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Radical scaling: beyond our feet and fingers

M. A. Fardin, †*a M. Hautefeuille b and V. Sharma †c

Scaling laws arise and are eulogized across disciplines from natural to social sciences for providing pithy,

quantitative, ‘scale-free’, and ‘universal’ power law relationships between two variables. On a log–log

plot, the power laws display as straight lines, with a slope set by the exponent of the scaling law. In prac-

tice, a scaling relationship works only for a limited range, bookended by crossovers to other scaling laws.

Leading with Taylor’s oft-cited scaling law for the blast radius of an explosion against time, and by

collating an unprecedented amount of datasets for laser-induced, chemical and nuclear explosions, we

show distinct kinematics arise at the early and late stages. We illustrate that picking objective scales for

the two axes using the transitions between regimes leads to the collapse of the data for the two

regimes and their crossover, but the third regime is typically not mapped to the master curve. The

objective scales permit us to abandon the arbitrarily chosen anthropocentric units of measurement, like

feet for length and heart-beat for time, but the decimal system with ten digits (fingers) is still part of the

picture. We show a remarkable collapse of all three regimes onto a common master curve occurs if we

replace the base 10 by a dimensionless radix that combines the scales from the two crossovers. We also

illustrate this approach of radical scaling for capillarity-driven pinching, coalescence and spreading of

drops and bubbles, expecting such generalizations will be made for datasets across many disciplines.

Scaling laws expressed in arbitrary units often fail when obser-
vations span a broader range. Transitions between regimes
reveal objective units, allowing to capture these regimes and
their crossovers. Beyond units, we must reconsider the numer-
ical base (radix) we use. Decimal, derived from our ten fingers,
dominates, but natural phenomena operate independently of
human conventions. By analyzing transitions between succes-
sive scaling regimes, we propose using a number derived from
the system itself as the base instead of 10. This approach
captures universal behavior across regimes, creating new
opportunities to revisit examples from diverse disciplines. Such
a framework challenges anthropocentric standards, offering
deeper insight into how numbers and units emerge directly
from physical phenomena.

What we see, perceive, and measure in the natural world is
the combination of what is, and the angle, perspective, or
reference frame we have chosen. Finding out what this elusive
thing is then requires an array of viewpoints to overlap. For the
practitioners of scaling analysis this overlap is understood
quite literally. One may initially start with a messy set of

intersecting data sets, and then strive to find the ‘‘right scale’’
with which the data almost magically overlap. Usually this
quest stops when one finds judicious units for both axes of
the plot. In this contribution, we show that a more complete
scaling analysis should seek not solely to find units, but also to
renormalize the very base we use for counting. Conventionally
the base is 10, like the number of our fingers. However, fingers
are no more legitimate than feet to count and measure.

The starting point of a scaling analysis is usually a scaling
law or power law, i.e. a relation of proportionality between one
variable and some power of another, y = Kxa.1,2 Relationships of
this kind are found everywhere. The periods of rotation of
a planet is proportional to its distance to the Sun raised to a
power a = 3

2
(Kepler law). The mean square displacement of a

diffusive particle is proportional to the square root of the time,
so with a = 1

2 (Einstein–Smoluchowski law). The metabolic rate
of many animals is proportional to their mass to the power a = 3

4
(Kleiber law). The forces of gravity or of electrostatics are
inversely proportional to the square of the distance, a = �2
(Newton and Coulomb laws). The power radiated by a black
body scales with the fourth power of the temperature, a = 4
(Stefan–Boltzmann law). The frequency of occurrence of a word
is inversely proportional to its rank, a = �1 (Zipf-Mandelbrot
law). The list goes on and on. Scaling laws are ubiquitous but
they are usually studied in isolation. Their apparent simplicity
is often a consequence of the narrowness of the observational
range. When data are gathered more broadly any scaling law is
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bound to meet its demise. This statement has been verified
time and time again by experiments. What we will show is that
the eventual breakdown of a power law is actually a necessity if
the associated phenomenon is to be independent of our human
imprint. We will show that two intersecting power laws are
needed to find objective units, and three to find an
objective base.

This article is accompanied by video lectures on Youtube
(https://www.youtube.com/@naturesnumbers), and a website
making the data freely available (www.numbersnature.org/
explosions/data/trinity). Details on how to use this material
are provided in SI.

Scaling laws

Scaling laws have been studied in a wide variety of contexts and
the arguments we shall develop in this article can be generally
applied. We will however restrict our examples to particularly
visual scaling laws tracking the evolution of a size or distance d
over time t:

d C Kta (1)

Note that we use an approximate rather than strict equality,
because actual data sets rarely perfectly match a power law.

In eqn (1) if a = 1 then motion is uniform and K is a speed. If
a = 2, motion is uniformly accelerated and K is an acceleration.
If a = 1

2, K may be called a ‘sorptivity’,6 but one usually writes d =
(Dt)

1
2, defining a ‘coefficient of diffusion’ or ‘diffusivity’ D � K2.

This definition allows to deal with a kinematic quantity with

integer exponents, since ½D� ¼ L2 � T �1; but ½K� ¼ L � T �
1
2

(brackets are used to give the dimensions of the enclosed
quantity). Generally K is a kinematic quantity, i.e. depending
solely on space and time, with ½K� ¼ L � T �a.

One example of the kind of power law defined in eqn (1) is
found in many textbooks on scaling and dimensional analysis:
d = Kt

2
5, which describes the extension of a blast wave of radius

d, a time t after detonation.1,2 In that case, K has no standard
name, but for future reference we may call X � K5 an ‘explo-
sivity’,7 with ½X � ¼ L5 � T �2, defined in such a way as to have
integer exponents (like the diffusivity when a = 1

2). This 2
5 scaling

law was famously derived by G. I. Taylor and used to analyze the
footage of Trinity, the first atomic test.5,8

Fig. 1a provides pictures of the Trinity test in the first few
milliseconds after detonation. A number of these images had
been declassified in a report published in 1947 by J. E. Mack,4

the head of the optical team for the Trinity test. Taylor also got
access to a few more pictures through his connection to the
British Ministry of Supply, including the picture at t = 1.22 ms
in Fig. 1a.5 During World War 2 Taylor had been involved in the

Fig. 1 Trinity: a paragon of scaling law. (a) Pictures of the nuclear test, taken by the optical team led by J. E. Mack,3,4 and used by Taylor to analyze the
kinematics of the explosion blast. Details and additional images are provided in SI and on a webpage (https://www.numbersnature.org/explosions/
data/trinity) we created for the greater dispersion of these data (images courtesy of the Los Alamos National Laboratory). (b) Radius of the nuclear blast
over time based on the images available to Taylor in 1950.5 The grey line is d = Kt

2
5, with K = 1913 ft s�

2
5. (c) Replotting the data as an explosivity X̃ � d5/t2

versus time t, distance d, speed d/t, or acceleration d/t2 – examples of the fact that the horizontal variable is indeterminate. The horizontal grey line is
X � K5.
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Tube Alloys program, the secret British nuclear weapon project.
After the Quebec Agreement on August 19th 1943, the British
program was subsumed into the Manhattan Project, its Amer-
ican counterpart, and Taylor continued to play a major role.9 In
fact, Taylor was one of only two foreigners (the other being
James Chadwick) in a very short list of ten ‘‘Distinguished
Visitors’’ to be officially invited to the Trinity test in New
Mexico.9 In 1941 Taylor had predicted that the motion of a
nuclear blast wave should follow a power law of the form d = Kt

2
5,

and his prediction was confirmed by the Trinity test on July
16th 1945.8 In 1950 Taylor was cleared to publish his own
account in a couple of papers, a first paper on the theory
behind such prediction,8 and a second on the agreement
between the prediction and the data from the Trinity test.5

Fig. 1b gives a logarithmic plot of the growth of the blast
radius measured by Taylor on the pictures of the test, replotted
from Taylor’s second paper.5 The agreement between the data
and Taylor’s scaling is indeed quite remarkable. On a logarith-
mic plot a power law appears as a straight line with a slope
given by the exponent, here a = 2

5. The prefactor K sets the
position of the line. In the case of Trinity, K C 1913 ft s�2

5.
Taylor’s impressive achievement was to connect this value to
the yield of the explosion and to the density of the ambient
medium (air in that case), providing a rational for this exotic
exponent of 2

5.1,5,7,8 However, the underlying dimensional ana-
lysis is not the focus of this article. Our approach here is
essentially phenomenological. We do not ask why the dynamics
occur but how their existence shape our point of view.

Power laws, like Taylor’s 2
5 scaling, are generally understood

to be ‘scale-free’,10 since no preferred units of space nor time
stand out. A power law is also said to be ‘self-similar’,1 the
dynamics following the same law regardless of scale, i.e. no
matter how small or large the time t or radius d are. This
nomenclature was introduced in the 1960s, in the wake of
Benoit Mandelbrot’s work on fractals,11 and has remained
popular in the literature on dimensional analysis.1 However,
both of these terms, ‘scale-free’ and ‘self-similar’, can be
slightly misleading.

When space is measured in feet and time in seconds, then
the value of K is around 1913. If we change the units, the value
changes accordingly, for instance K C 583 m s�

2
5. The fact that a

power law is ‘scale-free’ does not mean that all units are
equivalent, but that there is an infinity of equally good units.
In this context, feet, meters and second are not ‘‘good units’’.
As illustrated in the animated figures in SI (cf. SI Section SVII),
if the coordinates (ti, di) of any point along the power law are
used as units, then the value of K in these units becomes trivial:
K C 1di/t

a
i . These units are ‘‘good units’’. Assuming d and t to

be initially measured in any arbitrary units, this prevalence of
some choices of units can be written in the following way:

d

di
’ t

ti

� �a

(2)

Note that d/di and t/ti can be read as d and t ‘‘in units of’’ di and
ti respectively. What remains arbitrary is the choice of point
along the power law, i.e. the choice of a pair (ti, di).

Units for a single axis

Technically, eqn (1) is often said to be scale-free or self-similar
because d/ta C K is constant.1,10 In the case of Taylor’s scaling,
d/t

2
5 C K. We are of course free to raise both sides to an identical

power, in particular to a power of 5, and get d5/t2 C K5. The right-
hand side is constant and is what we called an ‘‘explosivity’’.7

Thus, the combination of variables in the left-hand side must
also be a constant explosivity. Indeed, as shown in Fig. 1c, if d5/t2

is plotted against any other combination of variables, the data
appear flat, and the value of the plateau is set by X � K5.

If d is plotted against t there is indeed no preferred units of
space and time, any pair (ti, di) is equally valid, and even any
other units if we are allowing K to take non-trivial values, like
K C 583 m s�

2
5. However, the same dynamics can also be tracked

using different variables. For instance, one might follow the
speed of the shock front over time, or at various distances from
ground zero. Measurements performed from different perspec-
tives should be consistent, so in particular we should have
v C Kt�

3
5 and v C K

5
2d�

3
2,7 where v C d/t is the front speed

(numerical factors are omitted; see SI Section SIII.A for details).
The speed v, just like the size d and time t has no preferred
scale. However, if instead we use the new variable X̃ � d5/t2,
then this quantity is constant and it has a preferred scale, the
unit of explosivity X � K5.

Power laws are apparently scale-free. The axes of the two
primitive variables do not have preferred units. Nevertheless,
there is always a way to combine the initial variables in such a
way as to obtain a preferred unit for one axis, while the other
axis remains indeterminate.1,7 Basically, if y = Kxa, x and y do
not have preferred units, but (y/xa)g has units Kg, for any value of
the free exponent g. Such switch in perspective may seem a bit
extravagant when performed on a single instance of a power
law, but it becomes quite useful when comparing multiple
examples. For instance, Fig. 2b gives the blast radii of a number
of other atmospheric nuclear explosions,4,5,16–18 conventional
explosions,13,14,19,20 an underwater explosion,21 and laser-
induced explosions.12,22,23 A guide to the data is provided in
SI. Some of these explosions are pictured in Fig. 2a. When these
data are represented as the radius d versus the time t in
conventional units, then the explosions appear quite different.
The blasts go from microscopic to terrifying.

Since the scales of the explosions in Fig. 2b vary so much, it
can be hard to believe that all these dynamics essentially
display the same 2

5 scaling derived by Taylor. Yet, as shown in
Fig. 2c, if instead we plot the explosivity X̃ � d5/t2 for each
explosion we indeed see that a portion of the data fall on
plateaus, the ordinates of the plateaus are set by the values of K,
i.e. the value of the explosivity scale X � K5 in each case. In
Fig. 2c the explosivities of all examples are still measured in
conventional units (m5 s�2). If instead we use the particular
values of X as units in each case, all curves lie on the same
horizontal (unity) plateau, as shown in Fig. 2d. Effectively, we
have constructed a dimensionless number N1 � X̃/X � d5/(t2K5),
equal to unity as long as the dynamics follow Taylor’s scaling
(this number does not have a standard name, but we have
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recently proposed it be called the Taylor–Sedov number;7 see SI
Section SIII.A.1 for details). However, the horizontal axis in
Fig. 2d still awaits a proper scale, and some portion of the data-
whether in the initial, late, or both stages-departs from the
plateaus where the curves no longer overlap. As we shall see
now these two issues are connected and can be resolved.

Units for both axes

In his 1950 papers, Taylor considered the intermediate stage of
the dynamics of a large explosion.5,8 The pictures he used were
just a subset of the ones taken by Mack’s team.3 Fig. 3a gives a

more complete account of the dynamics, using data declassi-
fied in the 1980s3 (we highly recommend reading this full
report of immense historical value). The red squares outlined
in black are the data points used by Taylor, replotted from
Fig. 1. The other data points are from Mack’s optical measure-
ments, except for the squares with a central black dot, which
were obtained from pressure measurements,9 allowing to track
the shock front beyond the point where it becomes
transparent.3,4 Although the shock front follows Taylor’s scal-
ing from a fraction of a millisecond to about 0.1 s after
detonation, it eventually departs from it, decelerating progres-
sively until it reaches the speed of sound, cs C 344 m s�1,

Fig. 2 Explosions across scales. (a) Pictures of explosions across scales. (i) Laser-induced explosion.12 (ii) Explosion of a 1 gram charge of pentaerythritol
tetranitrate.13 (iii) 2020 Beirut explosion caused by 2.75 kilotons of ammonium nitrate.14,15 (iv) Dominic Housatonic nuclear test (personal communication
with G. Spriggs – Lawrence Livermore National Laboratory). Below each image the time since detonation t and the blast radius d are specified (https://
youtu.be/IZZ_IsyE_iE?si=aWDOslijsP2XB-SO). (b) Blast radius over time for a number of nuclear (&: Trinity,4,5 ’:16–18) and conventional (�:13,14,19,20)
explosions in air, and underwater (~:21), together with laser-induced explosions (m:12,22,23). (c) Replotting the data as an explosivity X̃ � d5/t2 versus time.
Most data sets show a plateau extending over a significant time range. The ordinate of each plateau gives the value of K5 for that data set. (d) Using X � K5

as unit of explosivity, all plateaus align on X̃/X C 1. A guide to the data and additional images are provided in SI and on this webpage (https://www.
numbersnature.org/explosions/2-beyond-trinity). An animated version of panel b illustrating all data sets is given in SI (Fig. S2b.gif). The color code is
explained later in the paper and quantified in Fig. 5. Note that the data sets on conventional explosions in pale pink only follow Taylor’s regime over a very
narrow time range, as will be explained later in the article.
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denoted by the continuous line of slope 1 in Fig. 3a. This
ultimate weakening of shocks had been understood since the
beginning of the 20th century, notably thanks to studies by
Bertram Hopkinson25 and Carl Cranz,26,27 the two scientists
generally credited for understanding this transition.28–30

Hopkinson and Cranz realized that the blast of different
explosions could be superposed if distance and time were
measured in scaled units, which can be expressed using the
speed of sound.30 With the insight from Taylor,5,8 we can
understand the intermediate regime of the explosion as abiding
to the scaling d C Kt

2
5. As we previously saw, the front speed

decreases over time as v C Kt�
3
5. Eventually the speed of the

front reaches the sound speed, v(t*) C cs. The time t* and radius
d* at which this transition occurs can be estimated by simply
equating Taylor’s regime, d C Kt

2
5, with the late propagation at

the speed of sound, d C cst:

t� ’
K

cs

� �5
3

(3)

d� ’
K

5
3

cs
2
3

(4)

These units of space and time are often called the Hopkin-
son–Cranz units.29 In contrast to the second and meter (or any
absolute standards) these units depend solely on the character-
istics of the dynamics. They are not set subjectively, but
objectively, by the phenomenon at play.

Because the data eventually depart from Taylor’s scaling, we
acquire units for both space and time. Single power laws, d C
Kt

2
5 or d C cst, do not have preferred scales. More precisely, for

each power law taken separately, any couple of coordinates (ti,
di) on the power law provides equally valid units. However,
when we now have two intersecting power laws, their point of
intersection, here (t*, d*), provides a unique pair of units, a
special point of view, common to both regimes.

For any explosion depicted in Fig. 2, we can compute the
values of the associated Hopkinson–Cranz units, based on the
measured explosivity and on the speed of sound in the medium
(air, water, and some rarefied gases-see SI Section SVIII for
details). For tiny laser-induced explosions, the Hopkinson–
Cranz point may occur after just a few microseconds and for
distances in the millimeter or centimeter range.12,22 At the
other end, a nuclear explosion like Dominic Housatonic has
t* C 20 s and d* C 5 km (values of t* and d* are tabulated for all
data sets in SI Table SV). Although these explosions may seem
to have very different scales when measured with absolute but
subjective units, their similarity is manifest once represented in
relative but objective units. As shown in Fig. 3b, when the
dynamics of small and large explosions are plotted in the
Hopkinson–Cranz units, they largely overlap.

Note that the scaled units t/t* and d/d* are dimensionless
numbers, and they can be connected to N1 and to N2 � (d/t)/cs,
the Mach number associated with the late regime. As shown in
SI Fig. S4b, the data can then be plotted as N1 vs. N2.

Fig. 3 Representing the dynamics of explosions with objective units. (a)
Representation in standard units of an extended data set on the Trinity nuclear
test, declassified in the 1980s. As a comparison, the black squares are the data
used by Taylor.5 Red squares are from optical measurement collected by
Mack’s team,3 except those marked with a black dot, where the blast radius
was inferred from pressure measurements.9 (b) Data from Fig. 2 are replotted in
Hopkinson–Cranz units, (t*, d*) defined in eqn (3) and (4). Also included are data
on vapor cloud explosions (*), which were only provided in scaled form in the
original paper.24 (c) Objective units from the early dynamics of explosions, (t0,
d0), defined in eqn (5) and (6). The grey lines are d = Kt

2
5, d = c0t, and d = cst. For

data sets with hollow symbols the initial speed of the explosion is not directly
measured but estimated from mechanical considerations (see SI Section SII.B
for details). The color code is explained later in the paper and quantified in
Fig. 5. Animated versions of panels b and c are given in SI to highlight each data
set (Fig. S3b and c.gif). The files SI3b.gif and SI3c.gif provide animated transitions
between Fig. 2b and 3b and c respectively, as explained in SI Section SVII.
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Nevertheless, the same portions of the data overlap as in
Fig. 3b, the same portion does not, and it is now time to
address this point.

Competing units

Taylor was well aware that the 2
5 scaling could only apply to the

intermediate range of explosions.5,8 He knew that at later times
the shock would weaken sufficiently as to be almost indistin-
guishable from a sound wave, and he also knew that at very
short time his scaling would fail. Indeed, we have seen that if
the blast radius follows d C Kt

2
5, then its speed follows v C Kt�

3
5.

The speed would seem to diverge at the instant of detonation.
This is, of course, not the case in practice because at very short
time the dynamics are governed by the initial ejection speed of
the explosion, which we may call c0.31 Initially, the explosion
front follows a third power law, d C c0t. The various departures
from Taylor’s regime at short time seen in the figures capture
this initial phase. In this initial phase, the impeding factor is
usually the inertia of the ejected mass, but as for the previously
discussed regimes, the mechanics are not in focus here (see SI
Section SII.B.1 for details).

In the same way that we computed the crossover between
Taylor’s regime and the regime of sound propagation, we can
now obtain the point of intersection between Taylor’s regime
and the initial regime at constant ejection speed:

t0 ’
K

c0

� �5
3

(5)

d0 ’
K

5
3

c0
2
3

(6)

This transition seems to have first been studied in the context
of nuclear weapons development, in particular by the team led
by Hans Bethe,31 which included some famous members, like
John von Neumann, and an infamous one, Klaus Fuchs (a
notable atomic spy; see 2nd season of the BBC series ‘‘The
Bomb’’; https://www.bbc.co.uk/programmes/p08llv8n). This
crossover is also discussed quite clearly in the literature on
supernovae.32,33 In this context, the initial ejection regime can
last for centuries.

In Fig. 3b we had chosen to rescale the dynamics in such a
way as to overlap the intermediate and late stages of the
dynamics. Data sets with enough time resolution to capture
the initial stage would not overlap. Instead, we can use the units
(t0, d0) obtained from the early crossover to rescale the plot.
Fig. 3c gives the result of such approach. Note that as done in SI
Fig. S4b for the late crossover, we could tilt this scaled plot by
using N1 and N0� (d/t)/c0 (SI Fig. S4a). Either way, now the initial
and intermediate regimes overlap but the late regimes do not.
We have three consecutive regimes but it seems that we cannot
rescale all of them at once. It is like having a short blanket on a
cold night: pull it over your head and your feet get cold, cover
your feet and your neck gets cold! Let now see how to knit a

blanket with the perfect size to cover the three regimes of the
dynamics.

A special number

With N0, N1 and N2 we introduced three dimensionless num-
bers, which we may call ‘‘simple’’.7 Each one of these numbers
depends on a combination of the primitive variables, d and t,
and on the kinematic constant of one of the three regimes,
respectively, the initial speed c0, Taylor’s prefactor K, and the
speed of sound cs. Scaled variables, t/t* and d/d*, or t/t0 and d/d0

are more composite kinds of numbers, depending respectively
on N1 and N2, or N0 and N1 (see SI Section SIV.A). These
dimensionless numbers are still dependent on the variables d
and t. There is, however, a special kind of dimensionless
number depending solely on the parameters:

N � c0

cs
(7)

This number may be called the ‘initial Mach number’20 (also
called the ‘flame Mach number’ for vapor cloud explosions24).
For each explosion this number is a constant, and its value has
been surreptitiously used as a color code in all figures. As seen
in Fig. 3c for the units (t0, d0), and in Fig. 3b for the units (t*, d*),
the non-overlapping part of the data produce a series of parallel
curves with a darker shade of red the further they are from the
origin (an illustration is provided in SI Fig. S6). Indeed, dark

shades of red encode large values ofN , and we have t�=t0 ’ N
5
3,

and d�=d0 ’ N
2
3. More broadly, the left-out regime in each

system of units can be expressed using the number N :

d ’ c0t$
d

d�
’ N t

t�
(8)

d ’ cst$
d

d0
’ N�1 t

t0
(9)

Solely rescaling the units does not allow the overlap of the three
consecutive regimes at once. The two regimes going through
the point of unit coordinates will overlap, but not the third
regime. However, the prefactors of this third regime are set by
the value of N , and a complete overlap can be achieved if the
importance of this number is fully acknowledged.

A new base for counting

In physics the term ‘‘order of magnitude’’ is often thrown
around a bit loosely. Implicitly it is usually assumed that an
order of magnitude is a decade, so two quantities separated by
an order of magnitude will roughly differ by a factor of 10. How
many decades a power law extends over is routinely used as a
criterion to assess its worth. One may, for instance, say that
Taylor’s scaling is quite strong because it extends over almost
three decades in time and over one in space. Ten is almost
universally accepted as the base for counting, and indeed all
logs we have used in the figures so far where logs in base 10.
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Nevertheless, this 10 is simply a convention, just like the meter
or the second.

When we are dealing with a single power law, we have seen
that the dynamics are scale-free, in the sense that no preferred
units stand out. In the same way, a scaling law is also base-free.
The choice of base for the log is completely arbitrary and so the
meaning of an ‘‘order of magnitude’’ can be adjusted at will.
This freedom is not lifted by the addition of a second inter-
secting power law, but by considering a third. In that case we
have seen that a special kind of dimensionless number
emerges, N . The value of this number changes from one
explosion to another, based on the values of the ejection and
sound speeds. However, in every explosion, N plays the same
role. It sets the coordinates of the crossover and the prefactors
of the power laws. The number 10 was arbitrary, bound to our
subjective choices. In contrast, N is an objective number set by
the dynamics. The number N provides an objective base, or
‘radix’. Indeed, when this number is used as a base for our logs,
we can finally overlap all three regimes, as shown in Fig. 5a. In
effect, Fig. 5a represents logN d=d�ð Þ vs. logN t=t�ð Þ. SI Fig. S6
and S7 summarizes the whole route from subjective units and
base to the more objective representation of Fig. 5a.

On a plot with objective units and base, choosing the origin
to be at (t0, d0) or (t*, d*) does not affect the appearance of the
plot, it solely shifts the coordinates (Compare SI Fig. S6c-i, ii
and S7c-i, ii). For all curves, the full time range of Taylor’s

regime is always equal to
5

3
‘‘orders of magnitude’’ in base N ,

and 2
3 orders of magnitude in space, since t�=t0 ’ N

5
3, and

d�=d0 ’ N
2
3 (top and right scale in Fig. 5a). If these fractions

are unsettling, one may prefer to use the radix R � N
1
3 to get

2 orders of magnitude in space and 5 in time (bottom and left
scale in Fig. 5a).

Duality

All explosions we have discussed so far were detonations: the
initial ejection speed was always greater than the sound speed,
so N 4 1. The converse is also possible. In that case, one
speaks of deflagrations. As is apparent in Fig. 3b or c, the
extent of Taylor’s regime shrinks as N decreases toward unity.
For deflagrations, when N o 1, this regime is not expected to
be present. This progressive disappearance is quite clear in the
data on conventional explosions,13,20 or on vapor cloud
explosions24 (pale pink data sets in the figures).

The blue path in Fig. 5a sketches what can be expected for
deflagrations. The front proceeds at the constant ejection (or
flame) speed. However, deflagrations are often affected by
additional mechanisms (gravity, friction, etc.), and so their
dynamics may deviate from this template. We invite the reader
to contact us to point us toward data sets on deflagration that
could be included in a revised version of Fig. 5a.

Note that N ¼ 1 is of course a singular case, which is quite
obvious in a logarithmic representation in baseN , as in Fig. 5a.

For data sets with N just slightly above 1 the transitions from
one regime to another tends to be stretched out and smoothed
out (curves with pale shades). SI Fig. S10 shows the extent of
such distortions in the case of the vapor cloud explosions,24

which were included in Fig. 3b and c, but excluded from Fig. 5a,
since N ’ 1þ. This stretching effect and the case N ¼ 1 go
beyond the scope of this article.

The duality between N o 1, and N 4 1 can be sketched in
the case of explosions, but it can be revealed more clearly for a
different example, a second demonstration of the radical scal-
ing approach we are promoting here. Whenever we have two
intersecting power laws we acquire objective units. Whenever
we have a third power law we can build an objective base or
‘radix’, hence the term ‘radical’ scaling. This procedure is
absolutely general, so let us apply it to a different context: the
dynamics of pinching,40–46 spreading34 and coalescing droplets
and bubbles.35–39 (Data used in Fig. 4 and 5b are from these
cited references). We recently had the opportunity to review this
field,47 where scaling approaches have a long tradition.48 Never-
theless, we had not gone through the extra step of renormaliz-
ing the number base.

Just as in the case of explosions, we are considering three
consecutive power laws. For pinching, the neck of the drop is
tracked as a function of the duration before pinch-off, for
spreading, the contact radius is tracked since the instant of
contact, and for coalescence, the radius of contact between the
drops or bubbles is tracked since the instant they first
touched.47 In these three setups, for drops and for bubbles, a
number of experiments have progressively evidenced the possi-
ble existence of three consecutive regimes47 (other paths are
possible,49,50 but they are not in focus here). At short time, the
trajectory is linear, d C cvt, then a power law of the form
d C Kit

2
3 is observed, until the variable size d eventually reaches

its maximum, set by the droplet or bubble size, d C D. Experi-
ments rarely have enough resolution to capture the three
regimes, but their existence is inferred by piecing together
multiple experiments.47 In the case of explosions, the initial
and final regimes were linear, hence parallel in a logarithmic
plot. Thus we only had two points of intersection, with coordi-
nates (t0, d0) and (t*, d*). Since the three regimes now have
different slopes (2

3 a 1 a 0), we have three points of intersection:

d1 ’ cvt1 ’ Kit
2
3
1 ! t1 ’

Ki

cv

� �3

; d1 ’
Ki

3

cv2
(10)

d2 ’ D ’ cvt2 ! t2 ’
D

cv
; d2 ’ D (11)

d3 ’ D ’ Kit
2
3
3 ! t3 ’

D

Ki

� �3
2
; d3 ’ D (12)

The first pair of coordinates provides what we have called the
Ohnesorge units.47 The two other pairs respectively correspond
to what are usually called the visco-capillary and inertio-capillary
units,47 due to the mechanical underpinning of the constants Ki

and cv (see SI Section SII.B.2 for details).
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As seen in Fig. 4a, when plotted in standard units and with
the traditional base 10, experiments on pinching, spreading,
and coalescence crisscross each other in a tremendous mess. By
choosing one of the three objective systems of units only two
out of three regimes can be overlapped, as shown in Fig. 4b–d.
The full overlap is reached by rescaling the base. As in the case
of explosions, the kinematic parameters can be combined to
obtain a dimensionless number. Now we have:

N � cvD
1
2

Ki

3
2

(13)

Note that this number (like any dimensionless number) is
defined modulo an overall power,7 so for instance we could
also use N�1, which is called the Ohnesorge number, or N 2,
which is called the Laplace number.51 We choose the inverse
of the Ohnesorge number (i.e. the square root of the Laplace
number) as defined in eqn (13), in order to facilitate the
comparison with the dynamics of explosions. The number
N is a constant for each experiment, and just as with the
initial Mach number for explosions, we can use N as our
objective base. Fig. 5b gives the objective plot for these
dynamics.

Fig. 4 Capillary dynamics of spreading,34 coalescing,35–39 and pinching droplets and bubbles,40–46 represented with standard units or with the objective
units provided by the crossovers. (a) Sketches of the various spreading, coalescence and pinching setups present in the figure. Each setup is associated
with a symbol used for the data sets in panels b to e. (b) The data are represented in conventional units (1 s, 1 m). (c) The data are represented in
Ohnesorge units (t1, d1), defined in eqn (10). (d) The data are represented in visco-capillary units (t2, d2), defined in eqn (11). (e) The data are represented in
inertio-capillary units (t3, d3), defined in eqn (12). The continuous grey lines are d C cvt, d C Kit

2
3, and d C D. The color code is explained later in the paper

and quantified in Fig. 5. A guide to the data is provided in SI. Animated versions of each panel illustrating all data sets are given in SI (Fig. S4b–e.gif). The
files SI4c–e.gif provide animated transitions between panel b and panels c, d and e respectively, as explained in SI Section SVII.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

N
ov

em
be

r 
20

25
. D

ow
nl

oa
de

d 
on

 2
/9

/2
02

6 
5:

09
:5

9 
PM

. 
View Article Online

https://doi.org/10.1039/d5sm00996k


220 |  Soft Matter, 2026, 22, 212–222 This journal is © The Royal Society of Chemistry 2026

For these pinching, coalescence and spreading dynamics,
the duality of the scaled plot is now clear. The succession of
three regimes is only seen as long as N 4 1. When N o 1 the
linear regime at speed cv intersects the maximum size D before
reaching the 2

3 regime, which is now inaccessible. Usually one

speaks of inertial dynamics when N 4 1 and of viscous
dynamics when N o 1.47 Note that in Fig. 5, dynamics with
N o 1 or N 4 1 proceed in opposite directions, since
N nþ1 4N n $ N 4 1, a quite visual display of the duality of
the dynamics.

We are currently studying how this duality manifests itself in
other examples and we encourage the readers to reanalyze the
data they may be familiar with under this new light.

The pursuit of objectivity: radical
scaling

Plotting a single power law requires a choice of units and a
choice of base, choices that are made subjectively, solely guided
by arbitrary conventions. In a plot like Fig. 1b the human
presence is everywhere. Our feet are used to measure space,
our hands to count, and the unit of time is barely less biased, a
mixture of Egyptian and Babylonian fractions of the rotational
period of our own planet. These choices are required to
describe the phenomenon, but the phenomenon itself is
expected to be independent of these choices. This indepen-
dence can only be reconquered if the phenomenon is not as
simple as initially thought, if the dynamics show at least three
connected trends, rather than a single power law.

This inherent connection between the wondrous diversity of
nature and the objective description of phenomena reveals a
key insight: simplicity, as appealing as it may seem, often
obscures the underlying richness of the world. A phenomenon
that can be described by a single power law is inherently tied to
the subjective choices of the observer—choices that impose our
human scales and perspectives onto the data. In contrast, when
we encounter a phenomenon characterized by multiple, con-
nected power laws, we are granted the opportunity to strip away
this human imprint. The units and bases used in our descrip-
tions become dictated by the data themselves, reflecting the
true nature of the phenomenon rather than our conventions.

It is important to distinguish, however, between the objec-
tive diversity of nature and mere complexity. Consider Fig. 2b
or 4a, where multiple datasets, gathered under varying condi-
tions, are plotted subjectively. The result is a tangled web of
data points that seems overwhelmingly complex. This apparent
complexity, however, is often a reflection of our arbitrary
choices in units and base rather than the phenomenon itself.
When these units and bases are determined objectively, as in
Fig. 5, the data align in a more coherent and understandable
pattern. By removing the subjective layers, we unveil a clearer,
more interpretable representation of the underlying phenom-
ena. What once appeared as a convoluted mess now reveals a
pattern free from the distortions of human perspective.

Once they are stripped from our footprints and fingerprints,
the data are ready to be interpreted. This interpretation does
not rely on our measuring and reckoning conventions anymore:
instead it usually invokes dimensions beyond those of the
variables. For instance, when power laws are kinematic, relat-
ing space and time d(t), like those we used as examples, then

Fig. 5 Objective representations of the kinematics of explosions, and droplets and bubbles. (a) The explosion data introduced in Fig. 2 are plotted with
objective units and an objective base. The units are (t*, d*) defined in eqn (3) and (4). The base is the initial Mach number N � c0=cs (top and right scales),

or R � N
1
3 (left and bottom), a radix chosen such that the points of intersections between the regimes occur at integer coordinates. Note that the data on

vapor cloud explosions have been excluded from this plot. As discussed in SI Section SVI and Fig. S10 data sets with N ’ 1 are highly distorted with an
objective base. (b) Capillary dynamics of pinching, spreading and coalescing droplets and bubbles47 in objective units and base. The units are (t1, d1)

defined in eqn (10). The base is the inverse of the Ohnesorge number, R � N � cvD
1
2

�
K

3
2
i . In both plots, dynamics with N o 1 or N 4 1 proceed in

opposite directions, since N nþ1 4N n $ N 4 1, a quite visual display of the duality of the dynamics. A guide to the data is provided in SI. Animated
versions of each panel illustrating all data sets are given in SI (Fig. S5a and b.gif). The files SI5a.gif and SI5b.gif provide animated transitions respectively
between Fig. 3b and panel a, and between Fig. 4c and panel b, as explained in SI Section SVII.
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the interpretation may be mechanical, involving forces, pres-
sures, etc., quantities adding the dimension of mass to those of
space and time. For instance, Taylor showed that the kinematic
constant of the blast could be factorized as K C (E/r)

1
5, where E

is the explosion yield and r is the ambient density.5,8 We
recently reviewed this widespread decomposition of kinematic
constants into pairs of mechanical parameters,7 and have been
publishing video lectures (https://www.youtube.com/@natures
numbers) on how to address objective units and bases from
such a mechanical point of view. What this article reveals is
that a pair of mechanical quantities and its associated regime
can only tell an incomplete story. A more complete scaling
analysis should make an effort to identify three connected
power laws, not just one, and this would require a minimum
number of four mechanical factors. We will address these
questions of mechanical combinatorics in a future article.
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