the Cartesian coordinate directions, 𝑢 is particle 

displacement, and 𝐸 is the total energy computed using eqn (2). We use a finite difference method 

to quantify the second derivatives. The Hessian matrix is of the size 2𝑁 × 2𝑁 for two-dimensional 

system. The Hessian eigenvectors 𝑉𝑛 correspond to the normal modes denoted by 𝑛, describing 

the relative directions and amplitudes of motion for each particle, while we associate the 

eigenvalues 𝜆𝑛 with the squared frequencies 𝜔𝑛
2 of these collective vibrations i.e., 𝜔𝑛 = 𝜆𝑛. 

Since our physical system with thermal fluctuations is overdamped, this analysis instead provides 

the eigenvectors and eigenfrequencies of a corresponding “shadow system” that retains the same 

interparticle interactions but neglects damping.  

We also characterize normal modes of an analogous system of a 2D elastic spring network 

connecting point masses forming the hexagonal crystal lattice. The springs are Hookean and only 

connect the nearest neighbors. The total energy of the spring network 𝐸spring is computed by

𝐸spring =
2𝑁

𝑖′=1
𝑘spring 𝓁𝑖′ ― 𝓁0

2
(8)

where 𝑖′ is the spring identity, 2𝑁 is the total number of springs connecting 𝑁 point masses, 𝑘spring 

is spring constant and set to one, 𝓁𝑖′  is the instantaneous length of the spring 𝑖′, and 𝓁0 is the 

equilibrium spring length corresponding to the nearest-neighbor distance in the ground state of 

hexagonal crystal lattice. We follow the same procedure as outlined above to obtain information 

about different collective modes. 

For each mode 𝑛, the displacement amplitude was drawn from a normal distribution with 

zero mean and variance ⟨𝑎2
𝑛⟩ = 1/𝜆𝑛, consistent with equipartition. Excluding near-zero 
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eigenvalues associated with translational modes, the total displacement field was constructed as a 

linear combination 𝑢 = ∑𝑛 𝑎𝑛𝑉𝑛. Particle positions were then updated by displacing particles by 

𝑢 from the perfect hexagonal crystal lattice. Repeated sampling produced an ensemble of imperfect 

hexagonal crystal configurations, which allowed us to compute Ψ6. 

In a nearly perfect hexagonal crystal, particle displacements give rise to minor distortions 

of the Voronoi cells from regular hexagons. To quantify these distortions, we computed the 

probability distribution of the vertex angles 𝜃𝑖𝑗. The resulting distribution is hexamodal, with each 

peak centered around (𝑗 ― 1)𝜋 3, where 𝑗 ∈ [1,6] indexes the sixfold symmetry directions. A 

representative probability distribution is shown in Fig. S3 in the Supporting Information. The 

standard deviations of the six modes are nearly identical, and their average value, denoted as 𝛿, is 

used as a measure of the overall angular distortion in the system configurations. We compute 𝛿 for 

the imperfect hexagonal crystal configurations obtained from normal mode analysis and for 𝑘

= 1000, 𝑘 = 100, and 𝑘 = 30 thermal systems in the large-𝛾 limit. Building on this angular-

deviation framework, we next examine its implications for the bond-orientational order parameter. 

Using eqn (4), we calculate the local bond-orientational order parameter of a single distorted 

Voronoi cell by sampling vertex angle, 𝜃𝑗, from a normal distribution with mean (𝑗 ― 1)𝜋 3, 

where 𝑗 ∈ [1,6] and variance 𝛿2. The global bond-orientational order parameter Ψ6 is then 

evaluated as by averaging local bond-orientational order parameters over at least 1000 individual 

Voronoi polygon configurations. 

3 Results and discussion 

3.1 Order-disorder transition
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Our model system shows an order-disorder transition (ODT) when 𝛾 is varied at a fixed 𝑘. Fig. 1a 

and 1b show the representative simulation snapshots of the 𝑘 = 1000 system equilibrated at 𝛾 = 8 

and 𝛾 = 6, above and below ODT 𝛾 point, respectively. The 2D scattering profile for each state is 

also shown in the bottom right corner of each snapshot. For the case of 𝛾 = 8, The presence of six 

Bragg peaks exhibiting six-fold symmetry indicates that the system is in a hexagonally ordered 

phase, with particle Voronoi centers arranged on a hexagonal crystal lattice. On the other hand, at 

𝛾 = 6, we see an isotropic ring in the scattering profile which indicates a disordered phase with no 

crystal symmetry associated with the arrangement of particles. 

Fig. 1 Representative simulation snapshots of 𝑘 = 1000 system at (a) 𝛾 = 8  and (b) 𝛾 = 6. The 
simulated scattering profile is also shown in the bottom right corner of each figure. Particles are 
color-coded based on their coordination numbers 𝑧.  
  

 
Fig. 2 (a) Azimuthally averaged structure factor 𝑆(𝑞) as a function of 𝑞 for 𝑘 = 1000 system at 

𝛾

෤

= 8 𝛾

෤

= 6
5

6

7

𝑧
(a) (b)

(a) (b)
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three values of 𝛾 (b) Normalized primary peak heights of 𝑆(𝑞) relative to that of a perfect 
hexagonal lattice (solid line with closed markers) and mean global orientational order parameter 
(solid line with open markers) with 𝛾. Both quantities jump at the ODT which is estimated to be 
at 𝛾ODT = 6.5. 

To obtain an estimate of the location of the ODT in the 𝛾 parameter space at a fixed 𝑘, we 

compute the azimuthally averaged structure factor 𝑆(𝑞) from the 2D scattering pattern (see section 

2.3 in Materials and Methods). Fig. 2a shows the qualitative comparison of 𝑆 𝑞  obtained at three 

values of 𝛾 near the transition. At large 𝛾, for example 𝛾 =  10, 𝑆(𝑞) has the clear primary peak at 

 𝑞1 ≈  6.8, secondary peak at 𝑞2 ≈ 11.7 ≈ 3𝑞1, and so on confirming the existence of the 

underlying hexagonal arrangement of particles. As we decrease 𝛾 (increasing relative thermal 

energy) of the system, the peak heights in 𝑆(𝑞) decrease gradually indicating the weakening of 

hexagonal order in the system. When 𝛾 is small enough (relative thermal energy high enough), we 

see a jump in the peak heights with respect to 𝛾 at the ODT as the system transitions into the 

disordered phase from the ordered phase. The persistence of finite peak heights even when the 

system is globally disordered indicates a short-range liquid-like packing and is due to the excluded 

size interaction between particles (i.e., 𝑘 is non-zero). The trend can be seen more clearly if we 

track the primary peak height extracted from 𝑆(𝑞) with 𝛾 (Figure 2b). Here we have normalized 

the 𝑆(𝑞) primary peak heights with that of primary peak height of perfect hexagonal crystal lattice. 

We also characterize the ODT in the system using the mean global orientational order parameter, 

Ψ6. Since the Im(Ψ6) is negligible in both the disordered phase and the ordered phase, due to the 

uniform distribution of 𝜓6 and the chosen crystal orientation of the initial configuration, 

respectively, we focus our analysis on the behavior of Re(Ψ6) (Fig. 2b). When 𝛾 is decreased from 

a large 𝛾, say, 𝛾 = 100, Re(Ψ6) monotonically decreases and corroborates the observation of 

weakening of hexagonal order in the system from above analysis. As the system disorders from 

the ordered state, Re(Ψ6) jumps from 0.25 to approximately zero in the disordered phase, 
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indicating a complete loss of hexagonal symmetry. We estimate the location of the ODT by taking 

the average of the largest 𝛾 at which the system is disordered and the smallest 𝛾 at which the system 

is ordered obtaining 𝛾ODT = 6.5 for 𝑘 = 1000 system. We further characterized the order–

disorder transition using the bond-orientational correlation function (see the Supporting 

Information for details). The disordered phase exhibits finite bond-orientational correlation 

lengths, whereas the ordered phase displays long-range correlations (refer to the Fig. S4 in the 

Supporting Information). In conclusion, our simple model shows an ODT behavior. We note that 

studies on such 2D systems have shown the existence of a hexatic phase – sandwiched between 

disordered and hexagonal ordered phase – with narrow stability region.28,46,47 However, we do not 

observe a hexatic phase in the present study likely due to the moderate system size considered. In 

two-dimensional systems, intermediate hexatic phases are known to be particularly sensitive to 

system size effect,30,48 and we therefore cannot rule out the possibility that a hexatic phase may 

emerge in larger systems. With this caveat in mind, 𝛾ODT is an estimate of location of ODT to a 

first approximation. 

Fig. 3 (a) Mean global orientational order parameter and (b) dynamic size-dispersity between 
particles for 𝑘 = 1000, 𝑘 = 100, and 𝑘 = 30 systems with 𝛾. 

(a) (b)
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In our model, 𝑘 sets the degree of dynamic size-dispersity in the system at a given 𝛾 with 

smaller 𝑘 leading to greater size-dispersity among particles. To investigate the impact of dynamic 

size-dispersity on the ODT, we take 𝑘 = 30 (high size-dispersity) and 𝑘 = 100 (moderate size-

dispersity) along with 𝑘 = 1000 (low size-dispersity) systems. The behavior of Re(Ψ6) with 𝛾 for 

these systems are shown in Fig. 3a. We estimate size-dispersity in our system by the standard 

deviation in particle area from its mean preferred value (which is one in dimensionless units in our 

simulations), denoted here as 𝜎𝐴. Fig. 3b shows the variation of 𝜎𝐴 with 𝛾 for three systems. 

Similar to 𝑘 = 1000 system, the other two systems with 𝑘 = 100, and 𝑘 = 30 also show the ODT 

when 𝛾 is modulated (Fig. 3a). Apart from that, we also observe a monotonic decrease in 𝛾ODT 

with 𝑘. The estimate of 𝛾ODT is 17.5 for 𝑘 = 30 and 10.5 for 𝑘 = 100 systems along with 6.5 for 

𝑘 = 1000 system. The bond-orientational correlation function analysis for the three systems is 

also shown in Fig. S4. Qualitatively, the trend can be explained by considering two effects. First, 

increasing dynamic size-dispersity in our model enhances the configurational entropy of the 

disordered phase, as the disordered system can access an enormous number of distinct Voronoi 

tessellations. This entropic gain stabilizes the disordered phase relative to the ordered phase 

shifting the ODT. A similar stabilization mechanism has been observed in experiments49 and 

simulations50 of three-dimensional colloidal systems with static polydispersity, as well as in 

computational studies of hard disks with static polydsipersity,32 where permutations of particle 

sizes introduce additional degrees of freedom that increases the configurational entropy of the fluid 

phase.51,52  Second, for our system at a given 𝑘, increasing 𝛾 reduces size-dispersity (Fig. 2b). This 

result is a direct consequence of our energy expression (eqn (2)) where the ground state is the 

perfect hexagonal crystal lattice. At a given 𝑘, increasing 𝛾 moves the system closer to the ground 

state, while simultaneously driving particle size and shape closer to a regular hexagon of unit area 
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(in dimensionless units). Thus, in our model, the ordered phase is energetically favored while the 

disordered phase is entropically favored. Taken together, a higher 𝛾ODT is observed for systems 

with lower 𝑘.

Fig. 4 (a) Mean degree of hexagonality of particles 〈|𝜓6|〉 with 𝛾 for 𝑘 = 1000, 𝑘 = 100, 𝑘 = 30, 
and random Voronoi tessellation. Error bars are smaller than the marker size. (b) Probability 
density function (pdf) of |𝜓6| for 𝑘 = 30 system at 𝛾 = 2, 𝛾 = 17 in the disordered phase, and at 
𝛾 = 18, 𝛾 = 90 in the ordered phase along with the distribution of |𝜓6| for random Voronoi 
tessellation.   

At a given 𝑘, 𝛾 not only affects the size-dispersity but also the shape of the particles. To 

gain a deeper understanding of the microscopic mechanisms underlying the transition, we 

computed 〈|𝜓6|〉 which is a measure of mean degree of hexagonality of particles in the assembly 

and show its dependence on 𝛾 in Fig. 4a. We also computed 〈|𝜓6|〉 for random Voronoi tessellation 

where Voronoi centers were generated randomly (Poisson distribution) in the simulation box. In 

line with Fig. 3, 〈|𝜓6|〉 shows a jump with respect to 𝛾 at the ODT, however, the jump is less sharp. 

Below the ODT in the disordered phase, these three systems merge onto the common branch of 

〈|𝜓6|〉 with 𝛾. As 𝛾 is decreased further and approaches zero, 〈|𝜓6|〉 for all the system saturates to 

about 0.36 which is close to 0.37 computed for random Voronoi tessellation implying that the 

arrangement of particles is close to random. The difference is due to the fact that 𝑘 is non-zero for 

(a) (b)
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three systems leading to excluded-area interactions among particles. The arrangement of particles 

being approximately random at low 𝛾 is also verified by comparing their |𝜓6| distribution against 

that of random Voronoi tessellation shown in Fig. 4b. The signature of ODT is also evident from 

the pronounced changes in the |𝜓6| distribution across the transition, reflecting the collective 

rearrangement of particle shapes as the system approaches ODT. Due to the deformable nature of 

particles and thermal fluctuations, even deep into the ordered phase, a non-negligible population 

of particles adopt irregular hexagonal shapes as indicated by the shape distribution for 𝑘 = 30 

system at 𝛾 =  90.

Particle shape and size distributions both influence the ODT in deformable particle 

systems. Notably, the 〈|𝜓6|〉 for 𝑘 = 30 system at 𝛾 = 17 in the disordered phase exceeds that of 

the 𝑘 = 1000 system at 𝛾 = 7  in the ordered phase in Fig. 4a. This suggests that large size 

dispersity can suppress long-range order even when many particles exhibit high |𝜓6|. An open 

question is: what is the upper limit of 〈|𝜓6|〉 that still permits disorder due to size dispersity? The 

coupled effects of particle size and shape on phase behavior will be examined in future work.

We also characterize the structural order in the system by measuring Voronoi entropy of 

the particle assembly. This analysis has proven useful in analyzing 2D point patterns.55,56 We 

emphasize that 𝑆vor is an intensive quantity, whereas thermodynamic entropy is extensive. In Fig. 

5, we report 𝑆vor as a function of 𝛾 for three systems, along with results for a random Voronoi 

tessellation. For the random Voronoi tessellation, we compute 𝑆vor ≈ 1.69, consistent with values 

reported in the literature.56,57 Consistent with the trends discussed above, 𝑆vor exhibits 

discontinuous changes at the ODT: the disordered phase is characterized by higher entropy, while 

the hexagonal ordered phase exhibits lower entropy. At the same 𝛾, systems with greater dynamic 

size dispersity (or lower 𝑘) display higher entropy, indicating that size dispersity promotes 
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structural disorder. Random Voronoi tessellation serves as the limiting behavior of our system 

meaning that lowering 𝑘 and 𝛾 drive the system closer to the Random Voronoi tessellation. 

 
Fig. 5 Voronoi entropy 𝑆vor with 𝛾 for 𝑘 = 1000, 𝑘 = 100, 𝑘 = 30 systems, and random Voronoi 
tessellation.

3.2 Defect formation 

The structural disorder in the ordered phase in our system arises from the presence of topological 

defects. A defect is defined as a particle whose number of sides (or neighbors) is different from 6. 

Since particles in 2D assembly are less correlated compared to their 3D analog, defects 

spontaneously form and annihilate in the assembly, and there exists a non-zero equilibrium 

concentration of defects in the system.27,58 These defects are generated by structural rearrangement 

of particles in succession such that two adjacent particles swap their neighbors, called T1 

topological events/transitions. A T1 event transforms a four-particle cluster of six-sided particles 

(6-6-6-6) into a cluster of 5-7-7-5-sided particles, forming what are known as bound dislocation 

pairs. The introduction of such dislocation pairs in a crystal creates singularities in the underlying 

local order parameter field, thereby disrupting the local structural order. We estimate the 

concentration of topological defects in the ordered phase, 𝑓def, by calculating the fraction of non-

hexagonal particles, which is the ratio of non-hexagonal particles to the total number of particles. 
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Topological defects are not defined in the static disordered configurations due to the absence of 

underlying crystal lattice, however, the fraction of non-hexagonal particles can still be quantified. 

Fig. 6 shows the variation of 𝑓def with 𝛾. Far from the ODT in the ordered phase, we see a 

negligible concentration of defects in all the systems, however, the defect concentration 

exponentially rises (inset of Fig. 6) as the system approaches the ODT followed by melting of the 

crystalline order. 

 
Fig. 6 Concentration of topological defects 𝑓def with 𝛾 for 𝑘 = 1000, 𝑘 = 100, 𝑘 = 30 systems. 
The inset shows the linear fit on ln𝑓def with 𝛾 for three systems. The solid markers are the data 
points and dashed lines are the best fit.

This observation is reminiscent of the defect-mediated melting in 2D described by the Kosterlitz–

Thouless–Halperin–Nelson–Young theory.27,59,60 The exponential dependence of defect 

concentration on 𝛾 indicates that defect formation and annihilation follow Arrhenius-type 

behavior, with the slope of the best-fit line providing an estimate of the activation barrier. Similar 

behavior has been reported in neighbor exchange events in disordered cell monolayer studied by 

Vertex model.61 From the inset, the slopes follow the order 𝑘 = 1000 > 𝑘 = 100 > 𝑘 = 30, 

implying that defect formation becomes easier as 𝑘 decreases.   
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Fig. 7 (a) Contour maps of the system energies relative to the ground state, i.e., the total energy 
minus the energy of the ground state of the hexagonal crystal lattice, in the  𝑙𝑥 ― 𝑙𝑦 plane at 𝛾 = 20 
and 𝑘 = 30. The dashed line is drawn at 𝑙𝑥 = 𝑙𝑦 which is at the T1 transition. (b) total energy 
minus the energy of the hexagonal state at the T1 transition as a function of 𝑙𝑥 where 𝑙𝑥 = 𝑙𝑦 at 𝛾
= 20 for 𝑘 = 30, 𝑘 = 100, and 𝑘 = 1000. The closed circles indicate the minimum of the curve. 

(c) Top panel A represents the perfect hexagonal state, middle panel B is the representative 
configuration at the T1 transition, and bottom panel C is a representative configuration of a defect-
state. 
  

To gain insights on defect formation in our thermal system, we take a simpler system of a 

perfect hexagonal crystal with no thermal fluctuation. We then perform a T1 transition to create 5-

7-7-5 dislocation pairs. To do so, we modulate 𝑙𝑥 and 𝑙𝑦, interparticle distances of opposite 

particles in the 𝑥- and 𝑦-direction in the four-particle configuration shown in the top panel of Fig. 

7c, respectively, and minimize the energy of the surrounding particles (see section 2.6 in Materials 

and Methods). This procedure allows us to create defects in a controlled manner while looking at 

the underlying energy landscape of defect formation. We compute contour maps of the system 

energies relative to the ground state, i.e., the total energy minus the energy of the ground state of 

the hexagonal crystal lattice, in the  𝑙𝑥 ― 𝑙𝑦 plane for three cases of 𝑘 at 𝛾 = 20. These systems are 

ordered under these conditions when thermalized (see Fig. 3). Both 𝑘 = 30 and 𝑘 = 100 systems 

show a metastable defect-state with respect to the perfect hexagonal state (global energy 

minimum); however, we do not see any signature of metastable defect-state for 𝑘 = 1000 case 

A

B

C
A

B
C

(a) (b) (c)

B

𝑙

ሚ

𝑥

𝑙
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(refer to the Fig. S5 in the Supporting Information for energy contour maps for 𝑘 = 100 and 𝑘

= 1000). We extract the energy barrier heights at the T1 transition as a function of 𝑙𝑥 along 𝑙𝑥 =

𝑙𝑦 line for three cases of 𝑘. Note that 𝑙𝑥 is equal to 𝑙𝑦 at the T1 transition. We show the comparison 

of energy barriers in Figure 6b. The minima of the energy barrier curves denote the intersection of 

the minimum-energy paths (MEPs) taken by the system to form defects starting from the perfect 

hexagonal state. We see that energy barrier height along the MEP increases with 𝑘 suggesting that 

it becomes increasingly improbable to form defects when 𝑘 is increased. Moreover, the curvature 

of the energy barrier around its minima is also affected by the value of 𝑘. Large value of 𝑘 sets a 

higher curvature of energy barrier around the MEP indicating that other energy pathways taken by 

the system on the energy landscape to form defects through T1 transition become less probable 

with increase in 𝑘. This analysis likely suggests that larger 𝑘 suppresses the defect formation in 

our thermal systems at a given 𝛾 giving a potential explanation why the ODT for larger 𝑘 occurs 

at smaller 𝛾.

3.3 Far from the ODT

In a crystalline solid at finite temperature, atoms are not stationary but undergo collective 

vibrations, known as phonons, with frequencies determined by the interatomic potential and 

thermal energy. We expect analogous phonon-like behavior in our system, particularly far from 

the ODT in the ordered phase. Because our system is overdamped, this should manifest as similar 

displacement fields in the particle configurations. To probe these modes, we perform normal mode 

analysis on our system (see section 2.7 in Materials and Methods). For a two-dimensional crystal, 

the Debye model predicts that the cumulative number of normal modes scales with the square of 

the frequency in the low-frequency regime.62 Our model conforms with Debye model in large- 𝛾 

limit as seen in Fig. S6 in the Supporting Information. In this limit, we also expect that the many-
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body interactions will be negligible since particles vibrate around the lattice positions with small 

displacements, and the coupled interparticle interactions in our model will effectively converge to 

harmonic interactions. In other words, Voronoi model should behave as harmonic spring network 

model in the large- 𝛾 regime. To test this hypothesis, we compare the phonon density of states, 𝐷(𝜔

), of our crystal system with that of a harmonic spring network, as shown in Fig. 8. We observe 

two divergent peaks in 𝐷(𝜔) for the Voronoi model, consistent with the prediction of two van 

Hove singularities in 𝐷(𝜔) for a two-dimensional hexagonal crystal, corresponding to the 

longitudinal and transverse modes.63 Similar feature is seen in 𝐷(𝜔) for the harmonic spring 

network model. 

Fig. 8 Phonon density of states, 𝐷(𝜔), with normal mode frequency, 𝜔 for (a) Voronoi model with 
𝑘 = 100, 𝛾 = 500 (b) harmonic spring network with pair-wise interactions with spring constant 
of 1 (in dimensionless units).   

Further, we estimated the displacements of all particles in the Voronoi system from their 

corresponding lattice positions using the Hessian eigenvalues and eigenvectors (see section 2.7 in 

Materials and Methods). Applying these displacement fields to the perfect hexagonal lattice 

generated ensembles of perturbed configurations, from which Ψ6 was computed. In the absence 

of defects, thermal energy in an undamped system drives collective oscillations of particles, and 

(a) (b)
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similarly, we expect collective particle displacements in our thermal systems far from the ODT, 

i.e., 𝛾 > 50 —where the defect concentration is negligible—to be governed purely by thermal 

energy. To test this, we compared Re(Ψ6) obtained from normal mode analysis with results from 

thermal simulations at 𝑘 = 1000, 𝑘 = 100, and 𝑘 = 30 (Fig. 9), where the x-axis represents the 

overall angular distortion in the system configurations, denoted as 𝛿, defined as the average of the 

six standard deviations corresponding to the six modes in the hexamodal vertex angle probability 

distribution (see Section 2.7 in Materials and Methods).The close agreement between the thermal 

systems and normal mode analysis indicates that all 𝑘-systems in the large-𝛾 limit exhibit 

collective particle displacements consistent with the predictions of normal mode theory. We 

further examined a case of single Voronoi cell in which vertex angles are sampled from normal 

distributions with mean (𝑗 ― 1)𝜋 3 where 𝑗 ∈ [1,6] and variance 𝛿2, which also reproduced the 

observed behavior, supporting the conclusion that vertex angular deviations in thermal systems are 

well described by a normal distribution in the large-𝛾 limit.

 
Fig. 9 Mean global orientational order parameter with 𝛿, defined as the average of the six standard 
deviations corresponding to the six modes in the hexamodal vertex angle probability distribution, 
for the system configurations of 𝑘 = 1000, 𝑘 = 100, 𝑘 = 30, for configurations generated by 
applying displacement fields to a perfect hexagonal lattice from normal mode analysis. Note that 
𝛾 is variable along the curve for thermal systems with different 𝑘. Error bars are smaller than 
marker size. The dashed line represents the result obtained for a single distorted Voronoi cell, 
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where the vertex angles, 𝜃𝑗, were sampled from a normal distribution with mean (𝑗 ― 1)𝜋 3, for 𝑗
∈ [1,6] and variance 𝛿2.

4 Conclusions 

In this study, we use a Voronoi model to investigate the packing behavior of soft, deformable 

particles in two dimensions. Two model parameters, 𝛾 and 𝑘, control particle line tension and 

dynamic size-dispersity, respectively. Monte Carlo simulations at constant temperature reveal an 

order–disorder transition: the system forms a hexagonal crystal lattice at high 𝛾 and melts into a 

disordered phase at low 𝛾. The ODT shifts with 𝑘, with lower 𝑘 pushing the transition to higher 𝛾. 

Consistent with previous studies, large size-dispersity (low 𝑘) suppresses long-range order. 

Analysis of defect formation in athermal systems through T1 transitions shows that defects form 

more easily at low 𝑘, with the activation barrier increasing with 𝑘. This is supported by Voronoi 

entropy and defect concentration measurements, which are higher for low-𝑘 systems, reflecting 

greater defect content and providing a mechanistic explanation for the observed ODT trends.

We also study the phonon modes of our system far from the ODT and find that it behaves 

like a harmonic spring network with pairwise interactions. The vibrational density of states 

exhibits two van Hove peaks, in agreement with theoretical predictions. The similarity between 

the vibrational density of states of the Voronoi model and the harmonic spring network suggests 

that the coupled interactions in the model effectively become pairwise far from the ODT. 

Furthermore, deviations in orientational order parameter from the that of hexagonal crystal lattice 

in this regime, where defect concentration is negligible, can be well captured by constructing 

displacement fields from normal mode analysis.
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We believe that our model provides a useful conceptual framework for investigating soft-

matter systems in which effective particle interactions can be approximated by the energy 

functional employed in this study. Representative experimental realizations could include 

emulsions, microgels, or micellar assemblies, where particle deformability plays a central role. In 

practice, the material parameters such as line tension and resistance to mass exchange between 

particles along with average particle size would need to be tuned to map onto the dimensionless 

parameters quantified here. The energy functional considered is also simplified, and realizing an 

exact quantitative experimental analog could be a limitation of the present simulations. Further 

deviations between model predictions and experimental observations may arise from non–space-

filling particle configurations and from departures from the idealized two-dimensional geometry 

assumed in our simulations.        
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