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The shape of ribbons: from polymers to surfaces

A. D. Chen, a M. C. Gandikota ab and A. Cacciuto *a

Ribbons are a subset of polymerized networks that occupy an intermediate space between polymers

and surfaces. We perform extensive numerical simulations to understand how to interpolate the

statistical properties of ribbons across the two limits by studying their behavior as a function of their

widths and bending rigidities, taking into consideration both ideal and self-avoiding ribbons. We map out

a two-dimensional phase diagram of the morphology of ideal ribbons, and uncover the onset of a

crumpling transition for ribbons of sufficiently large width. We also discuss the onset width above which

a ribbon behaves effectively as a surface. Finally, we suggest scaling laws and functional forms that

properly link and interpolate the shape of self-avoiding polymers to that of self-avoiding surfaces.

1 Introduction

Particles and molecules can be covalently linked into a wide
variety of flexible structures, from simple one-dimensional (1D)
linear polymers to fully two-dimensional (2D) sheets. The
characterization of the morphology of these structures, which
results from the interplay of entropic and enthalpic forces, is
textbook material.1,2 Given the large variety of shapes these
systems can explore under the effect of thermal fluctuations
(specifically in the absence of direct bending or attractive
interactions), their morphology is typically classified by means
of how their radius of gyration, Rg, scales with the number, N,
of constituent particles/molecules, Rg B Nn. Here, the shape
(or Flory) exponent n serves as a classifier of the universality
class of these structures.

While a polymer that lacks self-avoidance always crumples
with a size exponent n = 1/2 on length-scales much larger than
its persistence length, lp = k0/kBT, (k0 is the polymer bending
rigidity, T the temperature, and kB the Boltzmann factor), ideal
polymerized crystalline membranes, more commonly referred
to as phantom membranes, present a phase transition driven
by their bending rigiditiy, k. For small values of k, the system is
found in a crumpled state with a radius of gyrations that scales

as Rg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞ

p
(n = 0), but for moderate bending rigidities

(k B 1kBT)3 the surface expands into an extended (flat) phase
characterized by n = 1.4 The stability of the flat phase is the
result of the non-linear coupling between in-and out-of-plane
thermal fluctuations which renormalizes the surface bending
rigidity.5,6

Meticulous studies of polymers and crystalline membranes
form the pillars of our understanding of polymerized networks.
If we now consider an L � L surface, and recursively cut it in
half along the same main axial direction, or take a polymer and
begin to laterally stack (polymerize) more and more polymers of
the same length L next to it, thus increasing the overall width,
w, we obtain a ribbon which structurally interpolates a linear
polymer, w = 1, to a polymerized surface, w = L. Ribbons have
also been theoretically studied as developable systems whose
persistence length, in the absence of thermal fluctuations,
scales with their width as lp B kw(kBT)�1.7,8 Recently, a sophis-
ticated form for the persistence length of ideal ribbons that
accounts for the renormalization of the elastic constants by the
thermal fluctuations was put forward.9,10 Given the stark dif-
ference between the phase behavior of ideal polymers and
surfaces, in that surfaces present a sharp phase transition at
small bending rigidities while polymers do not, it is interesting
to understand how this behavior interpolates between the two
structures by using w as the tuning parameter. How do stiffness
and geometry of the interpolating ribbons in thermal equili-
brium depend on w? When can a ribbon be considered effec-
tively equivalent to a surface, and how does that number relates
to its overall dimensions, L and w, with N = L � w. Questions of
how stiffness relates to deformations away from 2D structures
present a fundamental—albeit not very well explored—problem
in the theory of microscopic elasticity, with important implica-
tions in a variety of fields: from graphene nanoribbons
(GNRs)11 and graphene kirigami—whose stiffness has been
leveraged to construct stretchable electrodes, springs, and
hinges12—to functional materials design, such as actuators
designed from 2D skins.13

While a recent numerical work on this subject has focused
on the role of topology by studying the phase behavior of
longitudinally cleaved membrane within a flexible frame,14
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connecting the behavior between a mat of polymers to that of a
fully connected surface, a more closely related work focused
exclusively on ideal ribbons within the context of elastic
frames.10,15 Here, we also consider the behavior of self-
avoiding (SA) ribbons in the absence of explicit bending forces.
These SA systems better represent real physical surfaces that
are not allowed to self-intersect. This is an important case to
consider because, while SA polymers behave similarly to ideal
polymers, albeit with a larger size exponent nF C 3/5, extensive
numerical simulations have shown that self-avoiding mem-
branes exhibit a stable flat phase even in the absence of any
explicit bending rigidity,4,5 perhaps suggesting a simpler con-
tinuous connection between SA polymers and SA surfaces
regulated by w.

In this paper, we systematically study the equilibrium prop-
erties of ideal ribbons as a function of their width, with and
without bending rigidity, and identify the onset of a crumpling
transition in ideal ribbons driven by the flattening of its
transversal deformations. By analyzing the normal–normal
correlation function along the main long axis of the ribbon,
we also identify the onset value of w beyond which an ideal
ribbon behaves essentially as a surface. We study how these
onsets depend on the overall length of the ribbon. Finally, we
establish a simple functional form that interpolates the beha-
vior of the radius of gyration from a fully flexible SA polymer to
a fully flexible SA surface, and discuss the associated scaling
law as a function of w and L.

2 Model

Our ribbons are constructed as a two-dimensional triangular
fishnet of spherical particles (diameter s) bonded together via
harmonic springs, in a three-dimensional embedding space.
Each ribbon is constructed by placing and connecting parallel
polymers, each built from L beads, next to each other. Neigh-
boring polymers are staggered by half of a bond length to
enforce an overall locally hexagonal geometry in the connectiv-
ity of the beads. Our control parameter w, corresponds to the
number of such parallel polymers, and is simply related to the

actual physical width, L>, of the ribbon via L? ¼
ffiffiffi
3
p �

2w. We
consider ribbons with w A [1, 120], L A [25, 2�103], with overall
N = L � w A [32, 4.8�104].

In this triangulated network, the dynamics of the particles
are determined by the Langevin equation,

m
dvi

dt
¼ f i � gvi þ

ffiffiffiffiffiffiffiffiffiffiffi
2Dg2

p
niðtÞ; (1)

m, i, and vi are the particle mass, index, and velocity, respec-
tively. g (set to be 1) represents the translational friction, from
which the translational diffusion constant can then be defined
as D = kBTg�1, kB and T being the Boltzmann constant and the
temperature of the thermal bath, respectively. Solvent effects
from the thermal bath are accounted for via the Gaussian white
noise term, ni(t) that satisfies the conditions hxi = 0 and
hxm(t)xn(t0)i = dmnd(t � t0). Finally fi = �qV/qri accounts for the
conservative forces acting on each particle. Here, V is the

interaction potential and, depending on the system being
studied, may include the following terms,

V ¼ K
Xneighbors

hiji
rij � req
� �2 þ k

Xneighbors

hlmi
1� n̂l � n̂mð Þ

þ 4e
X
ij

s
rij

� �12

� s
rij

� �6

þ1
4

" #
;

(2)

The harmonic springs bonding the particles together, pre-
sent in all systems, are enforced via the first term of eqn (2).
Within that term, req is defined as the equilibrium bond
distance between any pair of linked particles given by i and j
(the actual distance of a particles pair is given by rij). For self-
avoiding systems, req has a value of 1.73s, while for ideal
systems, it has a value of 1.60s. While the value of the bond
length is not that important for ideal surfaces, for self-avoiding
surfaces it is important to select an appropriate bond length.
On the one hand one should select a bond length such that no
other bead can be inserted inside a triangle formed by three

connected beads. This sets
ffiffiffi
3
p

s as a the largest admissible
equilibrium bond length. On the other hand a bond length that
is too short can lead to a non-insignificant model-dependent
effective bending rigidity.16

The strength of the particle bonds is determined by the
spring constant K, which we set to 160kBT/s2. Some of our
simulations also include an explicitly defined dihedral bending
energy, which is enforced via the second term in eqn (2). The
strength of the bending term is determined by the bending
rigidity k. Unit vectors n̂l and n̂m represent the normals to any
pair of adjacent triangles that comprise a dihedral. In the case
of SA ribbons, where volume exclusion needs to be accounted
for, the last term, the repulsive Weeks–Chandler–Andersen
(WCA) potential,17 is also included. Here, we set e = kBT. To
numerically integrate the Langevin equation, we use the
numerical package LAMMPS.18 In these simulations, we use
s, kBT, and t = s2D�1 as our unit length, energy, and time,
respectively. Our simulation timestep lengths range from
Dt = 0.01t to 0.03t.

3 Ideal ribbons
3.1 Zero bending rigidity

We first consider the case of an ideal ribbon in the absence of
bending rigidity. Our numerical results for a fixed value of L as
a function of w, shown in Fig. 1, indicate that the radius of
gyration of the ribbon decreases monotonically with w and the

simple functional form Rg ¼ a L=wð Þ1=2þb
ffiffiffiffiffiffiffiffiffiffiffi
logw

p
þ g that inter-

polates the two limiting behaviors, does a good job at capturing
the overall trend of the data points. This function, for w - 1,
simplifies to the ideal random-walk scaling Rg B L1/2, and for
w - L, it reduces to the scaling of a crumpled ideal membrane

Rg �
ffiffiffiffiffiffiffiffiffiffiffi
logL

p
. We notice that this functional form is a bit

different than that obtained for ideal cleaved membranes in
the absence of bending rigidity as discussed in our recent
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paper,14 and better fits the data for the ribbon at large values of
w. It is also instructive to look at the size dependence of this
behavior while keeping w constant. If fact, while in the strict
limit of w = 1 we expect a simple size exponent of n = 1/2
(with L), for an intermediate value of w it is not immediately
clear what controls the scaling of the ribbon. Fig. 2 shows in a
log–log plot the reference scaling of Rg with L for a ribbon of
width w = 1 (a reference ideal polymer), and the same scaling
for w = 20. Interestingly, for w = 20, the slope of the curve begins
quite flat for small values of L, corresponding to the scaling
behavior of a crumpled ideal surface, and eventually it recovers
the polymer-like scaling in the limit of large L. Correspond-
ingly, the inset of the same figure shows how the asphericity,19

defined as A � 3/2(l1
2 + l2

2 + l3
2)/(l1 + l2 + l3)2 � 1/2, where li’s

are the eigenvalues of the shape tensor so that Rg
2 = l1 + l2 + l3,

is close to zero (as expected for an isotropic crumpled ideal
membrane) for small values of L, and monotonically grows to
near 0.35 for large values of L (A E 0.396 for an ideal polymer in
the L - N limit20). Conversely, data at a fixed aspect ratio L/w
indicate that Rg is rather insensitive to the value of L (data not
shown), consistent with the expected dependence obtained by

our fitting function Rg �
ffiffiffiffiffiffiffiffiffiffiffi
logw

p
. Despite our best efforts we

were unable to find a master curve that simultaneously
accounts for the dependence on L and w.

3.2 Finite bending rigidity

We now consider the case where an explicit bending rigidity, k, is
added to the system. We know that a bending rigidity causes a
crumpled to flat transition in ideal tethered surfaces at a critical k*
that is quite small (under 1kBT). Below (above) k* the membrane
exists in a crumpled (flat) phase with Rg B log L (Rg B L),
respectively.4 To characterize the size of ribbons with different
widths by equal longitudinal length, L, here we use the radius of
gyration Rg of the central spine of the ribbon. This provides a
consistent basis for comparing ribbons of different widths w.

3.2.1 Onset of the crumpling transition. Fig. 3 shows how
Rg depends on the bending rigidity k for different values of the
width of the ribbon. For small values of w, we can see in Fig. 3, a
smooth monotonic increase in Rg as k is increased, corres-
ponding to a gradual expansion/extension of the ribbon as it
becomes more rigid, consistent with the behavior of ideal rigid
polymers. However, deviations from a simple linear behavior
expected in the strict polymer limit, are already visible for w = 3,
where an upward bend of the curve is clearly visible and
becomes more apparent for smaller values of k as we increase
w. For larger values of w, the upward bend in the curves
transforms into a discontinuity in Rg with k, suggesting a
transition where the ribbon expands from a very compact
object to a more extended one. The steepness of the jump
increases systematically with w, and indicates the presence of a
crumpling transition even for very thin ribbons.

Fig. 1 Radius of gyration Rg of an ideal ribbon in the absence of
bending energy as a function of its width, w, and a fixed L = 100. The
red curve is a fit to the data using the interpolating functional form

Rg ¼ a L=wð Þ1=2þb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðwÞ

p
þ g, where a = 1.3818, b = 3.36435, and

g = �7.13197.

Fig. 2 Radius of gyration Rg of an ideal ribbon in the absence of bending
energy as a function of its length L, for width w = 1 (in red) and w = 20 (in
black). The blue dashed line indicates the reference L1/2 power law. Inset:
Asphericity A19 of the ribbon at a fixed w = 20 as a function of L.

Fig. 3 Radius of gyration of a ribbon, Rg, as a function of its bending
rigidity k for ideal ribbons of different width, w, and fixed length L = 200.
The inset shows the same plot for an ideal ribbon of length L = 1000 and
width w = 10.
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To establish and identify the onset of this transition with w,
we calculate the specific heat21 by measuring cbend = hEbend

2i �
hEbendi2 where Ebend is the bending energy per particle; varia-
tions in stretching energy are negligible. For a given width w,
we calculated cbend(k) for different system sizes L (Fig. 4). For
w = 2 (Fig. 4a), cbend smoothly and monotonically increases. For
intermediate widths w (w = 7 and w = 8; Fig. 4b and c), we
observe a peak in cbend(k). The height of the peak in these
curves has a weak but clear size dependence on L (Fig. 4c),
indicative of the onset of a continuous phase transition, which
is fully exposed for w = 10 (Fig. 4d). We set w* E 10 as the onset
width above which a phase transition begins to occur as the
rigidity of an ideal ribbon is increased, because the specific
heat for smaller values of w tends to saturate with L while for
w = 10 we observe a more distinct and systematic increase.
Furthermore, w = 10 is also accompanied by a significant
discontinuity in the Rg versus k plot, that is not as evident for
smaller values of w.

These results suggest that beyond w*, an ideal ribbon
acquires one of the main characteristic features of a surface:
a crumpling transition. Crucially, the onset w* value is rather
independent of L. As shown in the inset of Fig. 3, where we
computed Rg as a function of k for a ribbon of length L = 1000
and w = 10, and the same jump in Rg is present at around the
same value of k C 0.25. This result is quite important because
it defines a clear departure from our previous data on ideal
ribbons in the absence of bending rigidity for which the
polymer limit was recovered upon increasing the L/w ratio.
Clearly, this is no longer the case as soon as bending energy is
introduced in the system.

3.2.2 Kinks in the ribbon. To further characterize the state
of the ribbon, we also employ another order parameter—the
proportion of kinks22 p(kink) along the spine of the ribbons.
The angle between the oriented normals of any two adjacent
triangles along the ribbon mid-line is counted as a kink if this
angle exceeds a threshold angle of 160 degrees (the angle is zero
degrees when triangles are coplanar), and p(kink) = nkink/L. The
results are shown in Fig. 5, which plots p(kink) for several
values of w for constant L = 200. We can see that for small w,
p(kink) shows a gradual decline towards 0 as k is increased,
corresponding to the gradual unfolding of the kinks as the
ribbon becomes smoother. At w = 10, as k is increased, we see a
sharp drop in p(kink) as we cross k* E 0.25, signaling the
presence of the crumpling transition.

A key difference between the transition observed in ribbons
and that observed in surfaces, is that the transition in the latter
case drives the surface from a crumpled phase directly into a
flat extended state. This is not the case for ribbons. For small
values of w, the shape of the ribbons beyond the transition is
not a flat/extended conformation, but rather a smooth curled
state, with sporadic sharp folds (kinks). This is quite evident
from images of the simulation data, but also from the normal–
normal correlation function along the backbone of the ribbon,
which decays to zero at lengths smaller than L (data not shown).

Crucially, the transition appears to be governed by the
lateral (transversal) correlation length. In the inset of Fig. 5,
we plot C>(w) = hn̂1�n̂wi, where n̂1 and n̂w correspond to the
normals of the first and last triangles across the ribbon width,
respectively, averaged along the ribbon backbone as a function
of k for w = 10. This result suggests that, for sufficiently wide
ribbons, the transition occurs when lp Z w, i.e. when the
ribbons become transversally flat.

3.2.3 Structural phase diagram. Recently, Košmrlj et al.9,23

provided an expression for the persistence length of a ribbon
that accounts for the renormalization of the bending rigidity in
the presence of thermal fluctuations:

lp ¼
2kRw
kBT

(3)

Fig. 4 The specific heat of ideal ribbons cbend as a function of the bending rigidity k for different lengths, L with widths (a) w = 2, (b) w = 7, (c) w = 8, and
(d) w = 10.

Fig. 5 Probability of finding a kink p(kink) along the backbone of an ideal
ribbon as a function of its bending rigidity k, for different values of the
width w. The inset shows the transversal correlation function C>(w)
between the first polymer forming the ribbon and the last (at a distance
w = 10), as a function of k. All data are for a ribbon of length L = 200.
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where kR = k(w/cth)Z is the renormalized bending rigidity,

‘th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64p3k2= 3kBTYð Þ

p
is the thermal length of the ribbon,

the exponent Z = 0.8 and Y ¼ 2K
� ffiffiffi

3
p

is the surface Young
modulus (K is the bond strength). Using eqn (3) and imposing
the condition lp = w we obtain k* B w�Z/(1�Z) B w�4. Clearly,
this simple expression cannot determine the onset transition
point of the system, but suggests that the transition point k*
should decrease with the width of the ribbons w, and this is
indeed what we observe. A systematic study of the behavior of a
ribbons of a fixed length L = 50 for different widths allows us to
generate a structural phase diagram connecting the behavior of
polymers, ribbons and surfaces. The results are summarized in
Fig. 6. The blue dotted line indicates the boundary below which
the ribbon continuously increases in size with k bypassing the
crumpling transition. The black dashed line delineates the
boundary between the crumpled and the extended phase. This
rough boundary was obtained by running a number of simula-
tions starting from a flat configuration and finding the value of
k for which a ribbon undergoes a sudden drop in Rg. Finally,
the red dashed line serves to distinguish between transversally
flat but smooth/flexible ribbons and longitudinally straight/
rigid/flat ones. Because it can sometimes be quite difficult to
visually distinguish between the flexible and flat ribbons,
especially in cases of smaller w, given the continuous nature
of this crossover, we obtain this boundary by computing the
full longitudinal normal–normal correlation function
along the mid long axis of the ribbon C8(s) = hn̂(r)�n̂(r + s)i,
and asking that this function does not decay to zero for s o L.

We define the intersection between the dashed black and
the dashed-red line as the value of w above which a ribbon goes
directly from a crumpled to a flat state, and we take this point,
w C 25, as the onset value above which a ribbon is basically
indistinguishable from a surface. The green dotted line estab-
lishes this boundary. This onset value is also consistent with
the behavior of Rg versus k for w = 25: beyond the critical point,

Rg jumps directly to a large value that is largely insensitive to
further increases in k. In contrast, for smaller w, Rg increases
gradually toward the same value.

We expect the value of this upper onset, wL, to be dependent
on the length of the ribbon L. Indeed, the flattening of the ribbon
should occur when lp Z L. Using the definition of lp given in
eqn (3), and assuming a fairly constant critical bending rigidity
k* C 0.22, we have that lp C A0w1+Z, where A0 C 0.15 is a model
dependent prefactor that we fix by imposing that lp(w = 25) = 50.
We would therefore expect wL C (L/A0)1/(1+Z) = (L/A0)0.5%5. This
expectation is consistent with our numerical simulations for
L = 100, L = 200, and L = 400, where we indeed find that just
above the critical rigidity at k = 0.24, the radius of gyration
dependence on w becomes essentially constant when w 4 wL.
Fig. 7 reports on how the radius of gyration of the backbone of
the ribbon normalized by its length depends on the ratio w/wL,
and indicates that for w/wL 4 1, the ribbon is essentially flat.

Our results set two important boundaries w* C 10 and wL C
(L/A0)0.5%5 in the phase behavior of ideal ribbons as one inter-
polates between polymers and surfaces, and provide firmer
ground for some of the results suggested in ref. 15 and 24,
where this crumpling transition was first observed in the
context of elastic frames – ribbons of different widths here
are generated by radially removing material from the core of a
membrane, and w* = 12 was suggested as the onset value for
the transition.

4 Self-avoiding ribbons

We now consider self-avoiding ribbons in the absence of any
explicit bending rigidity. We already know that a SA surface
remains flat and a SA polymer scales with a Flory exponent of
3/5. It is therefore reasonable to assume that the width of the
ribbon should act as a source of rigidity as it is the case for ideal
ribbons with constant bending energy (in that case lp B bkw).

Fig. 6 Structural phase diagram of an ideal ribbon in terms of its bending
rigidity k and its width w. The images are snapshot of our model from
simulations depicting the typical configurations of the ribbon. This diagram
has been constructed using a ribbon of length L = 50.

Fig. 7 Radius of gyration of the ribbon’s backbone normalized by its
length L as a function of the relative width w/wL, for different values of
L. Here wL = (L/A0)1/(1+Z), with A0 = 0.15 and Z = 0.8. The black vertical
dashed line highlights the point where w/wL = 1.
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It is tempting to map the behavior of the radius of gyration
of a SA ribbon of increasing width to that of a SA polymer with
increasing bending energy, k0 (persistence length). We find that
while for a polymer these curves, Rg vs. k0, for different polymer
lengths can be collapsed into a single master curve when
normalized by L25 (see inset of Fig. 8), the same collapse, now
in terms of Rg vs. w, does not hold for ribbons (Fig. 8). Instead,
we find that the unrescaled dependence between Rg and w can
be well described by a simple hyperbolic tangent of the form
f (w) = a tanh(bw) + g (see inset of Fig. 9). Furthermore, all the
data can be made to collapse (apart for some finite size effects)
when, rather than the bare width of the ribbon, we plot (see
Fig. 9) the radius of gyration in terms of the ratio between its
persistence length lp B w1.8 as obtained for the ideal ribbons
with a given bending energy as discussed in eqn (3), and the
ribbon’s length, L. Assuming lp = b0w1.8, we estimated the
prefactor b0 by extracting lp from a fitting of the normal–normal
correlation function of the ribbons for three different widths
w = 4, 6 and 12, for which a clear exponential decay is observed.
We then imposed the measured lp to be equal to b0w1.8 for each
of those given w, and obtained consistently a value of b0 C 0.19.
The collapsed data can likewise be fit with the functional form
f (x) = a tanh(bxd) + g, where x = lp/L (see Fig. 9), and d E (1/1.8),
thus implying a linear dependence of Rg with w for thin
ribbons.

It should be pointed out that although an explicit bending
energy term is not present in our system and self-avoidance,
that is a non-local interaction, cannot be in general mapped
into an explicit bending rigidity, as discussed in the methods
section, it is known that a very small effective local rigidity can
arise from the surfaces’ discretization and the exclude volume
of self-avoiding beads at the nodes of the surface. This is
because the normals to two adjacent triangles can be parallel
but not fully antiparallel in a bead and spring model16 and this
can lead to an effective rigidity of the order of 1kBT. It is

therefore not unreasonable that the persistence length of a
rigid ideal ribbon also holds for SA ribbons; after all in the limit
for w - L, SA surfaces and rigid ideal membranes belong to the
same universality,5,26 and this has been tested using bead-free
models where self-avoidance was forbidden by explicitly check-
ing triangle–triangle intersections.26,27

Overall, our numerical data suggest that for SA ribbons, it is
possible to interpolate the radius of gyration of a polymer to
that of a tethered surface, and, beyond the Sadowsky8 approxi-
mation, using the appropriate renormalized persistence length,
one can rescale the all data into a single master curve for any
ribbon’s length L and width w.

5 Conclusions

Although a significant amount of work has been done to
understand polymers, ribbons and surfaces, independently of
each other, to the best of our knowledge this is the first attempt
to systematically study the behavior of these three fundamental
building blocks of matter with the aim of interpolating their
phase behavior within the same framework. The only previous
work in this direction,15,24 focused exclusively on ideal systems
in the context of elastic frames. Here, we extended that work by
performing more systematic numerical simulations. We pre-
sent a full phase diagram identifying the morphology of ideal
ribbons as a function of both their bending rigidity and width.
We also explore explicitly the case of SA ribbons. For ideal
ribbons, we find a clear bound setting the onset of a crumpling
transition w* C 10, and discuss how this number is universal
and independent of ribbon length. We also discuss the onset
value of the width above which a ribbon behaves essentially as a
surface and suggest its dependence on the ribbon’s length to be

Fig. 8 Collapse failure of the radius of gyration, Rg (normalized by L), of
the backbone of a SA ribbon as a function of w/L for ribbons of different
length. (inset) Excellent collapse of the radius of gyration, Rg (normalized
by L), as a function of its bending rigidity k0 (also normalized by L) for a
polymer of different lengths.

Fig. 9 Collapse in log–log scale of the radius of gyration, Rg (normalized
by L), of the backbone of a SA ribbon as a function of its renormalized
persistence length lp, rescaled by L for ribbons of different length. The solid
line is a fit to the data with the function f (x) = a tanh(bxd) + g, with
a = 0.41(2), b = 1.8(1), g = 0.06(1) and d = 0.52(5). (inset) Radius of gyration,
Rg as a function of the ribbon width, w (both normalized by L) for L = 96.
The solid line is a fit to the data using the function f (w) = a tanh(bw) + g,
with a = 0.394(3), b = 4.9(2), and g = 0.088(3).
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wL C (L/A0)0.5%5, where A0 is a model dependent prefactor. We
explore the finite size scaling of ideal ribbons in the absence of
bending rigidity.

Finally, we study the behavior of SA ribbons where we
interpolate their statistical properties from SA polymers to SA
surfaces. Here, we find that the interpolating ribbon can be
thought of as a polymer whose persistence length is not
proportional to the bare width of the ribbon as expected for
vary thin ribbons in the Sadowsky limit (see ref. 8, 28 and 29
and references therein), but with the persistence length
proposed in ref. 9 and 23, which accounts for the renormaliza-
tion of the elastic constants due to thermal fluctuations.
Furthermore, we also find that for a fixed length the radius of
gyration of a ribbon as a function of its width is very well
described by a simple hyperbolic tangent functional form,
which recovers the Sadowsky limit8 for small values of w. It is
worth pointing out that the functional dependence of Rg for
ideal and self-avoiding ribbons is quite different than that
observed for a system of cleaved membranes,14 as a function
of the spacing between the cuts (width of the ribbons). While
the cleaved membrane system also connect the behavior of
polymers (a number of them, connected within a flexible
polymer frame, for large number of cuts) and that of a surface
(no cuts), here, we observe a much sharped dependence of Rg

on w for single unconstrained ribbons. This difference is even
starker for self-avoiding surfaces. In fact, unlike SA ribbons,
cleaved SA membranes present a non-monotonic behavior of
their radius of gyration with the width of the slices. Although a
one-to-one comparison between the two systems is not straight-
forward as the two systems have different degrees of freedom,
for instance, apart from the frame connecting the polymers for
small w, the number of particles in the cleaved membrane
system also remains constant, it would be nevertheless inter-
esting to see whether ideal cleaved membranes also exhibit a
transition as a function of the bending rigidity below some
threshold value of the number of cuts.

We hope that our result will stimulate more work in this
direction.
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