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Order-disorder transition in soft and deformable particle assembly with dynamic size-
dispersity in two dimensions
Rahul Kumar!, Sangwoo Lee!, Patrick T. Underhill!
'Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy,
New York 12180
ABSTRACT
Soft and deformable objects are widespread in natural and synthetic systems, including
micellar domains, microgel particles, foams, and biological cells. Understanding their phase
behavior at high concentrations is crucial for controlling long-range order. Here, we employ a
Voronoi-based model to study the packing of deformable particles in two dimensions under
thermal fluctuations. Particles are represented as interconnected polygons, with the system energy
comprising penalties for deviations in area and perimeter from preferred values. The strengths of

these penalties capture two key features of packing: dynamic size dispersity, mimicking chain

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

exchange in block copolymer micelles or solvent exchange in microgels, and particle line tension,

reflecting the energy cost of shape changes. The model exhibits an order—disorder transition
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(ODT): low perimeter penalties yield disordered states, while higher penalties produce a hexagonal
crystal lattice. Large dynamic size dispersity shifts the ODT to higher perimeter penalties. We
explain this by analyzing particle sizes, defect formation barriers, and Voronoi entropy, which
show that defect formation is easier when area penalty term is smaller, providing a mechanistic
basis for the ODT trends. In regimes far from the ODT, deviations from the hexagonal lattice are
accurately described by normal mode displacement fields, confirming that thermal fluctuations

rather than defects govern the structure.
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1 Introduction

Materials composed of soft and deformable constituent particles are ubiquitous in both natural and
synthetic systems. Examples of such deformable particles include grafted core—shell particles,!~
dendrimers,>® star polymers,”® block copolymer micelles,’!! vesicles,!>!3 microgels,'*!
emulsions,'®!7 foams,!® and biological cells.!®? A key characteristic of deformable particles is
their ability to shrink and/or deform in response to interactions with neighboring particles under
crowded conditions. For example, densely packed microgels exhibit faceting and interpenetration
of polymer chains,!>?! and can nearly eliminate interstitial voids, thereby approaching space-filling
configurations. Collectively, these physical systems can be modeled as packing of soft, deformable
particles. By contrast particles such as silica microspheres, metallic nanoparticles are significantly
less deformable. The maximum packing efficiency of monodisperse hard spheres is limited to
~74% in three dimensions, forming close-packed structures such as face-centered cubic, and to
~91% for hard discs in a hexagonal close-packed arrangement in two dimensions. The packing of
hard particles has been the subject of extensive theoretical, computational, and experimental
investigation over several decades.’’?* In comparison, the packing behavior of deformable
particles remains far less understood, despite its relevance to diverse soft-matter and biological
systems.!>16:21

Owing to their deformability, such particles can adapt their shape in response to external
stimuli, enabling the design of adaptive materials for stretchable electronics, soft robotics, and
responsive surfaces.”” Thin film self-assembly studies have direct applications in advanced
coatings and membranes to functional interfaces.?® Moreover, quasi-2D studies, particularly
through simulations and model experiments, have provided fundamental insights into jamming,

collective dynamics, and melting in two dimensions,?’?° which often differ from their three-
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dimensional counterparts. Two-dimensional melting, in particular, has attracted considerable
recent attention, especially with respect to the possible existence of intermediate hexatic phases
and the nature of the melting transition, including continuous versus weakly first-order
scenarios.?®3% Recent efforts have also focused on understanding the packing behavior of hard
disks with static polydispersity.3'2 In contrast, the impact of dynamic size dispersity on packing
structure remains relatively underexplored, despite its widespread relevance in experimental
systems where particle sizes can fluctuate. For instance, the size of block copolymer micelles can
fluctuate due to the exchange of copolymer chains between micelles,?3 and microgel particles can
swell or deswell in a solvent, thereby altering their size within dense packings.’*

To understand packing behavior, it is instructive to distinguish between packing and tiling,
a distinction that becomes essential in nearly confluent assemblies of deformable particles. Packing
refers to the arrangement of objects within a space, whereas tiling describes the partitioning of that

space into distinct, non-overlapping compartments. In nearly confluent systems of densely packed

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

deformable particles, the distinction between packing and tiling vanishes, as particle deformation

allows them to collectively fill space without significant voids. In this regime, many-body
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interactions naturally emerge,!*> breaking down the common simplifying assumption of pairwise
additivity that is often employed in computational simulations. To capture these collective effects,
several modeling frameworks have been developed, including machine learning approaches for
polymer-grafted nanoparticles,'>3> deformable particle model representing particles as 2D spring
rings,’¢ Vertex,!”273% and Voronoi-based,*>*! models commonly used to describe epithelial
monolayers with polygonal cells.

In this study, we adopt a Voronoi-based model to investigate the packing behavior of soft

and deformable particles in 2D where Voronoi cells represent the faceted polygonal particles under
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dense packing. We sample the system configurations from Boltzmann distributions at a fixed
temperature, quantifying the effect of thermal fluctuations on the self-assembly. We further
examine the impact of dynamic size dispersity on phase behavior, mimicking experimental
scenarios in which the size of constituent particles fluctuates. We quantify topological defects in
such systems and show its effect on the order of the system. Finally, we perform normal mode
analysis on the ordered structures and discuss the resemblance between our model and harmonic

spring network.

2 Materials and Methods

2.1 Voronoi model

We adopt a Voronoi-based model to simulate the 2D assembly of densely packed (no gaps between
particles) soft and deformable particles. The phase behavior of such dense packings has been
explored previously in three dimensions.*>* In the model, the Voronoi diagram represents the
system configuration with Voronoi cells describing the faceted deformed particles. The Voronoi
and Vertex models are closely related. While polygon centers serve as the degrees of freedom in
the Voronoi model, polygon vertices are the degrees of freedom in the Vertex model. The energy

of the system in our Voronoi model is given by the following expression

N
1
E = ; [Ek(x‘li —Ao)z +y(Pi —P)|(1)

where N is the total number of particles. The first term in the energy equation captures the area
elasticity and imposes an energy penalty when the instantaneous area A; of the particle i deviates
from its preferred area A, and k controls the strength of the penalty, thereby controlling the degree
of dynamic area-dispersity (size-dispersity) of the assembly in the system. The second term

quantifies the perimeter penalty on the particle whose instantaneous perimeter P; deviates from
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the preferred perimeter P; which is taken as the perimeter of an equivalent circle of area 4; i.e., P;

= 2\/7I_/1i . The strength of perimeter penalty is controlled by the line tension, y. The choice of P;
reflects that an isotropic circle geometry has the minimum perimeter density for the lowest line
tension energy. The parameters k and y capture two key aspects of packing behavior in soft,
deformable particles. In experiments, k scales the energy penalty by the particle size fluctuations—
accounting for chain exchange in block copolymer micelles and the resulting size dispersity—
while y quantifies particle deformability via the energy cost of shape changes. For example, in
emulsion systems, y can be mapped onto the effective interfacial tension of emulsion droplets,
while in polymeric microgels or block copolymer micelles, y reflects the energetic cost of particle
deformation arising from polymer stretching.

We nondimensionalize the quantities in eqn (1) by scaling energies with thermal energy kg

T, where kg is Boltzmann’s constant and T is absolute temperature, and by scaling lengths with

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

A(l,/ ?_ In nondimensional form, eqn (1) becomes
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E= ; Izk(Ai—l)z +7(Pi = Pa)|(2)
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where E = E/kgT, k = kAZ/kgT, A; = A;/Aq, 7 = YAy JksT, Py = P;/Ay?, and P = P/

A(l)/ 2, Quantities denoted with tildes are dimensionless, and this convention is used consistently
throughout the paper.

2.2 Monte Carlo simulations

We performed Monte Carlo (MC) simulations in the canonical ensemble for a two-dimensional
system of N = 3600 particles. The simulation box dimensions were set to 55.836 X 64.476,
ensuring a preferred area of one in dimensionless units per particle. Also, the box dimensions are

commensurate with hexagonal crystal lattice. Periodic boundary conditions were applied along
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both the x- and y-directions. Each Monte Carlo move consisted of selecting a particle at random
and displacing it by a random vector with magnitude up to a prescribed maximum displacement.
After every move, we constructed the Voronoi tessellation of the particle configuration, using
particle positions as the centers. This was implemented with MATLAB’s “delaunayTriangulation”
library.** The system energy was evaluated from the Voronoi diagram using eqn (2), and
equilibrium configurations were sampled via the standard Metropolis algorithm. We refer to these
as “thermal systems,” reflecting the inclusion of thermal energy in the simulations. Based on eqn
(2), increasing k or 7 reduces the relative thermal energy in the system and vice-versa. The
maximum displacement was chosen such that an acceptance ratio lies in the range of 30 — 60%.
We equilibrated our system for at least 40000 Monte Carlo cycles where one cycle consists of N
displacement moves. At least 100 simulation snapshots, evenly sampled from 20000 Monte Carlo
cycles in the production run, were used to calculate the ensemble average of thermodynamic
properties. Errors were estimated as the standard deviation of five block averages from the mean.

We investigate the phase behavior of particles interacting with the energy functional
written in eqn (2) in three different regimes of dynamic size-dispersity. To do so, we choose three
different values of k to obtain different degrees of dynamic size-dispersity in the system, k = 1000
, k =100, k = 30, to ensure low, moderate, and high dynamic size-dispersity, respectively. The
initial configurations for Monte Carlo simulations were prepared in a perfect hexagonal lattice,
oriented such that the two farthest-separated vertices of any hexagon lie along the x-axis. Three
series of simulation runs were carried out with k = 1000, k = 100, k = 30, each over a range of
y values. Since energy is scaled by the thermal energy, a decrease in ¥ corresponds to an increase
in the relative thermal energy of the system. To examine the system-size effect, we also simulated

systems with N =900 and N = 2500 in the boxes with dimensions commensurate with a
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hexagonal crystal lattice for the case of k = 100 at varying values of ¥ (see Fig. S1 in the
Supporting Information). The system behavior appears to be independent of system size. We chose
a moderate system size of N = 3600 to focus on the two dominant phases of interest, ordered and
disordered, that are robustly captured within this regime. We also assessed the influence of initial
conditions on the equilibrium phases (see Fig. S2 in the Supporting Information). Simulations
initialized from both a perfect hexagonal lattice, and a configuration obtained after equilibrating
at a nearby values of y converge to the same equilibrium state, demonstrating robustness to initial
conditions enabled by sufficient Monte Carlo sampling.

2.3 Structure factor

We characterize the system structure by computing the structure factor S (ﬁ) of the particle

assembly by
N

=1

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

where 7i is the position vector of the Voronoi center of ith particle, N is the total number of
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particles in the system, ¢ is a wave vector, and (...) denotes an average over at least 100 evenly-
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spaced simulation snapshots. The allowed wave vectors were determined by discretizing the

simulation box spatially into 300 X 300 grids. Then we obtain azimuthally-averaged S(g) from S
(Zi) where g is the magnitude of 631 For this, g was assigned to discrete radial bins spanning the

desired g-range. Within each bin, the corresponding S (ﬁ) values were averaged to yield the

powder-averaged S (?])

2.4 Orientational order parameter
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We characterized the system structure by quantifying the hexatic order in the system since the
honeycomb structure of uniform hexagons has the least line tension energy.*> We compute the

local bond-orientational order parameter ¢ for each particle by eqn (4).
Zi
1 .
Vo=~ ) elh(a)
Zi &
j=1

N
1
o= (% w6i|(5)
i=1

In the eqn, i is the particle identity, z; is the coordination number of the i particle (same as the
number of vertices of the particle), 6;; is the angle between the positive x-axis and the vector
joining the Voronoi center of the particle to the vertex j. We refer to 6;; as the vertex angle. In the
expression, 6 denotes the six-fold (hexatic) symmetry of the regular hexagon. By construction,
e, 1s a complex number, where the magnitude |)¢;| quantifies the local six-fold order of the
particle, and the phase arg(e,;) indicates the orientation of the particle relative to the positive x-
axis. After computing ¢ for all the particles, we obtain the mean global bond orientational order
parameter W of a system configuration by using eqn (5) where (...) denotes an average over at
least 100 evenly-spaced simulation snapshots. For our initial configuration where two farthest-
separated vertices of hexagons lie along the x-axis, Im(W¢), the imaginary component of W, is
zero, and Re(Wy), the real component of W¢ is one. Moreover, for a completely disordered
arrangement of polygons under the constraint where mean coordination number of polygons is 6,
W, is essentially zero.

2.5 Voronoi entropy

We also compute the Voronoi entropy Sy Which is Shannon entropy of the Voronoi tessellations

to compute the structural order in the system defined as
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Svor = (—zPIn P,)(6)

where P, denotes the fraction of Voronoi polygons with coordination number z, and (...) denotes
an average over at least 100 evenly-spaced simulation snapshots. This entropy measures the
deviation of the observed Voronoi cell distribution from that of an ideal single crystal, and
therefore vanishes for a perfect hexagonal arrangement. While orientational order parameters and
structure factor calculations primarily quantify long-range structural order, Voronoi entropy
provides a complementary measure that captures the degree of disorder in the system.

2.6 Athermal defect formation simulations

We map the energy landscape of defect formation in a system of N = 400 particles with no thermal
fluctuations. To introduce 5-7-7-5 bound dislocation pairs, we select a 6-6-6-6 four-particle cluster
composed of two neighboring particles along the y-axis and their two immediate neighbors along

the x-axis. The system is initialized in a perfect hexagonal configuration. We then actively

modulate the interparticle distances [, and Zy, defined as the separations between opposite particles

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

in the x- and y-directions of the chosen four-particle cluster, while allowing all surrounding

Open Access Article. Published on 16 January 2026. Downloaded on 1/22/2026 4:41:12 AM.

particles to relax in order to minimize the total energy. Specifically, we vary Zy first while keeping
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I, fixed, and then vary [, for each chosen value of Zy. We compute the energy of the relaxed system
in the I, — [, plane.

2.7 Normal mode analysis

We perform normal mode analysis to characterize the collective vibrational (phonon) modes of a
system of N = 3600 particles arranged in a perfect hexagonal configuration. To do so, we
construct the Hessian matrix from the second derivatives of the total energy with respect to particle

displacements using the expression
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where the indices i/] are particle identity, p/v are the Cartesian coordinate directions, @ is particle
displacement, and E is the total energy computed using eqn (2). We use a finite difference method
to quantify the second derivatives. The Hessian matrix is of the size 2N X 2N for two-dimensional
system. The Hessian eigenvectors V,, correspond to the normal modes denoted by n, describing

the relative directions and amplitudes of motion for each particle, while we associate the

eigenvalues A, with the squared frequencies @,2 of these collective vibrations i.e., @, = v n.
Since our physical system with thermal fluctuations is overdamped, this analysis instead provides
the eigenvectors and eigenfrequencies of a corresponding “shadow system” that retains the same
interparticle interactions but neglects damping.

We also characterize normal modes of an analogous system of a 2D elastic spring network

connecting point masses forming the hexagonal crystal lattice. The springs are Hookean and only

connect the nearest neighbors. The total energy of the spring network E spring 18 computed by

2N
Espring = Z [kspring(z)i’ - ?0)2](8)
i'=1

where i’ is the spring identity, 2N is the total number of springs connecting N point masses, Kspring
is spring constant and set to one, #; is the instantaneous length of the spring i’, and 2, is the
equilibrium spring length corresponding to the nearest-neighbor distance in the ground state of
hexagonal crystal lattice. We follow the same procedure as outlined above to obtain information
about different collective modes.

For each mode n, the displacement amplitude was drawn from a normal distribution with

zero mean and variance (@3) = 1/1,, consistent with equipartition. Excluding near-zero

10
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eigenvalues associated with translational modes, the total displacement field was constructed as a
linear combination it = )., @,V ,. Particle positions were then updated by displacing particles by
u from the perfect hexagonal crystal lattice. Repeated sampling produced an ensemble of imperfect
hexagonal crystal configurations, which allowed us to compute Wy.

In a nearly perfect hexagonal crystal, particle displacements give rise to minor distortions
of the Voronoi cells from regular hexagons. To quantify these distortions, we computed the
probability distribution of the vertex angles 8;;. The resulting distribution is hexamodal, with each
peak centered around (j — 1)7/3, where j € [1,6] indexes the sixfold symmetry directions. A
representative probability distribution is shown in Fig. S3 in the Supporting Information. The
standard deviations of the six modes are nearly identical, and their average value, denoted as 4, is
used as a measure of the overall angular distortion in the system configurations. We compute 6 for
the imperfect hexagonal crystal configurations obtained from normal mode analysis and for k

= 1000, k = 100, and k = 30 thermal systems in the large-y limit. Building on this angular-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

deviation framework, we next examine its implications for the bond-orientational order parameter.
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Using eqn (4), we calculate the local bond-orientational order parameter of a single distorted

(cc)

Voronoi cell by sampling vertex angle, 8, from a normal distribution with mean (j — 1)7/3,
where j € [1,6] and variance §2. The global bond-orientational order parameter Wy is then
evaluated as by averaging local bond-orientational order parameters over at least 1000 individual

Voronoi polygon configurations.

3 Results and discussion

3.1 Order-disorder transition

11
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Our model system shows an order-disorder transition (ODT) when ¥ is varied at a fixed k. Fig. la
and 1b show the representative simulation snapshots of the k = 1000 system equilibrated at 7 = 8
and y = 6, above and below ODT ¥ point, respectively. The 2D scattering profile for each state is
also shown in the bottom right corner of each snapshot. For the case of ¥ = 8, The presence of six
Bragg peaks exhibiting six-fold symmetry indicates that the system is in a hexagonally ordered
phase, with particle Voronoi centers arranged on a hexagonal crystal lattice. On the other hand, at
¥y = 6, we see an isotropic ring in the scattering profile which indicates a disordered phase with no

crystal symmetry associated with the arrangement of particles.

Fig. 1 Representative simulation snapshots of k = 1000 system at (a) # = 8 and (b) 7 = 6. The
simulated scattering profile is also shown in the bottom right corner of each figure. Particles are
color-coded based on their coordination numbers z.
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Fig. 2 (a) Azimuthally averaged structure factor S(§) as a function of § for k = 1000 system at

12
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three values of ¥ (b) Normalized primary peak heights of S(g) relative to that of a perfect
hexagonal lattice (solid line with closed markers) and mean global orientational order parameter
(solid line with open markers) with y. Both quantities jump at the ODT which is estimated to be
at ?ODT = 6.5.

To obtain an estimate of the location of the ODT in the 7 parameter space at a fixed k, we

compute the azimuthally averaged structure factor S(q) from the 2D scattering pattern (see section

2.3 in Materials and Methods). Fig. 2a shows the qualitative comparison of S (51) obtained at three
values of ¥ near the transition. At large y, for example y = 10, S(@) has the clear primary peak at
g, ~ 6.8, secondary peak at G, ~ 11.7 ~ v/3§,, and so on confirming the existence of the
underlying hexagonal arrangement of particles. As we decrease y (increasing relative thermal
energy) of the system, the peak heights in S(g) decrease gradually indicating the weakening of
hexagonal order in the system. When y is small enough (relative thermal energy high enough), we
see a jump in the peak heights with respect to ¥ at the ODT as the system transitions into the
disordered phase from the ordered phase. The persistence of finite peak heights even when the

system is globally disordered indicates a short-range liquid-like packing and is due to the excluded

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

size interaction between particles (i.e., k is non-zero). The trend can be seen more clearly if we
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track the primary peak height extracted from S(g) with y (Figure 2b). Here we have normalized

(cc)

the S(q) primary peak heights with that of primary peak height of perfect hexagonal crystal lattice.
We also characterize the ODT in the system using the mean global orientational order parameter,
W. Since the Im(W¢) is negligible in both the disordered phase and the ordered phase, due to the
uniform distribution of g and the chosen crystal orientation of the initial configuration,
respectively, we focus our analysis on the behavior of Re(W¢) (Fig. 2b). When ¥ is decreased from
a large y, say, ¥y = 100, Re(¥s) monotonically decreases and corroborates the observation of
weakening of hexagonal order in the system from above analysis. As the system disorders from

the ordered state, Re(Ws) jumps from 0.25 to approximately zero in the disordered phase,
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indicating a complete loss of hexagonal symmetry. We estimate the location of the ODT by taking
the average of the largest ¥ at which the system is disordered and the smallest ¥ at which the system
is ordered obtaining yopr = 6.5 for k = 1000 system. We further characterized the order—
disorder transition using the bond-orientational correlation function (see the Supporting
Information for details). The disordered phase exhibits finite bond-orientational correlation
lengths, whereas the ordered phase displays long-range correlations (refer to the Fig. S4 in the
Supporting Information). In conclusion, our simple model shows an ODT behavior. We note that
studies on such 2D systems have shown the existence of a hexatic phase — sandwiched between
disordered and hexagonal ordered phase — with narrow stability region.?®4%4” However, we do not
observe a hexatic phase in the present study likely due to the moderate system size considered. In
two-dimensional systems, intermediate hexatic phases are known to be particularly sensitive to
system size effect,’**® and we therefore cannot rule out the possibility that a hexatic phase may
emerge in larger systems. With this caveat in mind, Ygpt 1s an estimate of location of ODT to a

first approximation.

1.0 1
(@) (b) 016
0.14-
0.8
0.12
061 0.10-
% & 0.08 1
0.4 0.06 1
0.04 1
0.2
0.02
0.0 4 . . . . 0.00 . . . ;
0 20 40 60 80 100 0 20 40 60 80 100
& ¥

Fig. 3 (a) Mean global orientational order parameter and (b) dynamic size-dispersity between
particles for k = 1000, k = 100, and k = 30 systems with y.
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In our model, k sets the degree of dynamic size-dispersity in the system at a given 7 with
smaller k leading to greater size-dispersity among particles. To investigate the impact of dynamic
size-dispersity on the ODT, we take k = 30 (high size-dispersity) and k = 100 (moderate size-
dispersity) along with k = 1000 (low size-dispersity) systems. The behavior of Re(W¢) with § for
these systems are shown in Fig. 3a. We estimate size-dispersity in our system by the standard
deviation in particle area from its mean preferred value (which is one in dimensionless units in our
simulations), denoted here as d4. Fig. 3b shows the variation of 6, with y for three systems.
Similar to k = 1000 system, the other two systems with k = 100, and k = 30 also show the ODT
when ¥ is modulated (Fig. 3a). Apart from that, we also observe a monotonic decrease in Ygopr
with k. The estimate of 7opr is 17.5 for k = 30 and 10.5 for k = 100 systems along with 6.5 for
k = 1000 system. The bond-orientational correlation function analysis for the three systems is

also shown in Fig. S4. Qualitatively, the trend can be explained by considering two effects. First,

increasing dynamic size-dispersity in our model enhances the configurational entropy of the

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

disordered phase, as the disordered system can access an enormous number of distinct Voronoi

Open Access Article. Published on 16 January 2026. Downloaded on 1/22/2026 4:41:12 AM.

tessellations. This entropic gain stabilizes the disordered phase relative to the ordered phase

(cc)

shifting the ODT. A similar stabilization mechanism has been observed in experiments* and
simulations®® of three-dimensional colloidal systems with static polydispersity, as well as in
computational studies of hard disks with static polydsipersity,3> where permutations of particle
sizes introduce additional degrees of freedom that increases the configurational entropy of the fluid
phase.3152 Second, for our system at a given k, increasing  reduces size-dispersity (Fig. 2b). This
result is a direct consequence of our energy expression (eqn (2)) where the ground state is the
perfect hexagonal crystal lattice. At a given k, increasing 7 moves the system closer to the ground

state, while simultaneously driving particle size and shape closer to a regular hexagon of unit area
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(in dimensionless units). Thus, in our model, the ordered phase is energetically favored while the
disordered phase is entropically favored. Taken together, a higher yopt is observed for systems

with lower k.

(a) 1.0 - (b) 45
——k = 1000 ol random
0.94|-ak = 100 Ly | T S
STy 3.5 k=30,%=17
0.84|— random k
0.7
E_‘c
~ 0.6
0.5
0.4
/
03 T - . T 040 T T T T
0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0
5 Il

Fig. 4 (a) Mean degree of hexagonality of particles (|1 |) with y for k = 1000, k = 100, k = 30,
and random Voronoi tessellation. Error bars are smaller than the marker size. (b) Probability
density function (pdf) of |Y¢| for k = 30 system at y = 2, ¥ = 17 in the disordered phase, and at
Y = 18, ¥ = 90 in the ordered phase along with the distribution of |Y¢| for random Voronoi
tessellation.

At a given k, # not only affects the size-dispersity but also the shape of the particles. To
gain a deeper understanding of the microscopic mechanisms underlying the transition, we
computed (|1g|) which is a measure of mean degree of hexagonality of particles in the assembly
and show its dependence on y in Fig. 4a. We also computed (¢ |) for random Voronoi tessellation
where Voronoi centers were generated randomly (Poisson distribution) in the simulation box. In
line with Fig. 3, (|6 |) shows a jump with respect to ¥ at the ODT, however, the jump is less sharp.
Below the ODT in the disordered phase, these three systems merge onto the common branch of
(Jwsl) with y. As ¥ is decreased further and approaches zero, (|1)¢|) for all the system saturates to

about 0.36 which is close to 0.37 computed for random Voronoi tessellation implying that the

arrangement of particles is close to random. The difference is due to the fact that k is non-zero for
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three systems leading to excluded-area interactions among particles. The arrangement of particles
being approximately random at low ¥ is also verified by comparing their |1)¢| distribution against
that of random Voronoi tessellation shown in Fig. 4b. The signature of ODT is also evident from
the pronounced changes in the || distribution across the transition, reflecting the collective
rearrangement of particle shapes as the system approaches ODT. Due to the deformable nature of
particles and thermal fluctuations, even deep into the ordered phase, a non-negligible population
of particles adopt irregular hexagonal shapes as indicated by the shape distribution for k = 30
system aty = 90.

Particle shape and size distributions both influence the ODT in deformable particle
systems. Notably, the (||} for k = 30 system at # = 17 in the disordered phase exceeds that of
the k = 1000 system at # = 7 in the ordered phase in Fig. 4a. This suggests that large size
dispersity can suppress long-range order even when many particles exhibit high |¢|. An open

question is: what is the upper limit of (|1)¢|) that still permits disorder due to size dispersity? The

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

coupled effects of particle size and shape on phase behavior will be examined in future work.

Open Access Article. Published on 16 January 2026. Downloaded on 1/22/2026 4:41:12 AM.

We also characterize the structural order in the system by measuring Voronoi entropy of

(cc)

the particle assembly. This analysis has proven useful in analyzing 2D point patterns.>>>% We
emphasize that Sy, is an intensive quantity, whereas thermodynamic entropy is extensive. In Fig.
5, we report Syor as a function of ¥ for three systems, along with results for a random Voronoi
tessellation. For the random Voronoi tessellation, we compute Sy = 1.69, consistent with values
reported in the literature.’>’ Consistent with the trends discussed above, Sy, exhibits
discontinuous changes at the ODT: the disordered phase is characterized by higher entropy, while
the hexagonal ordered phase exhibits lower entropy. At the same y, systems with greater dynamic

size dispersity (or lower k) display higher entropy, indicating that size dispersity promotes
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structural disorder. Random Voronoi tessellation serves as the limiting behavior of our system

meaning that lowering k and 7 drive the system closer to the Random Voronoi tessellation.

——k = 1000
144 -k =100 |
1.2 —~%k=30

—random

0 < 10 15 20 25 30
,.'?

Fig. 5 Voronoi entropy Sy, with 7 for k = 1000, k = 100, k = 30 systems, and random Voronoi
tessellation.

3.2 Defect formation

The structural disorder in the ordered phase in our system arises from the presence of topological
defects. A defect is defined as a particle whose number of sides (or neighbors) is different from 6.
Since particles in 2D assembly are less correlated compared to their 3D analog, defects
spontaneously form and annihilate in the assembly, and there exists a non-zero equilibrium
concentration of defects in the system.?”-3® These defects are generated by structural rearrangement
of particles in succession such that two adjacent particles swap their neighbors, called T1
topological events/transitions. A T1 event transforms a four-particle cluster of six-sided particles
(6-6-6-6) into a cluster of 5-7-7-5-sided particles, forming what are known as bound dislocation
pairs. The introduction of such dislocation pairs in a crystal creates singularities in the underlying
local order parameter field, thereby disrupting the local structural order. We estimate the

concentration of topological defects in the ordered phase, f 4ef, by calculating the fraction of non-

hexagonal particles, which is the ratio of non-hexagonal particles to the total number of particles.
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Topological defects are not defined in the static disordered configurations due to the absence of
underlying crystal lattice, however, the fraction of non-hexagonal particles can still be quantified.
Fig. 6 shows the variation of fg4ef with . Far from the ODT in the ordered phase, we see a
negligible concentration of defects in all the systems, however, the defect concentration
exponentially rises (inset of Fig. 6) as the system approaches the ODT followed by melting of the

crystalline order.

0 10 20 30 40

Fig. 6 Concentration of topological defects f4ef with 7 for k = 1000, k = 100, k = 30 systems.
The inset shows the linear fit on Inf 4e¢ with y for three systems. The solid markers are the data
points and dashed lines are the best fit.

This observation is reminiscent of the defect-mediated melting in 2D described by the Kosterlitz—
Thouless—Halperin—Nelson—Young theory.?’>%%0 The exponential dependence of defect
concentration on y indicates that defect formation and annihilation follow Arrhenius-type
behavior, with the slope of the best-fit line providing an estimate of the activation barrier. Similar
behavior has been reported in neighbor exchange events in disordered cell monolayer studied by

Vertex model.®! From the inset, the slopes follow the order k = 1000 > k = 100 > k = 30,

implying that defect formation becomes easier as k decreases.
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Fig. 7 (a) Contour maps of the system energies relative to the ground state, i.e., the total energy
minus the energy of the ground state of the hexagonal crystal lattice, in the [, — L, plane aty = 20
and k = 30. The dashed line is drawn at [, = Zy which is at the T1 transition. (b) total energy
minus the energy of the hexagonal state at the T1 transition as a function of I, where I, = Zy aty

= 20 for k = 30, k = 100, and k = 1000. The closed circles indicate the minimum of the curve.
(c) Top panel A represents the perfect hexagonal state, middle panel B is the representative
configuration at the T1 transition, and bottom panel C is a representative configuration of a defect-
state.

To gain insights on defect formation in our thermal system, we take a simpler system of a
perfect hexagonal crystal with no thermal fluctuation. We then perform a T1 transition to create 5-
7-7-5 dislocation pairs. To do so, we modulate [, and Zy, interparticle distances of opposite
particles in the x- and y-direction in the four-particle configuration shown in the top panel of Fig.
7c, respectively, and minimize the energy of the surrounding particles (see section 2.6 in Materials
and Methods). This procedure allows us to create defects in a controlled manner while looking at
the underlying energy landscape of defect formation. We compute contour maps of the system
energies relative to the ground state, i.e., the total energy minus the energy of the ground state of
the hexagonal crystal lattice, in the [, — Zy plane for three cases of k at 7 = 20. These systems are
ordered under these conditions when thermalized (see Fig. 3). Both k = 30 and k = 100 systems

show a metastable defect-state with respect to the perfect hexagonal state (global energy

minimum); however, we do not see any signature of metastable defect-state for k = 1000 case
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(refer to the Fig. S5 in the Supporting Information for energy contour maps for k = 100 and k
= 1000). We extract the energy barrier heights at the T1 transition as a function of I, along [,, =
L, line for three cases of k. Note that I, is equal to L, at the T1 transition. We show the comparison
of energy barriers in Figure 6b. The minima of the energy barrier curves denote the intersection of
the minimum-energy paths (MEPs) taken by the system to form defects starting from the perfect
hexagonal state. We see that energy barrier height along the MEP increases with k suggesting that
it becomes increasingly improbable to form defects when k is increased. Moreover, the curvature
of the energy barrier around its minima is also affected by the value of k. Large value of k sets a
higher curvature of energy barrier around the MEP indicating that other energy pathways taken by
the system on the energy landscape to form defects through T1 transition become less probable
with increase in k. This analysis likely suggests that larger k suppresses the defect formation in
our thermal systems at a given ¥ giving a potential explanation why the ODT for larger k occurs

at smaller 7.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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In a crystalline solid at finite temperature, atoms are not stationary but undergo collective

(cc)

vibrations, known as phonons, with frequencies determined by the interatomic potential and
thermal energy. We expect analogous phonon-like behavior in our system, particularly far from
the ODT in the ordered phase. Because our system is overdamped, this should manifest as similar
displacement fields in the particle configurations. To probe these modes, we perform normal mode
analysis on our system (see section 2.7 in Materials and Methods). For a two-dimensional crystal,
the Debye model predicts that the cumulative number of normal modes scales with the square of
the frequency in the low-frequency regime.®? Our model conforms with Debye model in large- ¥

limit as seen in Fig. S6 in the Supporting Information. In this limit, we also expect that the many-
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body interactions will be negligible since particles vibrate around the lattice positions with small
displacements, and the coupled interparticle interactions in our model will effectively converge to
harmonic interactions. In other words, Voronoi model should behave as harmonic spring network
model in the large- y regime. To test this hypothesis, we compare the phonon density of states, D (@
), of our crystal system with that of a harmonic spring network, as shown in Fig. 8. We observe
two divergent peaks in D(@) for the Voronoi model, consistent with the prediction of two van
Hove singularities in D(@) for a two-dimensional hexagonal crystal, corresponding to the
longitudinal and transverse modes.®® Similar feature is seen in D(@®) for the harmonic spring

network model.
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0.07 4 I jig:
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1.0
0.05 1
s 0.8
2 0.04 3
S 06
0.03 1
0.4
0.02 1
0.01 1 E 0.21
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Fig. 8 Phonon density of states, D(&), with normal mode frequency, @ for (a) Voronoi model with
k =100, y = 500 (b) harmonic spring network with pair-wise interactions with spring constant
of 1 (in dimensionless units).

Further, we estimated the displacements of all particles in the Voronoi system from their
corresponding lattice positions using the Hessian eigenvalues and eigenvectors (see section 2.7 in
Materials and Methods). Applying these displacement fields to the perfect hexagonal lattice

generated ensembles of perturbed configurations, from which W was computed. In the absence

of defects, thermal energy in an undamped system drives collective oscillations of particles, and
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similarly, we expect collective particle displacements in our thermal systems far from the ODT,
i.e., ¥ > 50 —where the defect concentration is negligible—to be governed purely by thermal
energy. To test this, we compared Re(W¢) obtained from normal mode analysis with results from
thermal simulations at k = 1000, k = 100, and k = 30 (Fig. 9), where the x-axis represents the
overall angular distortion in the system configurations, denoted as &, defined as the average of the
six standard deviations corresponding to the six modes in the hexamodal vertex angle probability
distribution (see Section 2.7 in Materials and Methods).The close agreement between the thermal
systems and normal mode analysis indicates that all k-systems in the large-7 limit exhibit
collective particle displacements consistent with the predictions of normal mode theory. We
further examined a case of single Voronoi cell in which vertex angles are sampled from normal
distributions with mean (j — 1)7/3 where j € [1,6] and variance 62, which also reproduced the
observed behavior, supporting the conclusion that vertex angular deviations in thermal systems are

well described by a normal distribution in the large-y limit.
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Fig. 9 Mean global orientational order parameter with §, defined as the average of the six standard
deviations corresponding to the six modes in the hexamodal vertex angle probability distribution,
for the system configurations of k = 1000, k = 100, k = 30, for configurations generated by
applying displacement fields to a perfect hexagonal lattice from normal mode analysis. Note that
¥ is variable along the curve for thermal systems with different k. Error bars are smaller than
marker size. The dashed line represents the result obtained for a single distorted Voronoi cell,
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where the vertex angles, 6, were sampled from a normal distribution with mean (j — 1)7/3, for j
€ [1,6] and variance 62.

4 Conclusions

In this study, we use a Voronoi model to investigate the packing behavior of soft, deformable
particles in two dimensions. Two model parameters, 7 and k, control particle line tension and
dynamic size-dispersity, respectively. Monte Carlo simulations at constant temperature reveal an
order—disorder transition: the system forms a hexagonal crystal lattice at high ¥ and melts into a
disordered phase at low 7. The ODT shifts with k, with lower k pushing the transition to higher 7.
Consistent with previous studies, large size-dispersity (low k) suppresses long-range order.
Analysis of defect formation in athermal systems through T1 transitions shows that defects form
more easily at low k, with the activation barrier increasing with k. This is supported by Voronoi
entropy and defect concentration measurements, which are higher for low-k systems, reflecting
greater defect content and providing a mechanistic explanation for the observed ODT trends.

We also study the phonon modes of our system far from the ODT and find that it behaves
like a harmonic spring network with pairwise interactions. The vibrational density of states
exhibits two van Hove peaks, in agreement with theoretical predictions. The similarity between
the vibrational density of states of the Voronoi model and the harmonic spring network suggests
that the coupled interactions in the model effectively become pairwise far from the ODT.
Furthermore, deviations in orientational order parameter from the that of hexagonal crystal lattice
in this regime, where defect concentration is negligible, can be well captured by constructing

displacement fields from normal mode analysis.

24


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm01097g

Page 25 of 29 Soft Matter

View Article Online
DOI: 10.1039/D55SM01097G

We believe that our model provides a useful conceptual framework for investigating soft-
matter systems in which effective particle interactions can be approximated by the energy
functional employed in this study. Representative experimental realizations could include
emulsions, microgels, or micellar assemblies, where particle deformability plays a central role. In
practice, the material parameters such as line tension and resistance to mass exchange between
particles along with average particle size would need to be tuned to map onto the dimensionless
parameters quantified here. The energy functional considered is also simplified, and realizing an
exact quantitative experimental analog could be a limitation of the present simulations. Further
deviations between model predictions and experimental observations may arise from non—space-
filling particle configurations and from departures from the idealized two-dimensional geometry

assumed in our simulations.
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