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Bridging scales: machine learning for the rational
design and modelling of shape memory polymers

Cheng Yan a and Giulia Scalet *b

Shape memory polymers (SMPs) are a class of stimuli-responsive materials with significant potential

across diverse fields including soft robotics, biomedical devices, and mechanical engineering. To realize

a scale transition from small molecules to a mechanical structure with excellent SMP behaviour,

investigators typically need both material design and constitutive model establishment. Traditionally, the

design of SMPs relies on empirical methods, limiting the speed of discovery and property tuning.

Moreover, the prediction of their behaviour generally depends on theoretical and numerical tools that,

however, require an in-depth understanding of theoretical mechanics. In contrast, machine learning (ML)

offers a powerful tool to possibly overcome these limitations and has increasingly drawn attention from

investigators in multiple fields. In this perspective, we critically review recent advances in the application

of ML techniques to SMPs. We discuss major conventional concepts in the field of SMPs, basic

procedures and important approaches to ensure ML-assisted SMP design, how different ML tools have

been employed to identify new SMP chemistries and to predict their thermo-mechanical and shape

memory properties. Despite these successful advancements, ML-assisted SMP discovery and thermo-

mechanical modelling remain at an early stage. We discuss how they are limited, e.g., by incomplete

structural representations and challenges in integrating thermal and temporal effects into the neural

network. Finally, we outline future directions to explore and implement, including developing tools to

capture complex SMP topologies and creating polymer-specific neural networks. The discussion allows

us to provide new insights into the use of ML tools for the world of SMPs.

1 Introduction

Shape memory polymers (SMPs) are a versatile class of smart
soft materials characterized by their ability to recover an initial
permanent shape from a deformed temporary one, upon expo-
sure to an external stimulus, typically a thermal, optical, or
electrical trigger.1 Depending on the macromolecular architec-
ture of the polymer and the specific applied protocol (named
programming), this ability can manifest itself through different
forms of shape memory effects (SMEs), the one-way SME being
the most common one.

The additional advantages of SMPs, including, for instance,
large strains, possible biocompatibility, and processability via
4D printing techniques, make them promising material candi-
dates for various application fields, such as pharmaceutical,2

flame retardancy,3 biomedical devices,4 tissue engineering,5

and soft robotics.6 These applications pose numerous con-
straints on the physical and functional properties of SMPs

and motivate the increasing need for efficient approaches to
design novel SMP chemistries that could satisfy application
requirements.

Traditional SMP design relies heavily on empirical synthesis
and extensive experimental characterization to measure the
chemical, physical, thermal, mechanical, and shape memory
properties of the developed systems.1,7,8

Alternative solutions supporting the design of SMPs rely on
molecular dynamics (MD) simulations which investigate the
material at the atomistic level.9–12 While these approaches
allow for an in-depth analysis of structure–property relation-
ships, they are time-consuming and can be unpractical for
engineering purposes. For example, to estimate the glass
transition temperature (Tg), one typically needs about 50–
150k atoms to simulate a conventional polymer, such as epoxy
or polyurethane. This needs 1–5 days to simulate a dozen to
hundreds of physical nanoseconds in the glass transition
zone.13 Although direct examples for SMP Tg prediction are
limited, other studies provide useful reference values. For
instance, Hayashi et al.14 reported that an equilibrium MD
simulation for evaluating the physical properties of a con-
ventional amorphous polymer typically requires more than
30–50 hours on a workstation equipped with dual Intel Xeon
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Gold 6148 CPUs (2.4 GHz, 40 cores). In another study on
gas-transport behaviour in polymer membranes, Giro et al.15

simulated systems containing approximately 20 000 atoms.
Furthermore, to enable the use of these discovered SMPs in
complex mechanical structures, constitutive models are indis-
pensable. Numerical simulations based on constitutive models
developed ad hoc represent one of the most used approaches to
predict the macroscopic properties of a given SMP-based struc-
ture. The literature is very rich in contributions, mostly divided
into rheological, phase-transition, and mixed models.16–18

However, this process requires an in-depth understanding of
continuum mechanics and polymer physics as well as a time-
consuming calibration process of model parameters.

Accordingly, researchers have searched for new methodolo-
gies to possibly address limitations of the current approaches.

Recently, machine learning (ML) has rapidly emerged as
one possible solution. Essentially, ML aims to learn a mapping
function Y = f (X) between input X and output Y. To achieve
this, investigators have developed a variety of effective meth-
ods, such as artificial neural networks (ANNs), Gaussian
process regression (GPR), random forest, and support vector
method (SVM).

As shown in Fig. 1, ML can play two key roles for SMPs:
bridging the microscopic and macroscopic levels (Fig. 1(a)–(c))
and further linking the macroscopic level to complex mechan-
ical structures with excellent SMP performance (Fig. 1(c)–(e)).
These two roles are often referred to as ML-assisted design and
ML-based thermo-mechanical behaviour prediction, respec-
tively. The former aims to predict the thermal dynamics
of macroscopic molecules from their microscopic molecular

structures, while the latter focuses on directly predicting the
behaviour of SMP-based structures. Since SMPs often exhibit
extremely complex topological structures at the microscopic
level, accurately and quantitively describing their macroscopic
behaviour is highly challenging. Moreover, the behaviour of
SMPs in working or recovery processes not only depends on
their intrinsic topology but also on how they are handled in the
programming step, making the precise design of their perfor-
mance even more difficult.

Theoretically, the design includes finding a function from
microscopic molecular structures to their ultimate functional-
ities. As already discussed above, MD simulation is a promising
way to design SMPs. However, the realization of the SME often
requires hours while MD computation can only be realized
during the time scale of nanoseconds, making it impractical
with current computational capabilities. In contrast, many ML
methods can simulate any function. For example, based on the
universal approximation theorem,19 ANNs can approximate any
continuous function and form the foundational hypothesis for
designing or developing models for SMPs. Therefore, it is not
surprising that ML has rapidly emerged as a powerful tool to
accelerate materials discovery, optimize structure–property
relationships, and guide rational material design.20–23

ML-assisted polymer design started in the 1990s. Back then,
Venkatasubramanian and collaborators24,25 employed the
genetic algorithm to design some structures for homopolymers.
However, the rapid growth of ML-assisted polymer design has
primarily emerged in the past decade. As a branch of polymer
research, ML-assisted studies on SMPs did not emerge
until around 2019. This delay is largely because conventional

Fig. 1 A schematic diagram from the realization from small molecules to complex SMP behaviour. (a) Monomer. (b) ML-assisted framework for SMP
discovery, which includes forward prediction and inverse mining. (c) Polymer network. (d) ML-assisted thermo-mechanical modelling. (e) Mechanical
structures with excellent SMP performance.
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polymer properties are primarily determined by their topo-
logical structures, making them relatively straightforward to
model. In contrast, the SME arises from an extremely complex
interplay of kinetic relaxation processes,26 including visco-
elastic relaxation, phase transitions, and segmental mobility.
Unlike conventional polymers, the behaviour of SMPs is not
solely structure-dependent but is also strongly influenced by
time and external thermo-mechanical loading in both program-
ming and recovery processes.

Basically, current SMP design strategies still follow the
framework presented by Yan and Li,27 namely, forward predic-
tion and inverse mining. As shown in Fig. 1, forward prediction
is charging of training a ML model from a database based on
calculations or data collected from references; reverse mining
uses the trained ML model to screen the desired sample from
the randomly generated samples through a ML tool or a custom
design method.

In addition to replacing the traditional design for material
scientists, ML can be also integrated with a solid mechanics
framework to obtain some novel models for predicting the
thermo-mechanical behaviour of SMPs. Essentially, this pro-
cess aims to look for a mapping function from temperature,
boundary conditions, and initial conditions for stress (strain).
To the authors’ understanding, there are three primary reasons
to integrate ML into continuum mechanics. Firstly, phase
transition behaviour of SMPs, especially for SMPs with multiple
phase transitions28,29 or damage-like effects,30 is relatively
complex. It is one of the key reasons why current continuum
mechanics-based models may involve 15–40 parameters or even
more30–32 (an existing model exhibits parameters even up to
10031) to describe SMP behaviour. Secondly, because of the
large number of parameters, investigators often struggle to
calibrate these parameters. Last but not least, all continuum
mechanics-based models exhibit an apparent limitation: mate-
rial specificity. That is, almost every model can describe one
or a few specific types of SMPs, but cannot cover all SMPs,
forcing researchers to frequently modify previous models
and integrate state-of-the-art branch models to simulate novel
SMPs. In other words, none of these simulated functions are
able to handle all types of complex functions and are not
universal. Fortunately, many ML models can simulate any
function. For example, according to the universal approxi-
mation theorem,19,33 a feedforward neural network with at least
one hidden layer, a sufficient hidden unit, and a suitable
activation function can approximate any continuous function
on a compact subset of Rn to arbitrary accuracy. Meanwhile,
backpropagation enables the training and parameter calibra-
tion much easier than manual calibration. Thus, ML is espe-
cially suitable to play such a role as the mapping function from
thermo-mechanical loading to complex SMP behaviours. Basi-
cally, ML approaches can be divided into pure ML technique
driven and physics model driven, as discussed in detail in the
following sections.

To the best of the authors’ knowledge, no papers are avail-
able that review and discuss current state-of-the-art on ML tools
specifically for SMPs.

This perspective aims to provide beginners with the foun-
dational knowledge needed to enter the field, while offering
in-depth insights into specific topics for more experienced
researchers. Accordingly, we critically review recent advances
in the application of ML techniques for the synthesis, design,
and property prediction of SMPs. Specifically, we will discuss
how different ML tools have been employed to identify new
chemistries as well as to predict the thermo-mechanical proper-
ties of SMPs and we will summarize their advantages and
disadvantages. Furthermore, we will highlight challenges char-
acterizing ML tools, such as data scarcity, model interpret-
ability, and the need for physics-informed ML frameworks.
Finally, we will outline future directions, including improve-
ments of current models and the development of open-access
databases for SMPs, and so on.

This study is organized as follows. Section 2 will briefly
introduce some basic concepts of SMPs. Section 3 will provide
an overview of current ML approaches. Section 4 will discuss
the approaches used in SMP design and discovery. In Section 5,
we will discuss the associate models for the thermo-mechanical
prediction of SMPs. Finally, we will present some challenges
and limitations in current ML approaches in Section 6 and
future opportunities in Section 7. Conclusions will be given in
Section 8.

2 Overview of shape memory
polymers

This section introduces the reader to the main features of
SMPs, which will then be the object of the application of ML
approaches discussed in the next sections.

2.1 Shape memory effects

SMPs are soft materials able to recover their (initial, processed)
permanent shape from one or more (deformed) temporary
shapes upon the application of an external stimulus. This
feature is known as the SME34,35 (Fig. 2). In general, most
polymers exhibit the so-called one-way SME, where the perma-
nent shape is recovered from one single temporary shape.
Certain polymers can also display the so-called multiple SME,
where the permanent shape is recovered sequentially from two
or more temporary shapes. Both the one-way and multiple
SMEs are irreversible effects, meaning that, once the recovery
is completed, an external mechanical intervention is needed to
re-established the temporary shape(s). Finally, some SMPs
feature the so-called two-way SME, which instead enables a
reversible transition between two temporary shapes under an
on–off stimulus.

The most common triggering stimulus is the heat, with
recovery induced by direct heating. In this kind of case, the
recovery in one-way and two-way SMEs are correlated with
a transition temperature (Ttrans), whereas in multiple-SME
systems, it is associated with different transition temperatures.
Typical transition temperatures are the glass transition
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temperature (Tg) in amorphous polymers and the melting
temperature (Tm) in semi-crystalline polymers. Other stimuli,
such as light and magnetic field, are also gaining prominence,
where recovery occurs through indirect heating.35

All these SMEs result from the appropriate combination of
the protocol applied to the material (known as ‘‘shape memory
cycle’’) and the macromolecular architecture of the polymer, as
discussed in the following subsections.

2.2 Shape memory cycle

The shape memory cycle for one-way SMPs typically involves
two subsequent steps: (i) programming and (ii) recovery. Pro-
gramming fixes the temporary shape, while recovery restores
the permanent shape from the temporary one. In the case of
thermal stimuli, the shape memory cycle corresponds to a
thermo-mechanical history. An example of a shape memory
cycle under uniaxial tensile conditions is shown in Fig. 3(a) and (b)

Fig. 3 Example of a shape memory cycle in thermally-activated SMPs subjected to uniaxial tensile conditions. (a) Strain versus temperature diagram and
(b) stress versus temperature diagram for one-way SMPs. (c) Strain versus temperature diagram and (d) stress versus temperature diagram for two-way
SMPs (quasi-2W).

Fig. 2 Schematic representation of the different types of SMEs in thermally-activated SMPs.
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where the cycle is represented in the strain versus temperature
and stress versus temperature diagram, respectively. First, the
material in its permanent shape is mechanically deformed
under isothermal conditions above Ttrans (step A and B); then,
the material in its deformed shape is cooled below Ttrans

keeping the deformation fixed (step B and C); finally, after
load removal (step C and D), the original shape is recovered
upon re-heating above Ttrans under load-free conditions
(step D and E). It is noted that, upon load removal (step C and
D), the deformed shape is generally maintained – only a small
elastic strain recovery may take place – and thus corresponds to the
fixed temporary shape (i.e., shape in point D).

The shape memory cycle can also be setup in order to
quantify the recovery stress instead of the recovered strain
during the re-heating. In this kind of case, the material in its
permanent shape is first mechanically deformed under iso-
thermal conditions above Ttrans; then, the material in its
deformed shape is cooled below Ttrans keeping the deformation
fixed; finally, the load is removed, and the material is re-heated
above Ttrans keeping the deformation fixed. The recovery stress
is thus recorded.

For multiple SMPs, more than one programming step
(correlated with different Ttrans values) is required to fix differ-
ent temporary shapes. Heating above all the Ttrans values
ensures the recovery of the permanent shape, sequentially
passing through all the temporary shapes. A specific type of
multiple SME, called temperature-memory effect, ensures the
SMP to ‘‘memorize’’ the temperature(s) at which the material
was mechanically deformed under isothermal conditions.36

These temperatures are denoted as deformation temperatures.
Accordingly, the recovery of the permanent shape takes place by
heating above the deformation temperature(s).

For two-way SMPs, an example of a shape memory cycle
under uniaxial tensile conditions is shown in Fig. 3(c) and (d),
where the cycle is represented in the strain versus temperature
and stress versus temperature diagram, respectively. The shape
memory cycle involves an initial tensile deformation under
isothermal conditions above Ttrans (step A and B), followed by
cooling (step B and C), keeping the load fixed, to induce a
second temporary shape (i.e., shape in point C). Finally, sub-
sequent heating, keeping the load fixed, leads to recovery (step
C and D). A reversible transition between points D and C takes
place through cyclic cooling and heating under the applied load
(quasi-2W). Under certain conditions, the transition can also
occur under stress-free conditions (true-2W).35 Moreover, the
transition can even occur under compression (advanced-2W).

Two parameters are generally used to describe one-way SMP
performance in a shape memory cycle: (i) the shape fixity ratio,
which quantifies the ability of the SMP to maintain its defor-
mation after load removal; and (ii) the shape recovery ratio,
which quantifies the ability of the SMP to recover its permanent
shape upon heating.

The shape fixity ratio can be calculated as follows:

Rf ð%Þ ¼
eunload
eappl

� 100 (1)

where eappl is the applied engineering strain (i.e., strain at point
B in Fig. 3(a)) and eunload is the strain after load removal
(i.e., strain at point D in Fig. 3(a)).

The shape recovery ratio can be computed as follows:

Rr ð%Þ ¼
eappl � erec

eappl
� 100 (2)

where erec is the residual strain after the heating ramp
(i.e., strain at point E in Fig. 3(a)).

Values of shape fixity and shape recovery ratios close to
100% indicate excellent performance (i.e., CRD and ARE in
Fig. 3(a)), while lower values (down to zero) indicate poor
performance. Other parameters, such as the recovery rate or
the recovery temperature range, can also be considered.
In particular, the recovery stress discussed above is an impor-
tant parameter quantifying the stress generated when shape
recovery is performed under a kinematic constraint.

For two-way SMPs, the behaviour is quantified by means of:
(i) the actuation magnitude (AM); (ii) the recovery magni-
tude (RM); and (iii) the stress-driven reversible deformation
(Derev-stress-driven). They are defined, respectively, as follows:

AM (%) = (elow � eappl) � 100 (3)

RM ð%Þ ¼ elow � ehigh
elow � eappl

� 100 (4)

Derev-stress-driven (%) = (elow � ehigh) � 100 (5)

where eappl is the applied engineering strain (i.e., strain at point
B in Fig. 3(c)), elow is the strain after cooling (i.e., strain at point
C in Fig. 3(c)), and ehigh is the recovered strain after heating
(i.e., strain at point D in Fig. 3(c)).

2.3 Macromolecular architecture and classes of SMPs

The macromolecular architecture plays a key role in enabling
the SME in SMPs.

A common classification is based on describing SMP archi-
tecture as being composed of both net-points and switch
units7,37–39 (Fig. 2). Net-points determine the permanent shape
and can be made of either chemical or physical crosslinks, with
an interpenetrated or interlocked supramolecular complex. The
switch units are the polymer chain portions responsible for
fixing and recovering the temporary shape by undergoing
a reversible transition – typically a crystallization/melting or
glass transition in thermo-responsive SMPs. In Fig. 2, the
switch units correspond to the reversible, thermally-sensitive
regions connecting the permanent net-points. Accordingly,
depending on the nature of both net-points and switching
segments, four classes of thermo-responsive SMPs can be
identified. Considering the nature of net-points, SMPs can be
divided into physically crosslinked and chemically crosslinked
or a combination of chemically and physically crosslinked.
Based on the nature of their switch units, SMPs can be further
subdivided into either Tg-based SMPs with an amorphous
phase or Tm-based SMPs with a crystalline phase. The melting
transition can be utilized in chemically crosslinked semi-crystal-
line rubbers, in liquid crystalline elastomers, in chemically
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crosslinked semi-crystalline polymers (i.e., semi-crystalline
networks) as well as in physically crosslinked (multi)block
copolymers. The glass transition can be utilized in chemically
crosslinked thermosets as well as in physically crosslinked
thermoplastics.

In order to attain the multiple SME, current approaches
incorporate two or more well-separated transition temperatures
into the system or introduce a broad (either glass or melting)
transition temperature range. The latter induces the tempera-
ture memory effect.

In order to attain the two-way SME under an applied stress,
semi-crystalline networks (i.e., semi-crystalline crosslinked
polymers) or liquid crystalline elastomers are needed. The
two-way SME under stress-free conditions is a feature shown
by semi-crystalline networks with one broad melting tempera-
ture or two melting temperatures, semi-crystalline polymer
networks prepared via a two-stage cross-linking method, and
thermoplastic semi-crystalline polymers with one broad melt-
ing temperature or two melting temperatures. For details, the
reader can refer to comprehensive reviews such as ref. 7 and
37–39. It is worth highlighting that some approaches use SMP-
based composites to increase mechanical performances of
SMPs or to introduce additional functionalities,40 or introduce
fillers in SMP matrices to induce SME via indirect heating.34

3 Overview of machine learning
approaches

This section introduces the reader to the main features of ML,
that will then be the object of discussion in the next sections.

In order to use computers to explore the mapping from
small molecules to specified SMP behaviours, we often require
three steps: (i) input the initial information into the computer
through fingerprinting; (ii) extracting important features from
these information and data; (iii) applying a specified ML
approach to look for the relationship between important
features and target properties. Notably, the last two procedures
are often intertwined. Some important approaches in steps (i)
and (ii) are detailed in Sections 3.1 and 3.2, respectively.

3.1 Fingerprinting

In this step, the machine initially converts SMPs’ topological
structures into some language that it can recognize. Basically,
some important conventional fingerprint methods include:

(1) Linear notation. It is able to convert small molecules into
a line of language. By defining a dictionary, the linear notation
can be converted into a binary matrix for further processing.
Specifically, the dictionary entries form the horizontal axis,
while the linear notation occupies the vertical axis. If an
element appears in both the row and column positions, the
corresponding entry in the matrix is set equal to 1; otherwise, it
is set equal to 0. For the polymer synthesized by a single
monomer, the simplified molecular-input line-entry system
(SMILES) notation is often used. For example, a homopoly-
mer poly(3-ethoxyl-carbonyl-phenyl acrylate) can be simply

represented by CQCC(QO)Oc1cccc(C(QO)OCC)c1.41 For copo-
lymers, which are synthesized by two or more monomers or
crosslinkers, the investigators often rely on the approach titled
‘‘BigSMILES’’.42 This approach is essentially a slight modifica-
tion of the original SMILES. The advantage is that it can reflect
the connectivity of structures to some extent through some
added symbols. Nevertheless, it cannot reflect complex struc-
tures and fail to reflect the molar percentage in its representa-
tion. It has been shown that directly using BigSMILEs cannot
lead to SMP property prediction with high accuracy.43 A primary
reason is that, due to dimension differences between a 3D
structure and a 1D notation, some information is inevitably lost
in this conversion.

(2) Morgan fingerprinting or extended connectivity finger-
print (ECFP).44 It is a molecular representation approach that
encodes local substructures in a molecule by systematically
capturing the topological environment around each atom (trea-
ted as the centre), up to a specified radius (Fig. 4). Simply
speaking, this approach treats a molecule as atoms connected
by bonds. ECFP then examines each atom and its local
chemical neighbourhood (the atoms directly surrounding it)
and assigns a unique code to each neighbourhood. These codes
are combined into a binary vector (a long sequence of 0 s and
1 s) that represents the molecule in a form a computer can
process. These operations can be simply conducted by RDKit45

(an open-source cheminformatics software toolkit) in Python. The
limitation of this approach is that it is based on elements, and the
partial substructure cannot entirely represent the topology. For
example, material scientists often treat the benzene ring as a
single rigid chain, while the Morgan fingerprint could treat it as a
combination of a couple of C–C and CQC bonds. Apparently,
these combinations cannot reflect the entire rigid structure of the
benzene ring. It should also be noted that Morgan fingerprinting
can only represent a network composed of two or more mono-
mers (unit cells) with different molar ratios. To resolve this, Yan
and collaborators46 introduced a weighted vector combination
method (WVCM). To some extent, this approach resolved some
problems caused by imperfect chemical reactions, such as a non-
uniform network, defeats, and weak interfaces. However, because
this approach does not account for connectivity between different
monomers, its accuracy is still limited.46

(3) Combined tensor represented based on a compositional
block. This approach treats the complex polymer network as a com-
bination of different blocks and uses different tensors or matrices to
represent these blocks.48–52 The block can be an element or a part
including a couple of bonds. The limitation of this approach is that
structure splitting is strongly affected by the understanding of
investigators and there is no standard splitting approach.

3.2 Feature extraction and mapping function establishment

After inputting initial information, a feature extraction approach
is employed to obtain critical information. As stated above, feature
extraction often closely accompanies a mapping function and we
state them together. Some popular approaches are listed as below.

(1) Artificial neural network (ANN). ANN is a type of optimi-
zation approach, which was first proposed by Mcculloch and
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Pitts53 and further developed by Hinton and collaborators.54

It forms one of the central pillars of modern ML techniques.
Through adding hidden layers and neurons, ANN is able to
construct a composite function with unlimited parameters.
Meanwhile, because it can approximate any continuous func-
tion (universal approximation theorem), it is extremely popular
in the modern scientific community.

(2) Graph method. There are a couple of ways to convert the
initial information into a more meaningful interpretation:
� Binary graph method. This is a simple approach which is

able to convert linear notation into a graph with a self-defined
dictionary. For example, Miccio and Schwartz41 and Yan and
collaborators43 converted SMILES or BigSMILES into a binary
graph, which can be recognized by a conventional convolution
operation. The convolutional layer is often followed by an ANN
to map the intermediate features to target properties.
� Graph convolution neural network (GCN). While some

early studies explored graph convolution ideas in the spectral
domain,55 the canonical and widely adopted GCN formulation
was introduced by Kipf and Welling in 2017.56 It defines two
matrices to represent the polymer network, i.e., the adjacency
matrix (A) and the node feature matrix (X). The first matrix
handles the connectivity information and the second handles
the element features. The hidden layers at the (l + 1)th iteration
can be calculated by

H(l+1) = s(D̃�1/2ÃD̃�1/2H(l)W(l)) (6)

where Ã = A + I, I is the identity matrix, D̃ is the degree matrix
(diagonal matrix) of Ã, H(0) = X, W is a trainable tensor, and s is
an activation function (such the rectified linear unit (ReLU)).
It should be mentioned that the updates of the parameters not
only extract the features but also obtain the mapping function
from these extracted features to target properties. Simply speak-
ing, a GCN updates each atom’s representation by aggregating
information from its neighbouring atoms and bonds. This
transforms the molecular structure into meaningful numerical
features, allowing ML models to learn the relationship between
polymer topology and material properties.
� Weighted directed message passing neural network (wD-

MPNN). Early forms of edge-aware message passing were
investigated by Dai, Dai and Song in 2016;57 however, the
MPNN framework was formalized by Gilmer et al. in 2017,58

and the widely used directed MPNN (D-MPNN) architecture
was later introduced by Yang et al. in 2019.55 Unlike GCN, it
does not explicitly extract information from the structure and
elements. Instead, it repeatedly updates the representation of
each element (atom) by implicitly aggregating information
from its neighbouring elements (atoms and bonds), enabling
hierarchical feature extraction from molecular structures. Since
it can be used for copolymers and considers molar percentage,
it has drawn much attention in recent years.59,60 Fig. 5 shows
the basic algorithm for wD-MPNN. Simply speaking, an MPNN
lets each element exchange information from the informa-
tion of its neighbouring element through chemical bonds.

Fig. 4 Example of substructure decomposition based on Morgan fingerprinting for the molecule of a flame retardant EGN-Si/P. The main idea can be
divided into three steps. In the first step (a), distinct integers are assigned to each atom in the chemical structure. Second, every atom is iteratively updated
by gradually enlarging the radius of the bond: (b)–(d) involved elements when the Morgan fingerprint radius = 0, 1, and 2, respectively. For example, when
radius = 0, only each element itself is identified. When radius = 1, only the single bonds that neighbour the core atom are considered. Finally, all substructures
can be found by this method with gradually expanded radius. Reproduced from ref. 47, with permission from AIP Publishing, copyright 2023.
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After several rounds of passing, each element obtains an
updated representation that reflects its chemical environment.
This will help the model to understand the relationship
between the overall chemical environment and the properties.

(3) Generative model. Since the information of polymer
networks is often extremely complex, directly exploring the
relationship between feature and target properties could be
challenging. In this kind of case, the generative model can be
used to learn a compact latent representation of the polymer
structure. The latent representation will serve as a low dimen-
sional but information-preserving feature, which will be used
for a downstream ML model to achieve more accurate property
predictions. The popular generative model includes a varia-
tional autoencoder (VAE)60–62 and generative adversarial net-
work (GAN).63,64 For example, in a recent paper, Vogel and
Weber60 developed a novel VAE model to map the copolymer
structures with different monomer stoichiometries and chain
architectures into a hidden space. Moreover, by sampling from
a Gaussian prior in latent space, the generative model can
produce polymer structures with novel architectures, which
makes it stand out among many ML models. Although limited
by the discontinuity of the mapping function (see Section 6),
the new structures designed by the generative model cannot be
necessarily synthesized through practical experiments. The very
recent development for generative models is to use transformer
architecture.65 While VAEs and GANs are currently the most
widely used generative models for polymer design, diffusion
models66,67 and normalizing flows68,69 have recently emerged
as powerful alternatives. Unlike VAEs and GANs, normalizing
flows enable exact and reversible probability modelling, while

diffusion models offer stable training and high-quality, diverse
generation without mode collapse. These advantages make
them attractive emerging tools for polymer design. However,
to the best of the authors’ knowledge, their application to SMPs
has not yet been explored.

(4) Feature descriptor. Some other tools can assist investi-
gators to obtain some features directly from fingerprinting. For
example, RDkit45 can provide some physicochemical properties
from SMILES, such as molecular weight, LogP (hydrophobicity),
number of H-bond donors/acceptors, topological polar surface
area, and number of aromatic rings. MD simulation can also be
used to compute some feature values to reflect the character-
istics of polymer networks, such as epoxy length, hardener
length, and the average number of backbone heavy atoms
following complete cross-linking.70 This approach transforms
the polymer structural/topological information into numerical
feature vectors, which greatly facilitates the building mapping
function (structure–property) prediction models. The limita-
tions are that RDkit can only provide some simple information
and MD simulation-based methods are often time-consuming.

4 Current machine learning studies for
shape memory polymer design and
discovery

This section presents and critically discusses the main approaches
from the literature to design and synthetize new SMPs.

The overall aim of these approaches is to find the optimal
chemistry that ensures target properties and/or behaviours are

Fig. 5 Basic algorithm for wD-MPNN for polymer property prediction. (a) Node and edge features are initialized based on corresponding atomic and
bond properties (xv and euv), concatenated and passed through a single neural network layer. (b) Message passing is performed for T steps, in which
edge-centered messages of v-outgoing edges are updated based on v-incoming edges. Each message is weighted according to user-specified bond
probabilities that reflect the topology of the polymer repeating unit. A D-MPNN with these edge-centered messages learns a hidden representation hvu

for each edge in the graph. (c) A hidden representation for each atom hv is obtained by considering all its incoming edges. Specifically, updated atom
features are obtained by a weighted sum over the features of all v-incoming edges, followed by concatenation with the initial atom features, and
transformation via a single neural network layer. (d) An overall molecular representation h is obtained by averaging or summing over all atom
representations hv. Each hv is weighted according to the relative abundance (i.e., stoichiometry) of the monomer they belong to obtain an overall polymer
representation. Reproduced from ref. 59, with permission from the Royal Society of Chemistry, copyright 2022.
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achieved. The material design process generally follows the
workflow in Fig. 1.

Currently, only a limited number of studies are available for
ML guided SMP design (see Table 1).

Most of these studies focus on thermoset SMPs, targeting
the Tg, the rubbery modulus, and the recovery stress during
shape memory tests.

The earliest studies in this field originated from Yan et al.43,71

in around 2020, who developed two novel approaches: a dual-
convolutional-model framework43 and the transfer learning-
variational autoencoder (TL-VAE).71 The basic frameworks are
shown in Fig. 6(a) and (b). For example, Yan, Feng, and Li71 used
a TL-VAE to fingerprint SMP structures and an ANN as a forward
model to predict the rubbery modulus of ultraviolet (UV)-curable
thermoset SMPs. Then, they generated new candidates by ran-
domly combining different functional groups to produce novel
SMP structures. Finally, the ANN was applied to screen approxi-
mately 8000 new SMPs and identified five promising candidates.
In another example, Shafe et al.70 used MD simulations to extract
structural information from polymer networks and employed
multiple linear regression as a forward model. They further
expanded the chemical space by introducing additional hardeners
from PubChem. Using this forward model, inverse design enabled
the discovery of an SMP with a 60% increase in recovery stress
compared to the best experimentally-validated material.

These works became the foundation for some other
investigators.72,73 For example, in a recent study, Das et al.72

incorporated chemical constraints from four functional
groups—epoxy, amine, thiol, and vinyl—into a VAE model,
enabling it to produce new monomers consistent with estab-
lished chemical rules. Teimouri et al.73 expanded the training
dataset and modified the VAE architecture to enhance the
performance of the TL-VAE framework. In another recent
work, Yan et al.46 introduced features across microscopic,

mesoscopic, and macroscopic scales and designed an ANN
with newly constructed sub-MLP (multilayer perceptron) mod-
ules to predict the Tg of SMPs (see Fig. 6(c)).

As shown in Table 1, the approach of database curation
employed by the investigators is primarily the manual collec-
tion from literature references. Since SMPs have been discov-
ered over 70 years,74 many samples have been studied. In the
Web of Science, we can find over 5000 articles through search-
ing the keyword ‘‘shape memory polymer’’. However, searching
for detailed monomers, molar ratios, and target properties
from these references requires a strong background in material
science. Current large language models (LLMs), such as
ChatGPt,75 cannot entirely possess such a capability and are
not able to replace investigators to collect this information. For
example, when interpreting figures that include multiple
storage-modulus curves, such models may fail to correctly
identify all corresponding Tg values. An example is provided
in the SI to prove our statement. These limitations could
potentially be mitigated through model fine-tuning and
domain-specific adaptation by researchers.

Another way for dataset establishment is MD simulation.
However, unlike conventional data collection, which obtains
data from existing data, this way uses a computer to generate
new data. For example, Shafe et al.70 revised the monomer
structures for bisphenol A diglycidyl ether (DGEBA) and iso-
phorone diamine (IPD) in a certain range, which allowed them
to compute the atomic features for further calculation. It
should be mentioned that the advantage of an MD-assisted
approach is that it allows researchers to explore some novel
polymer structures without being limited by current data space.
The disadvantage is that current computation power can only
perform the computation during nanosecond scale while the Tg

transition often requires 30–90 minutes. Therefore, it leads to a
gap between the prediction and ground truth for new SMPs.43

Table 1 Comparison of ML studies for SMP design and discovery

Year of
publication Author

Designed
polymer Data source Target

Fingerprinting
method

Feature and mapping function
establishment

2021 Yan
et al.43

Thermoset
SMPs

References Recovery stress BigSMILES Dual-convolutional neural network

2021 Yan
et al.71

UV curable
thermoset
SMPs

Drug molecules +
SMP references

Glass transition
temperature, rubbery
modulus

SMILES and
mole ratio

Transfer learning-variational autoencoder
(TL-VAE) and ANN

2022 Shafe
et al.70

Thermoset
SMPs

Self-defined data-
base (9 epoxies and
22 hardeners)

Glass transition
temperature, recov-
ery stress

MD simulation
and direct
SMILES

Linear regression

2023 Yan
et al.62

Thermoset
shape mem-
ory vitrimers

Drug molecules +
shape memory
vitrimers references

Healing/recycling
efficiency, glass tran-
sition temperature

SMILES and
mole ratio

Transfer learning-variational autoencoder
(TL-VAE) and ANN

2024 Shafe
et al.97

Thermoset
SMPs

Self-defined
database

Recovery stress MD based
atomistic
fingerprints

Multiple linear regression, ridge regression,
Bayesian ridge regression, Theil Sen
regression, and Poisson regression

2025 Teimouri
and Li73

Thermoset
SMPs

Drug molecules +
SMP references

Glass transition
temperature

SMILES and
mole ratio

Transfer learning-variational autoencoder
(TL-VAE) and ANN

2025 Das
et al.72

Thermoset
SMPs

References, same
with ref. 73

Glass transition tem-
perature, rubbery
modulus

SMILES Conditional VAE

2025 Yan
et al.46

Thermoset
SMPs

References Glass transition
temperature

Triple level
fingerprinting

Support vector regression (SVR), ANN, and
Gaussian process (GP) models
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Some authors attempted to use a fitting method to make up
this scale gap.76 However, the approaches may oversimplify the
nature of the complex time scale gap, and the reliability of this
approach could need further validation in future studies.

At the same time, another current difficulty lies in that SMPs
differ from conventional mechanical properties. That is, SME
often relates to both microscopic structure and time effects. For
example, with increasing temperature, shape recovery is sup-
posed to occur with the activity of the polymer network.
However, simultaneously, if dynamic relaxation happens too
fast, shape recovery would still not proceed. Also, the SME is

not entirely determined by mechanical stiffness. In practice,
both soft polymers and tough polymers can exhibit strong
SMEs. That is, SME is a physical feature that is difficult to
quantify. To solve this, investigators employed different strate-
gies to design SMPs to achieve better SME performances. For
example, Yan et al.43 directly used monomer combinations to
predict the recovery stress without considering molar ratios.
Later, Yan and collaborators62,71 predicted the rubbery mod-
ulus of SMPs to look for SMPs with better SMEs. They found
that the latter approach results in a ML model with lower
prediction errors.

Fig. 6 Three thermoset SMP design approaches. (a) Dual-convolutional-model framework.43 Basic pipeline structures for the network to predict the
recovery stress sre. The programming strain epg, the programming temperature Tpg, and the transition temperature Ttr are different input data types.
Convolutional neural networks (CNNs) are used to perform deep learning for the matrices generated by SMILES. (b) TL-VAE framework.71 The VAE model
is first trained by 420 000 drug molecules, and an intermediate hidden space is obtained in (a1). The VAE model is fine-tuned by 109 monomers, and then,
the final hidden space is obtained in (a2). (c) Triple-scale ANN model with two sub-MLP networks.46 The sub-MLP on the top received the features from
the microscopic level while the sub-MLP on the bottom received the features from the mesoscopic level and macroscopic level. The outputs are the
moduli and temperatures for endset and onset of the glass transition zone. (b) was reprinted with permission from ref. 71. Copyright 2021 American
Chemical Society. (c) was reprinted with permission from ref. 46. Copyright 2025 American Chemical Society.
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5 Machine learning assisted
thermo-mechanical modelling

This section presents and critically discusses the main appro-
aches from the literature to predict SMP properties. The overall
aim of these approaches is to identify the properties of an SMP
given some specific inputs. Basically, the prediction for SMP
behaviours can be divided into two types: thermo-mechanical
constitutive behaviours prediction and other predictions.

5.1 Thermo-mechanical constitutive behaviour prediction

We compare all the studies for the thermo-mechanical response
of SMPs in Table 2. As can be observed, they are mostly dedicated
to the prediction of the behaviours of two-way SMPs. They can be
divided into two subclasses, as described below.

Pure data-driven based methods. Chen, Wang and their
collaborators77–79 employed different pure data driven methods
(see Fig. 7(a) and (b)), including transformers, ML framework
by integrating graph neural networks (GNNs) and time series
transformers, fully connected neural network (FCNN), the con-
volutional neural network (CNN), and the long short-term
memory (LSTM), to predict the stretch or stress of two-way
SMPs under complex thermo-mechanical loading. It should be
mentioned that, in a recent study, Mahmud et al.77 developed a
novel model, wherein they combined monomer graphs with
experimental features, such as time steps, temperature profiles,
and sample length, to predict the average stress curves (see
Fig. 7(a)). The results demonstrated that the model can predict
the stress curve with a root mean squared error (RMSE) as low
as 0.1895 and a Pearson correlation coefficient (PCC) of up to
1.000 on unseen datasets (other types of SMPs). We present two
primary model architectures in Fig. 7(a) and (b). The advantage
of these methods lies in that they can be directly employed
based on data without in-depth physical constitutive knowl-
edge. Simultaneously, this approach is scientifically reasonable
to some extent. As shown, the studies by Chen, Wang, and their
collaborators77–79 primarily treated the thermo-mechanical
response of SMPs as a time-series problem. Based on this
perspective, the authors employed several state-of-the-art ML
architectures to predict the evolution of time-dependent SMP

responses. They constructed feature sets containing time steps,
temperature profiles, sample length, and moving-averaged
stress to represent the time-series behaviour of SMPs. In their
framework, LSTM networks served as the primary model,
leveraging the assumption that historical deformation states
influence future responses. This approach is consistent with
the current understanding in SMP modelling, where prior
deformation and thermal history are believed to strongly affect
the subsequent thermo-mechanical behaviour. However, they
also have some limitations. First, these models do not exhibit
interpretability. They act as a complete black box and are
difficult to understand for human investigators. Next, they have
a significantly large number of parameters. For example, in a
FCNN model (the best performing model) in Ibarra et al.’s
study,79 the model involves 307 060 parameters. In addition,
due to lacking physical laws, they could easily be affected by
noise. For example, in the prediction of the strain-time curve in
Ibarra et al.’s study, there could be some unexpected oscilla-
tions (see Fig. 8 in ref. 79).

Physics-informed ML modelling. Considering these limita-
tions, researchers attempted to integrate constitutive physical
laws into the original ML framework. Basically, physics-
informed ML incorporates known physical laws (e.g., conserva-
tion laws, constitutive relationships, or first-principles con-
straints) into the loss functions. Embedding physics into the
model reduces the need for large training datasets, improves
generalization, and increases the reliability of predictions.
In practice, this means that the ML model is not only trained
to match data but also penalized when it violates physics. In
mechanics, the loss function may include terms that enforce
force balance, stress–strain relationships, or energy conserva-
tion. During training, the model learns parameters that satisfy
both experimental data and physical equations. As a result, the
model can make reasonable predictions even with limited data
and remains consistent with known physical behaviour. For
example, Yan et al.80 integrated a widely recognized storage
strain model into an ANN and developed a physics-informed
artificial neural network (PIANN). As shown in Fig. 7(c), accord-
ing to the constitutive equation, they stipulated the weights and
bias after three hidden layers and thus guided the architecture

Table 2 Comparison for modelling the thermo-mechanical response of SMPs

Year of
publication Author

SMP
type

Predicted polymer
behaviour

Database establish-
ment method ML model

2022 Ibarra
et al.79

Two-
way
SMP

Strain changes during
complex thermo-
mechanical loading

Data from previous
thermo-mechanical
experiments

Fully connected neural network (FCNN), convolutional neural
networks (CNN), long short-term memory networks (LSTM),
bidirectional LSTM (BiLSTM), CNN-LSTM, convolutional long
short-term memory (ConvLSTM), ensemble model

2025 Yan
et al.80

One-
way
SMP

Recovery stress, recovery
strain

Data from previous
thermo-mechanical
experiments

Physics-informed ANN (PIANN)

2025 Mahmud
et al.78

Two-
way
SMP

Strain changes during
complex thermo-
mechanical loading

Data from previous
thermo-mechanical
experiments

Transformer model, FCNN, CNN, LSTM

2025 Mahmud
et al.77

Two-
way
SMP

Stress changes during
complex thermo-
mechanical loading

Data from previous
thermo-mechanical
experiments

Combination of graph neural networks (GNNs) and time
series transformers, feed-forward neural networks (FNN),
CNN, LSTM, ConvLSTM, convolutional bidirectional LSTM
(ConvBiLSTM)
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Fig. 7 Three primary models used for thermo-mechanical modelling of SMPs. (a) Stress prediction by combining monomer graphs with experimental
features based on multiple ML models.77 (b) Strain prediction model based on multiple ML approaches.79 (c) Physics-informed artificial neural network
(PIANN), which integrated the storage strain based constitutive model into a neural network.80 (a) and (b) belong to pure data-driven models and they
primarily used the time series approach to predict stretch or stress. (a) was reprinted from ref. 77, with permission from Elsevier. (b) was reprinted from ref.
79, with permission from Elsevier. (c) was reprinted with permission from ref. 80. Copyright 2025 The Royal Society (U.K.).
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design of a novel neural network. The 1D constitutive
model reads

s = E(T)�ee = E(T)�(e � Rn+1(Xn+1) � eT) (7)

where

Rn+1 = Rn+1(Xn+1), Xn+1 = WnRn + Bn (8)

and E(T) is the Young’s modulus, e is the total strain, eT is the
thermal strain, R represents the activation function, Xn+1 is the
output at the (n + 1)th layer, and Bn and Wn are the bias and
weight tensors at the nth layer. The loss function can be
written as

L ¼ 1

m

Xm
1

Ei ei � Rnþ1ð Þi� eTð Þi
� �

� si
� �2� �

þ l
m

Xn
1

Wnk k2
� �

(9)

where the first term aims to reduce error between the recovery
stress prediction (eqn (7)) and ground truth si. The second term
is the ridge regularization, aiming to reduce overfitting,
m represents the number of entries, l is a small constant,
and n is the number of weights. The study shows that the model
has overcome certain intrinsic limitations compared to pre-
vious solid mechanics based constitutive models. First, PIANN
can be used to predict SME behaviours for a broad range of
SMPs. Second, it can predict multiple distinct SMP behaviours:
stress evolution during hot programming, stress recovery fol-
lowing both cold and hot programming, and free strain recovery
during heating branch. Therefore, it makes an important step
towards general constitutive modeling for SMPs. Simultaneously,
the model only includes 273 parameters, showing significantly
fewer parameters than the pure data-driven model.

Essentially, physics-informed ML models outperform tradi-
tional constitutive models because of multiple reasons. That is,
many existing models were developed in a highly pheno-
menological way—researchers combined known viscoelastic,
thermoelastic, plasticity, and phase-transition elements into
complex assemblies. This approach is analogous to manually
building a machine out of springs, dashpots, and sliders: if
enough components are added, the phenomenon can usually
be simulated. Similarly, in mathematics, if sufficient para-
meters are introduced into a function, it can virtually approxi-
mate any other function. However, such assemblies quickly
become bulky, the frameworks lack conciseness, and the fitting
process becomes very time-consuming. In contrast, a physics-
informed ML model is like teaching the machine the funda-
mental physics and allowing it to assemble relationships auto-
matically. Although the number of parameters may not be
fewer than in phenomenological models, the process achieves
a form of ‘‘auto-assembly,’’ offering greater efficiency. In addi-
tion, it should be emphasized that almost all current materials
have material specificity and can only describe limited types of
SMPs. However, Yan et al.’s PIANN model80 can accurately
predict five temperature–stress datasets and four tempera-
ture–strain datasets, including experimental data from four
different SMP systems and simulation results from a widely

accepted constitutive model. Moreover, PIANN successfully
predicts four key shape-memory responses: stress evolution
during hot programming, stress recovery following both cold
and hot programming, and free-strain recovery during the
heating process. These results demonstrate the universal
approximation capability of this type of model, a feature that
conventional fitting functions cannot guarantee.

5.2 Other behaviour prediction

To some specific applications, ML can also be used to predict
SMP behaviours. Dutta et al.81 used temperature to predict the
angle to pivot and the angle tip for an SMP sample from a video
record, separately. Rosales et al.82 employed a simple ANN
model to predict the dimensional error on specimens in 3D
printing process. The first one is more aligned with graph-
based recognition tasks in SMPs, while the second one shows a
direct application in SMP manufacturing. These studies do not
aim to predict the intrinsic thermo-mechanical behaviours of
SMPs but still exhibit some interesting uses in SMP-related
fields.

6 Challenges and limitations

From an objective perspective, current studies on ML-assisted
SMP discovery and thermo-mechanical modelling are still in an
early stage, leaving plenty of room for improvement.

Firstly, the topological structures of SMPs are relatively
complex. Currently, there is no existing method capable of
completely capturing all features of a polymer structure, espe-
cially of copolymers. So far, all methods can only provide partial
descriptions. This partial information makes it difficult to find
a mapping function.

Secondly, there is still no existing database including suffi-
cient data points and labels for SMPs. As a comparison,
successful protein (a special polymer) databases often include
a large amount of datapoints. For example, AlphaFold (struc-
ture) includes over 170 000 protein structures,83 ProBert-BFD
includes about 2.1 billion sequences,84 and ProGen2 includes
over a billion sequences.85 Although general thermoset SMPs
are often chemically more diverse and less standardized than
proteins—and therefore, in principle, require more data
points—in practice, current studies in ML-assisted SMP design
typically rely on hundreds of data points. This severe data
limitation significantly constrains model performances.

Thirdly, although the structure is a hierarchical structure
composed of repetitive units, they cannot easily be captured by
linear Euclidean geometry. That is, it is challenging to find a
minimum unit cell for complex copolymers with different
molar ratios.

Fourthly, there is a gap between current research focus and
SME’s fundamental essence. That is, most existing studies only
took the topological structure into consideration. However,
SME is a kinetic interaction governed by both topological
structures and programming or training protocols. Therefore,
the interaction between external loading and topological
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structure cannot be fully explained by the structure alone,
which poses a challenge for predicting the ultimate recovery
stress or strain based solely on structural information.

Fifthly, as shown in Fig. 1, current inverse design is only a
transformation of forward design or forward mapping function,
relying on a method of exhaustion. On the other hand, a true
inverse design should aim to obtain the inverse mapping
function – from performance parameters back to topological
structures – analogous to an inverse function in mathematics.

Sixthly, the data for ML-assisted polymer design is still
scarce. It can be seen from Table 1 that most of the data points
are still collected from previous references. Thus, most models
struggle to generalize beyond their training distributions.
Although SMPs were discovered 84 years ago and investigators
have conducted numerous studies, researchers have not estab-
lished a formal database. To date (Nov. 2025), using the Web of
Science database and limiting the document types to articles,
proceedings papers, editorial materials, early access, and data
papers, we have identified about 4800 publications from 2010
to 2025 by searching the keyword ‘‘shape memory polymer’’. To
collect data, researchers need to review articles and extract
measurements from the reported graphs. This process is not
only time consuming but also highly relies on the chemical
knowledge of each researcher, which directly affects data’s
quality and effectiveness.

Seventh, developing physics-informed ML models for SMPs
is more challenging than for conventional polymers. Existing
models86–88 already capture the mechanical responses of gen-
eral polymer materials. The general idea in these studies is to
use neural networks to fit simple modulus-like coefficients in
the free energy formulation based on available data points.
However, SMPs clearly represent a more complex class of
polymers. Their constitutive modelling must account not only
for mechanical responses but also for thermal effects and
kinetic relaxation. In other words, temperature and time must
be included as variables in the formulation, and these variables
cannot be treated as simple coefficients. Therefore, directly
adopting approaches designed for conventional polymers is not
feasible.

In a nutshell, overcoming current challenges still requires
tremendous efforts and is essential for fully leveraging ML’s
capabilities in this field.

7 Future directions and opportunities

In the future, investigators will still have plenty of opportunities
to explore and implement new ideas.

Firstly, as stated above, the topologies of SMPs are often
extremely complex – the repetitive unit cell leads to complex
systems. It is expected that investigators can develop a tool that
can explicitly extract more features directly from monomers
and crosslinkers, improving prediction accuracy.

Secondly, most neural network models used for ML-assisted
polymer discovery are heavily influenced by developments from
graph learning and computer version (image) field. Therefore,

they could not entirely deal with specific scenarios. For exam-
ple, the CNN predictions accuracy for Tg is significantly
influenced by incompleteness of the binary graphs (which
cannot capture topological structures of polymers) based on
BigSMILES.43 In the future, it is expected that more polymer
specific neural networks can be developed to improve predic-
tion accuracy.

Thirdly, LLM is expected to expedite information extraction
by replacing manually extraction. In the latest GPT-5 model,
some simple monomer structures can be directly extracted
from references, demonstrating better performance than the
GPT-4o model. However, it cannot still guarantee 100% correct-
ness due to the complex chemical reactions (see the example
reported in the SI). Thus, it is expected that current LLMs can
further extract more useful and accurate information from the
published articles.

Fourthly, generative models are expected to be further
improved in the future. In current studies, the realization of
new polymers often relies on the generation of new samples
through adding white noise. It implicitly assumes that mapping
being learned is continuous. However, in reality, the target
functions that investigators aim to approximate may not be
continuous (often constrained by chemistry), which leads to the
generation of many impractical polymers (see the bizarre
monomers produced by a VAE model73). In other words,
chemistry is not a smooth statical space, but it has physical,
chemical, and topological rules, which are assumed as a con-
tinuous function in ML models. In the future, it is expected that
some new constraints can be developed to regulate the map-
ping of neural networks.

Fifthly, there is a need to use physics-informed ML models
to replace pure data-driven models to improve interpretability
and physical consistency. From a mathematical perspective,89

the current neural network is a realization of the Kolmogorov-
Arnold representation principle:90,91 any multivariate continu-
ous function can be built from simple one-variable nonlinea-
rities and linear combinations (close to Hibert’s 13th problem92).
However, this process does not involve any boundary constraints
and could generate illusion in the lay mappings.93 Because of that,
physics must be added to avoid these inconsistencies in
mappings.

Sixthly, current ANNs leave a lot of space to improve. Current
commonly used ANNs were originally inspired by human
being’s neural network, but they simply assume all the relation-
ships between any two neurons are purely linear. However, it
was shown that the human brain has demonstrated signifi-
cantly higher efficiency than LLM. That is, the human brain
only uses roughly 20 Watts to work, while LLM are consuming
power in Gigawatts.94 Thus, the gap suggests that the linear
assumption could not be entirely correct. Recently, the Kolmo-
gorov Arnold network (KAN) has modified the linearity into
nonlinearity and they have shown similar or even better per-
formance with a traditional ANN model,95 thus exhibited great
potential.

Seventhly, the algorithm of neural networks is also expected
to be further understood in the future. Essentially, neural
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networks strongly rely on fitting, and this is a black box
operation. This black box nature makes the training process
like ‘‘alchemy’’96 and there is no standard methods available to
find the optimal architecture of neural networks. It is expected
the algorithm will be fully understood in the future, developing
single canonical architectures.

Finally, an open-access database and community bench-
marks for SMPs would be extremely helpful to provide data
for ML models.

8 Conclusions

In this perspective, we have reviewed recent developments of
ML-assisted SMP design and their thermo-mechanical model-
ling, compared different models, and summarized their advan-
tages and disadvantages. We have also discussed the
limitations and challenges of current studies and outlined
future directions for this rapidly evolving field. It can be clearly
seen that ML is beginning to bridge microscopic scale to
macroscopic scale as well as SMP structure to thermo-
mechanical behaviour. Looking ahead, the combination of
data-efficient learning, physics and chemistry constraints, and
more appropriate topological representations should further
integrate chemistry, materials science, and mechanical engi-
neering, enabling more direct scale-bridging from molecules to
complex SMP architectures and expediting development across
engineering domains.
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E. J. Bjerrum, O. Engkvist and H. Chen, J. Cheminf., 2019, 11,
1–13.

65 D. Hudson and L. Zitnick, Proc. 38th Int. Conf. Machine
Learning, 2021, pp. 4487–4499.

66 A. Jain, A. Srivastava and R. Ramprasad, Chem. Mater., 2025,
37, 7337–7346.

67 Z. Yang, W. Ye, X. Lei, D. Schweigert, H. K. Kwon and
A. Khajeh, npj Comput. Mater., 2024, 10, 296.

68 Y. Zhu, Z. Ouyang, B. Liao, J. Wu, Y. Wu, C.-Y. Hsieh, T. Hou
and J. Wu, Proc. Thirty-Second Int. Joint Conf. Artif. Intell.
(IJCAI-23), 2023, pp. 5002–5010.

69 K. Madhawa, K. Ishiguro, K. Nakago and M. Abe, arXiv, 2019,
preprint, arXiv:1905.11600, DOI: 10.48550/arXiv.1905.11600.

70 A. Shafe, C. D. Wick, A. J. Peters, X. Liu and G. Li, Polymer,
2022, 242, 124577.

71 C. Yan, X. Feng and G. Li, ACS Appl. Mater. Interfaces, 2021,
13, 60508–60521.

72 B. Das, A. Peters, G. Li and X. Hei, J. Polym. Sci., 2025, 63,
1334–1344.

73 A. Teimouri and G. Li, J. Polym. Sci., 2025, 63, 1095–1107.
74 L. B. Vernon and H. M. Vernon, US Pat., 2234993A, 1941.
75 Openai, Improving language understanding with un-

supervised learning, https://openai.com/research/language-
unsupervised.

76 Y. Zheng, P. Thakolkaran, A. K. Biswal, J. A. Smith, Z. Lu,
S. Zheng, B. H. Nguyen, S. Kumar and A. Vashisth, Adv. Sci.,
2023, 12, 2411385.

77 K. R. Mahmud, L. Wang, J. Chen and S. Hassan, Polymer,
2025, 335, 128771.

78 K. R. Mahmud, L. Wang, J. Chen, X. Liu and S. Hassan,
Conf. Proc. – IEEE SOUTHEASTCON, 2025, pp. 950–957.

79 D. Ibarra, J. Mathews, F. Li, H. Lu, G. Li and J. Chen,
Polymer, 2022, 261, 125395.

80 C. Yan, X. Feng, P. Mensah and G. Li, Proc. R. Soc. A, 2025,
481, 20240702.

81 R. Dutta, D. Renshaw, C. Chen and D. Liang, Array, 2020,
7, 100036.

Perspective Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
5/

20
26

 6
:4

2:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://www.rdkit.org/
https://doi.org/10.48550/arXiv.1905.11600
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00980d


This journal is © The Royal Society of Chemistry 2025 Soft Matter

82 C. A. G. Rosales, M. F. Rahman, H. Xu and T. L. B. Tseng,
Proc. Int. Conf. Ind. Eng. Oper. Manag., 2021, pp. 1592–1599.

83 The AlphaFold team, AlphaFold: a solution to a 50-year-old
grand challenge in biology, https://deepmind.google/
discover/blog/alphafold-a-solution-to-a-50-year-old-grand-
challenge-in-biology/.

84 A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi, Y. Wang,
L. Jones, T. Gibbs, T. Feher, C. Angerer, M. Steinegger,
D. Bhowmik and B. Rost, arXiv, 2021, preprint,
arXiv:2007.06225, DOI: 10.48550/arXiv.2007.06225.

85 E. Nijkamp, J. A. Ruffolo, E. N. Weinstein, N. Naik and
A. Madani, Cell Syst., 2023, 14, 968–978.e3.

86 K. Linka and E. Kuhl, Comput. Methods Appl. Mech. Eng.,
2023, 403, 115731.

87 A. Ghaderi, V. Morovati and R. Dargazany, Polymers, 2020,
12, 1–20.
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