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Adhesion-independent migration is a prominent mode of cell motility in confined environments, yet the
physical principles that guide such movement remain incompletely understood. We present a phase-
field model for simulating the motility of deformable, non-adherent cells driven by contractile surface
instabilities of the cell cortex. This model couples surface and bulk hydrodynamics, accommodates large
shape deformations and incorporates a diffusible contraction-generating molecule (myosin) that drives
cortical flows. These capabilities enable a systematic exploration of how mechanical cues direct cell
polarization and migration. We first demonstrate that spontaneous symmetry breaking of cortical activity
can lead to persistent and directed movement in channels. We then investigate how various physical
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cues — including gradients in friction, viscosity, and channel width as well as external flows and hydrody-
namic interactions between cells — steer migration. Our results show that active surface dynamics can
generate stimulus-specific cell behaviors, such as migration up friction gradients or escape from narrow
regions. Beyond cell migration, the model offers a versatile platform for exploring the mechanics of
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1 Introduction

Adhesion-independent migration, commonly referred to as
amoeboid migration, plays a key role in development, immune
surveillance, and cancer invasion.'” In vitro studies have
shown that this migratory mode can be induced in a wide
range of cell types when subjected to three-dimensional
confinement.®® Although there are alternative mechanisms,’
amoeboid motility is often driven by actomyosin accumulation
at the cell rear, which produces retrograde flows of the cell
cortex. This cortical flow then propels the cell through friction
with the environment.>*”*'° Although several theoretical fra-
meworks have been proposed to explain how this migration is
initiated and sustained, the exact processes governing the
symmetry breaking that triggers polarization remain incomple-
tely understood.»>®#10:11
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active surfaces in biological systems.

Minimal models**%71%12719 have suggested that the cell
cortex can be described as an active fluid surface that self-
organizes tension-generating molecules - such as myosin - into
a localized concentration peak through the interplay of advec-
tive transport, contractility, and surface flows. If myosin accu-
mulates towards one side of the cell, this side becomes the cell
rear and it initiates retrograde flows that propel the cell
forward, consistent with amoeboid migration dynamics.”®
While most prior studies have focused on such self-organi-
zation on fixed geometries,'®*'* experiments and theory have
shown that shape changes can actively feed back on cortical
flows,”*®> underscoring the need to incorporate deformable
surfaces into modeling frameworks.

Deforming active surfaces were considered in ref. 17, 19, 26
and 27, coupled to hydrodynamics and material flow. Signifi-
cant shape deformations including strong constrictions could
be reproduced for tubular surfaces'” as well as for ellipsoidal
and spherical surfaces.'>”” However, all previous methods
operate with a grid-based representation of the surface. Corre-
spondingly, the surrounding medium was either neglected"”*
or limited to a simple homogeneous fluid without walls
or obstacles.’®”” Recent work has addressed some of these
limitations by modeling the effects of viscous and viscoelastic
resistance in confined migration scenarios, providing new
predictions on polarization thresholds.™ In general, the grid-
based Lagrangian surface representation of these approaches
makes it difficult to include (wall) contact as the mesh typically
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deforms and tangles in the contact zone and additional contact
detection and repulsion algorithms are required. Also, grid-
based methods are not suited for topological transitions like
cell division, which is often modeled as a self-organized process
on an active surface.'®*’

To overcome these limitations, we propose a phase-field
approach to represent the evolving surface. The phase-field
description makes the model well-suited for simulating migra-
tion through complex environments. The model is not only
flexible to deal with complex surrounding geometries, includ-
ing contact to walls and obstacles, but also enables the simula-
tion of topological cell-shape changes, as encountered during
self-organized cell division. We then use this model to explore
how polarization and migration of cells are triggered by various
mechanical cues, such as gradients in friction or viscosity,
surrounding fluid flow, and constrictions. Altogether, we estab-
lish a versatile modeling platform for studying active surface
dynamics and use it to analyze how cells choose direction in
diverse microenvironments.

2 Active surface model

To develop a diffuse-interface model, we first introduce a sharp-
interface formulation describing the dynamics of an active gel
surface immersed in a fluid medium. To this end, we recast
the governing equations given in ref. 17-19 in a form suitable
for a later conversion into a diffuse-interface representation.
Afterward, these equations are non-dimensionalized and the
diffuse-interface formulation is introduced, which finally
allows us to handle wall contact such as to simulate pattern
formation and cell migration in a channel.

2.1 Sharp-interface model

The spatial domain, denoted by €, is divided into the intracel-
lular fluid domain Q, and the exterior fluid medium Q,. Both
domains are separated by the cell surface I', representing the
cell membrane and cortex, see Fig. 1 (top).

We refer to the normal vector pointing from Q, into Q; as n,
and use it to define the projection ProntoI"as Pr:=I —n ® n,
where I denotes the identity matrix. Differential operators on
the surface I are defined as follows:

Vr :=PrV surface gradient,

Vr:=Pr: V surface divergence,

Ar := V-V Laplace-Beltrami operator.

Note that applying these operators to a field variable
requires the latter to be defined not only on I" but in a neigh-
borhood of I'. Throughout this article, all surface variables are
assumed to be defined in this way.

We describe intracellular and extracellular flows in the
whole domain Q by the Stokes equations

V[n(Vu + VuT)] - vp = fa + vl"'(él"Svisc)r
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Fig. 1 Simulation setup of a cell in a cylindrical channel. Top: Sharp-
interface model with cell (Q4) and fluid (Qo) separated by interface I'. Due
to axisymmetry, only the blue rectangle is computed. Bottom: Diffuse-
interface representation of the inset region by a phase field ¢ (left) and the
corresponding adaptive mesh (right).

Vau =0,

where #5(x) denotes the fluid viscosity, both inside and outside
the cell: (x) = n; for x € Q;, i =0, 1. Moreover, f, and S;s. denote
the active surface tension and surface viscous stress, specified
below, and Jr is a surface Dirac-delta distribution, which is
defined as dr(x) = 0if x ¢ I and [,0rdx = |I'|, where || is the
area of any surface I' Q. We model the fluid dynamics using a
single, continuous velocity field u. The cell surface thus moves
with this flow field. As a result, there is neither tangential slip
nor fluid flow across the interface, leading to an intrinsically
imposed no-slip condition on both sides of the cell surface.

Any flow and shape deformation along the cell surface is
limited by the ability of the cortex to deform and remodel itself,
such that accounting for the cortex mechanics is indispens-
able.”®*® On the relevant time scales of cell division and cell
migration, the rheology of the cortex is predominantly viscous,”
which gives rise to a viscous surface stress Syis, as introduced by
Scriven® as

Svise = (M — 15)(Vr-w)Pr + nPr(Vru + Viu")Pr,

where 7, and 5, are the bulk and shear viscosity of the surface.

The surface tension force f, is produced by force-generating
molecules such as myosin motor proteins. As in previous
literature,"””'® we model the tension as a monotonically
increasing Hill-function of the myosin concentration ¢ by

2¢2
o(c) =005——
() 2 '
and o, > 0 a scaling factor. Consequently, the surface tension
force can be formulated as

where ¢, is the characteristic concentration

fa’ = Vr'(érU(C)Pr) = 51‘HO’[C)1’1 + (31-V1“0(C), (1)

This journal is © The Royal Society of Chemistry 2026
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where H = V:n is the total curvature of the surface. The first
term on the right-hand side corresponds to the normal com-
ponent of surface tension. Respectively, the second term is the
tangential component, known as the Marangoni force, which
arises from gradients of surface tension along the surface. It
provides a force toward regions of high myosin concentrations,
and is therefore responsible for the retrograde flows that drive
amoeboid migration.

These equations are coupled to an advection-diffusion equation
to describe the evolution of the myosin concentration ¢, on I'™:

%JrcvrufDArc:O, 2)
dr

where d/dt is the material derivative and D > 0 the diffusion
constant. We omit more complex formulations of eqn (2) that
incorporate detailed binding/unbinding kinetics."**"** We chose
this simplification because these specific kinetics are not necessary
to trigger the symmetry-breaking instability that triggers cell migra-
tion. Therefore, we use the simplest possible model, although these
terms can be readily incorporated into the present framework.

2.2 Non-dimensionalization

To reduce the number of model parameters, we non-
dimensionalize the equations by rescaling length in units of
the radius R of the cylindrical channel, time in units of the
diffusive timescale D/R?*, and concentration in units of the
characteristic concentration ¢, in the Hill function for the active
stress. Then, dividing eqn (2) by c,R*/D yields the dimension-
less concentration equation
de

df["FCV["U*AFC:O on I. (3)

For the hydrodynamic equations, we base the scaling on the
surface bulk viscosity #;,. Thus, we rescale pressure by Di,/R?

and introduce the surface viscosity ratio v = /i, and the Péclet

O'0R2

number Pe = as the ratio between time scales of surface

Mo
diffusion (R*/D) and active flows (i7,/a,). We obtain

-V B—R(Vu + VuT)} +Vp
b

= Pedr(Hao(c)n+ Vra(c)) @)
+Vr - [or(1 - v)PrVr -

+ vor Pr (Vru + VFUT) Pr] s

Vu=0, (5)
2¢2
+1
by the three parameters Pe, v and #nR/np. The values of the
parameters used in our simulations are provided in Table 1 in
the results section.

with o(c) = . The dynamics of the system is thus governed

2.3 Phase-field Ansatz

To flexibly account for large deformations, topological transitions
and wall contact, we introduce a phase-field (i.e. diffuse-interface)
version of the above equations. In the phase-field model, an

This journal is © The Royal Society of Chemistry 2026
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Table1 Default model and simulation parameters (top) and experimental
estimates of physical parameters (bottom)

Time step At 0.01

Bulk grid size Hpulk 2.5 x 107"
Interface grid size Rine 5.52 x 103
Mobility M 1073
Interface thickness £ 0.02
Volume correction p 0.01

Mass correction o 0.25
Surface viscosity ratio vV = ns/Mp 1

Fluid viscosity NoR/My = n1R/My 1

Péclet number Pe 25

1

Myosin diffusivity*® D 100 pm® min~

Viscosities

- Cortical®*"*® Nbsls 1mNsm*

- Cytoplasmic*”*® n 10 %-10" Pa s
R/ 10~ *-107"

- Exterior®®>? Mo 10°-10° Pa s
HoR/My 10~°-10*

Cortical tension oo 1mNm*

Cell/channel radius R 10 pm

auxiliary field variable ¢ - the phase field - is introduced and
used to indicate the bulk phases, which can be arbitrary viscous
fluids,®® as well as viscoelastic or elastic materials.** The phase-
field function varies smoothly between the distinct values for
the phases across the interface, resulting in a small but finite
interface thickness ¢. Depending on the application of interest,
phase-field methods may offer advantages over other interface-
capturing methods. For example, they allow for unconditionally
stable inclusion of surface tension®® and fully-discrete energy-
stable schemes, see e.g. ref. 36 and 37.

Here, we describe the geometry of the cell such that ¢(x) ~ 1
in Q, and ¢(x) ~ 0 in Q, with a smooth transition between the
two phases, see Fig. 1 (bottom). The phase field is initialized by
¢ =0.5(1 + tanh(r/(v2¢))), where r is the signed distance
to I', positive in Q,. For complex interface geometries, r can
be computed numerically using redistancing algorithms.*®
In our simulations, we employ a simple cigar shape (cylinder
with two hemispherical caps, Fig. 1) which permits an explicit
analytical expression for r.

After initialization, the phase field is advected with the fluid
flow to capture changes in the surface geometry. This evolution
is governed by the convective Cahn-Hilliard equation, which is
solved over the entire computational domain Q:

09+ Vg u—V - (MY = L VHIV©O) - V(1) (©

Wt eAd — W) =0, ?)

where i denotes the chemical potential and W(¢) = ¢*(1 — ¢)* a
double-well potential. The parameter ¢ > 0 describes the
thickness of the interface region, and the mobility M > 0
governs the thermodynamically driven diffusion of the phase
field. In our approach, the diffuse interface merely approxi-
mates a sharp cell surface, and the phase-field framework acts
only to advect that interface consistently. Accordingly, interface
motion is imposed by the velocity field rather than diffusion.
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We therefore choose M « 1, so that it primarily stabilizes and
smooths the interface profile without shifting its position. The
term scaled with constant f > 0 serves as a volume-correction
mechanism to relax the cell volume V() = [, - 0. sdx back to
its initial value V(0). In our simulations f is chosen large
enough such that volume loss is limited to roughly 1%. Note
that the correction term compensates for the fact that the
geometric volume enclosed by the ¢ = 0.5 contour is not
conserved under the Cahn-Hilliard dynamics, ensuring a more
accurate control over the domain occupied by the cell.

The phase-field representation can not only be used to
describe the surface I' = {x|$(x) = 0.5}, but also to approximate
the Dirac-delta distribution ér ~ |V¢|. Following the diffuse-
interface approach,*® the concentration eqn (3) can be extended
from the submanifold I" onto Q as

3| Vele) + V-(|Vlcu) — V-(|V|Vc) =0 in Q.

(8)

See Appendix A.1 for a derivation. Even though the concen-
tration equation suggests mass conservation, numerical dis-
cretization errors may lead to small deviations, which can
accumulate to a significant mass loss over long simulation
times. Therefore, we introduce the mass on the surface

c(r)dx
(1)

m(r) = JQIV(])(IHC(Z)dx ~ J
and add a mass correction term
o
A VOl(m(r) = m(0))

with some constant « > 0 to the right-hand side of the
concentration equation to ensure mass conservation.

Finally, we reformulate the momentum eqn (4) in the phase-
field formalism. The fluid viscosity is linearly interpolated
between the distinct viscosities in the phases,
R

My ©

n(®) = (1 — S+ b,
My

As usual for diffuse-interface models of two-phase flow
(e.g. ref. 35), the constant surface tension term drHon can be

reformulated to 3v20uV¢, where the numerical factor stems
from the chosen double-well potential. Moreover, we use the

extended normal vector i := V¢/|V¢| ~ n and the surface

projection Pr :=1 — i ® A ~ Pr to define diffuse-interface
approximations to the surface differential operators, e.g. the sur-

face gradient Vr: = PrV and surface divergence Vr: = Pr:V. We
obtain a diffuse-interface version of the surface stresses and forces

f, = Pe (3\/§a(c)uv¢ + |v¢\a'(c)€rc),

Syise = (1 = v)PrVr -u+ vPr(Vu+ Vu') Pr
which enter the diffuse-interface hydrodynamics equation
—V (@) (Vu + Vul)] + Vp = V(| V|Sysd) + £, (10)
in Q.
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Note that the first divergence operator on the right-hand
side of eqn (10) is not required to be a surface divergence, since
it is applied to a tangential tensor.

2.4 Velocity extension

As we will see in the numerical tests, the active surface tension
imposes strong tangential flows leading to regions of large
tangential compression (Vr-u < 0) or stretching (Vr-u > 0).
Due to incompressibility of the flow field, this goes along with
the opposite deformation in the normal direction, i.e. tangen-
tially stretched regions get compressed in the normal direction
and vice versa. In numerical tests we find that such strong
compressional or extensional flows in the normal direction
tend to locally shrink or expand the thickness of the interface
region, respectively, unless an extremely high, unphysical
mobility is used. To eliminate this perturbation of the interface
profile for reasonable mobilities, we instead advect the phase
field with an auxiliary velocity field v. The idea is that v is
constructed as an extension of the velocity u evaluated at the
surface (ie. at the 0.5-level set), which is constant in the
direction n normal to the surface. Therefore, using v instead
of uin the advective term, velocity differences across the diffuse
interface are leveled out, which leads to a consistent advection
of the complete diffuse interface region. We propose to con-
struct v by solving the additional equation for its components

(vla V2, V3),

Vol — |Volu; — V[|[Vo|R A-Vy] =0 (11)

on Q and fori =1, 2, 3.

In the Appendix A.2 we show by matched asymptotic expan-
sion that this formulation converges to the following sharp-
interface limit equations

v=u onl,

(12)

Vvn=0 onT. (13)

The obtained velocity field v is used to replace the velocity u
in the advection terms of both the Cahn-Hilliard equation and
the concentration equation.

2.5 Discretization

To avoid numerical instabilities from capillary time step con-
straints, the six strongly coupled eqn (5)-(8), (10) and (11) are
discretized by a monolithic linear semi-implicit time
discretization.>® The proposed time discretization ensures
mass conservation of regulating surface species on the discrete
level as shown in Appendix A.3.

We solve the resulting system in each time step with a finite
element method based on the finite element toolboxes DUNE*’
and AMDIS.*"™*® An adaptive grid is employed to accurately
resolve the phase field and surface forces with more details
given in Appendix A.4. To make simulations more efficient, we
assume that the cell shape and concentration field are axisym-
metric. This assumption, which holds in particular for homo-
geneous cells in cylindrical channels, reduces computations
effectively to a 2D domain from which the full 3D solution can

This journal is © The Royal Society of Chemistry 2026
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be recovered, see Fig. 1. Further details on the axisymmetric
formulation can be found in Appendix A.5.

3 Results

To examine how cells determine their direction in confined
geometries — such as microchannels or microcapillaries — we
consider a cigar-shaped cell initially positioned inside a cylind-
rical channel (see Fig. 1 (top)). The cell is initialized with a
length of 3.24 and a height of 1.84, placed within a channel of
diameter 2. The channel length varies and is chosen sufficiently
large to ensure that the cell is unaffected by the channel
openings. The interface thickness is selected to be sufficiently
small such that the specific choice of ¢ has little influence on
the results; see Appendix A.6 for a more detailed discussion.
A nearly homogeneous cortical concentration field is pre-
scribed with a base value of 1 and superimposed uniform noise
centered on 0 and a width of 0.1. The channel walls are
equipped with no-slip (v = 0) and no-adhesion (¢ = 0, n-V¢ = 0)
boundary conditions. Unless otherwise specified the model and
simulation parameters are as given in Table 1.

The chosen Péclet number corresponds to active cortical
tension o, on the order of 1 mN m ' as suggested from
measurements in cells.** The critical Péclet number at which
pattern formation occurs can be very roughly estimated from
the linear stability theory in ref. 18, which however neglects the
exterior fluid and channel walls. Based on our simulations, we
identify a critical Péclet number of Pe ~ 20 (see Appendix A.7).
Starting simulations from random initial concentrations, we
consistently find the emergence of dominant polar patterns of
mode 1 (i.e. high concentration at one cell end and low at the
other).

The chosen ratio between cortical and fluid viscosity nR/n, = 1
was selected to specifically study a balanced regime where the
viscous contributions of the surrounding fluid and the cell cortex
are comparable, clearly exposing the coupling mechanism neces-
sary for cellular propulsion. While physically realistic values of
cytoplasmic viscosity (see Table 1) suggest a much lower ratio, our
results are expected to be robust as in both regimes single-spot
myosin concentration patterns (1-modes) emerge.'® To verify this,
we performed additional representative simulations with a smaller
fluid-to-cortical viscosity ratio (3R/n, = 0.25). These confirmed that
the cell consistently develops the same single-spot polarity, and
that the overall influence of external cues on the symmetry-
breaking mechanism remains robust.

3.1 Spontaneous symmetry breaking

Studying the polarization process experimentally is challenging
due to the small spatial scales and complex interplay of
physical forces involved. Our modeling approach allows us to
overcome these limitations and gain mechanistic insight into
how polarization and migration emerge in non-adherent cells.
To begin, we consider a single cell confined within a channel,
without any external cues, in order to isolate the intrinsic
mechanisms driving polarization and movement.

This journal is © The Royal Society of Chemistry 2026
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As shown in Fig. 2, the cell initially rounds up (i.e. reduction
in length and increase in width) and adapts to the channel. Due
to the properties of the phase-field model - specifically, the
boundary condition ¢ = 0 at the channel walls and the resulting
phase-field profile - a thin liquid film remains between the cell
and the wall. The thickness of this film scales with the interface
thickness ¢. A systematic validation confirms that, for suffi-
ciently small ¢, the results are insensitive to its precise value
(see Appendix A.6 for details).

As the cell contracts, two regions of high myosin concen-
tration emerge at the poles. Although this state is nearly
symmetric, small asymmetries - stemming from noise in the
initial myosin concentration - gradually amplify over time
through a self-reinforcing process driven by the Marangoni
force. Because the myosin concentration at one end is slightly
higher, there is a net flow of myosin towards that region. This
net flow eventually causes the peak at one side to outcompete
the other, pulling in all the available myosin and breaking the
initial symmetry. This process of spontaneous symmetry break-
ing forms a single spot of high myosin concentration with
equal probability at either end of the cell.

Eventually the cell fully polarizes, Fig. 2(d) and (e). The
asymmetric distribution of myosin generates a constant force
toward the high-concentration region, inducing a retrograde
flow (in the cell’s frame of reference) of the cell cortex. This flow
interacts frictionally with the confining walls, through shear
stresses transmitted by the thin liquid layer between the cell
surface and the channel wall, allowing the cell to transmit
tangential forces to its surrounding. As the rear contracts and
the cortex flows backward, its friction against the channel walls
propels the cell body forward. At the same time, the cytoplasm’s
incompressibility leads to a recirculating flow pattern within
the cell, Fig. 2(e).

Note that the frictional interactions with the channel walls
can arise through two distinct mechanisms. First, they may
result from the close proximity with a no-slip wall, which
inhibits tangential motion of the cell surface, either by direct
contact or by strong viscous shear forces that penalize velocity
differences between the cell and the near boundary. In contrast
to these hydrodynamic effects, friction can also be modeled as
an explicit force opposing fluid motion. This latter approach is
employed to investigate the recently observed phenomenon of
friction-guided cell migration in the next section.

3.2 Frictio- and viscotaxis: cells migrate up friction and
viscosity gradients

Cells rarely migrate in a purely random manner; rather, their
movement is often directed by external clues - for example, in
response to nutrient sources or during the wound healing
process. While migration guided by chemical gradients -
known as chemotaxis - is well studied,>*>™® cell migration
guided by mechanical cues remains relatively less explored.
In particular for adhesion-independent migration in channels,
recent work found that cells can follow gradients of friction — a
phenomenon that was called frictiotaxis.>® Here, we explore
this new mode of directed migration with our active surface
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Fig. 2 Cell migration via spontaneous symmetry breaking in a channel. (a) A cell is placed inside a channel and elongated relative to its relaxed shape.
The surface concentration is initialized to be uniform with slight perturbations. (b) Snapshot of the simulation at t = 1.36. The initial contraction, driven by
surface tension, leads to the formation of two spots of high myosin concentration at the cell ends. Streamlines show the velocity field. In case |, the
concentration and velocity are slightly higher on the right end; in case II, higher on the left end. (c) Velocity at the cell ends over time. The blue dotted line
corresponds to the left end and the green dashed line to the right end. Initially, the cell ends move towards each other as the cell contracts. However, the
initial symmetry breaks spontaneously and the cell ends up migrating in one direction. (d) Concentration profiles along the cell surface at different times.
Early asymmetries in contraction lead to a buildup of concentration at one end, ultimately defining the cell rear and the direction of motion. (e) Snapshot
of the final state at t = 15. Over time, the asymmetries intensify, leading to full polarization and persistent migration to the left (case I) or right (case Il).
Note that flow velocity arrows are displayed in the lab frame. Even though the vectors visually cross the cell surface, the no-penetration condition is

fulfilled, as also the cell boundary moves at the local fluid velocity.

model. Moreover, we also consider guidance by gradients of
viscosity of the surrounding medium.

Using in vitro microchannels, ref. 59 showed that cells tend
to migrate persistently up a friction gradient - that is, toward
regions of higher wall friction. The authors also proposed a
simple one-dimensional model to explain how cells polarize
towards higher frictions. Here we extend this analysis by
investigating frictiotaxis through our 3D model, which
accounts for changes in cell shape and captures the fluid flows
not just in the cortex but also in the cytoplasm and the extra-
cellular medium.

In our axisymmetric 3D setup, the friction gradient is
incorporated by introducing an additional friction force fg;. =
—Jwank(z) wi Z to the right-hand side of the force-balance
eqn (4). This force is oriented in the axial direction Z opposing
the axial velocity u-z, scaled with a cell-wall friction coefficient
k(z) which varies linearly across the channel ranging from kg
on its left to kign, on its right end. The force is localized by the
characteristic function j.y, which equals 1 only within a thin
friction layer of thickness 0.05 and 0 elsewhere. This ensures

Soft Matter

that the friction force is integrated solely over a narrow region
adjacent to the channel wall.

As shown in Fig. 3 (top), the cell develops regions of high
myosin concentration at both ends at early times. However, the
symmetry in the flow field is broken by the presence of the
friction gradient, see Fig. 3(a I). The lower friction on one side
drives two key processes. First, it promotes faster contraction.
Second, it accelerates the surface transport of myosin toward
that same side. Both of these effects lead to a faster accumula-
tion of myosin on the low-friction side. This process is self-
reinforcing due to the Marangoni force, leading to the cell
polarization. As a result, the cell migrates up the friction
gradient driven by the resulting retrograde flows, Fig. 3(a II).
A closer examination of the velocity at both cell ends reveals
that this symmetry breaking occurs very early in the contraction
phase (Fig. 3(b)). The cell speed uce = [oPu-dx/V(0) continu-
ously increases on longer time scales until a maximum velocity
is reached, which then slowly decays due to the constantly
increasing friction, Fig. 3(c). Note that this decay does not occur
when friction is uniform (Fig. 3 (c, gray)).

This journal is © The Royal Society of Chemistry 2026
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cell at t = 1.65 shows an asymmetric formation of high-concentration spots at the cell ends. Streamlines indicate asymmetric velocity fields, with higher
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Migration up the friction gradient is consistently observed
for many different initializations of the initial conditions,
Fig. 3(c), illustrating the robustness of this mechanism. Hence,
our simulations confirm the previous 1D model results,>
highlighting that the frictiotaxis mechanism remains robust
when including the effects of cell-shape changes and 3D
hydrodynamics.

Depending on the wall coating, previous works reported
values of the cell-wall friction coefficient in the range 10°-
10” Pas m ™ '.>”° Moreover, ref. 59 experimentally demonstrated
frictiotaxis in channels with a two-fold increase in friction
along a channel of ~100 pm. Translating our simulation units
into physical units using the parameter estimates in Table 1,
we impose a strong friction gradient of 5 x 10° Pas m ™" along a
channel of 120 pm.

Another emerging area of research is viscotaxis - the direc-
ted migration of cells in response to spatial variations in
environmental viscosity.”>®° In this study, we investigate how
a viscosity gradient in the surrounding medium influences cell
behavior. To incorporate this effect, we modify the previously
uniform viscosity, described in eqn (9), by introducing a linear
gradient in extracellular viscosity that transitions from #es
at the left end to g at the right end of the channel. The
intracellular viscosity remains constant throughout and we
don’t include the additional friction term. Note that the left/
right gradient in extracellular viscosity naturally extends to the
thin liquid film between cell boundary and channel wall.

Simulation results (Fig. 3 (bottom)) show that cells consis-
tently migrate toward the region of higher viscosity. The under-
lying mechanism closely resembles that of frictiotaxis: lower
extracellular viscosities enable faster cortical flows, leading to
faster accumulation of myosin. This initial asymmetry strength-
ens over time, resulting in cell polarization and directed
migration up the viscosity gradient as observed consistently
across a range of simulations with different initializations of
the initial conditions, Fig. 3(c).

Translating our simulation units to physical units based on
the parameter estimates in Table 1, the viscosity gradient
imposed in our simulations is of the order of 1 Pa s um™".
As previously discussed, these viscosity values are considerably
higher than those found in typical physiological conditions.
However, such high values could be relevant for cell migration
within viscous tissues. Tissue viscosities are far greater than
those of liquid biological media; they are often in the range
10°-10° Pa s5,*>* which can give rise to viscosity gradients
potentially much larger than the one we utilized.

3.3 Rheo- and barotaxis: cells go with the flow

In many physiological and experimental settings, cells experience
fluid flows that influence their polarization and migration. Flow-
induced navigation, or rheotaxis, occurs when an externally
imposed flow field interacts with intrinsic polarization mechan-
isms. To simulate this, we impose an inflow velocity u;, at the open
channel boundaries. Under no-slip wall conditions — mimicking
typical microfluidic experiments - cells consistently migrate in the
direction of the flow. This behavior closely resembles that of
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passive droplets, which we model here by setting a uniform surface
tension (o(c) = 1) and thereby decoupling the surface tension from
the myosin concentration.

The imposed flow pushes the cell forward while its surface
remains stuck to the channel walls, thus generating a
retrograde cortical flow in the cell’s frame of reference. This
retrograde flow, together with enhanced contraction on the
upstream side and reduced contraction downstream, drives
myosin accumulation at the rear, reinforcing polarization
aligned with the flow (Fig. 4(a)). Active migration thus adds to
the passive advection, enabling the cell to move faster than a
passive droplet (Fig. 4(d)).

Using the parameter values in Table 1, the used inflow
parameters correspond to velocities on the order of 1 pm
min~'. The resulting cell speeds are of the same order, con-
sistent with experimental observations.

In confined tissues and microfluidic setups, pressure gradi-
ents are another common physical cue that can bias cell
motion - a phenomenon known as barotaxis. Unlike rheotaxis,
where velocity is imposed directly, here the driving force is a
difference in hydraulic pressure across the channel. In vitro
experiments have shown that many cell types preferentially
move toward the low-pressure branch in bifurcated channels,
with cell polarity strongly correlated to directional bias.®>*

We simulate barotaxis by imposing a pressure gradient: a
positive pressure at the left boundary and zero at the right,
thereby inducing flow toward the low-pressure end - analogous
to rheotaxis. Again, retrograde flow and rearward contraction
both promote myosin accumulation at the rear, producing
sustained forward propulsion, closely mirroring the results of
rheotaxis. This behavior is robust across different initializa-
tions of the initial conditions Fig. 4(e). Using the parameter
values in Table 1, the imposed pressure gradient corresponds
to approximately 0.07 Pa um ™. This gradient would result in
passive flow speeds below 1 um s~ *, which seem representative
of the slow flows observed in confined biological environments.

In rheotaxis, the fluid speed is constrained by the prescribed
velocity at the channel openings, which prevents migrating
cells from propelling the surrounding incompressible fluid.
In contrast, during barotaxis, the fluid velocity at the channel
openings is not restricted. This allows migrating cells to accel-
erate the entire fluid in the channel, resulting in a substantially
amplified speed difference between active cells and passive
droplets (Fig. 4(e)).

3.4 Topotaxis: cells migrate away from confinement

In addition to sensing biochemical signals, cells are highly
responsive to mechanical constraints and spatial confinement.
Changes in geometry of the extracellular medium - whether
due to tissue structure, extracellular matrix composition, or
physical barriers - can significantly influence how cells
move.'>>>3% Given the ubiquity of such conditions in vivo, it
is important to examine how varying degrees of confinement
shape migratory responses.

Rather than considering complex three-dimensional geo-
metries, we focus here on a simple slanted (conical) channel

This journal is © The Royal Society of Chemistry 2026
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with an opening angle of approximately 1° to demonstrate that
even subtle geometric changes can strongly influence cell
behavior.

Initially, a cigar-shaped cell is placed in a slightly slanted
channel. Symmetry breaking occurs in two stages: in the first
stage, the cell adapts its shape to the channel’s geometry and
contracts more on the side with greater available space, as it
can extend further in the perpendicular direction there. This
expansion leads to a localized increase in molecular concen-
tration and flow velocity on the less-constricted side (Fig. 5(a I)),
until the cell has adapted to the channel geometry at ¢ ~ 0.78.
This dynamics is also observed in simulations with passive
droplets (o = 1, results not shown).

Despite the slight asymmetry in concentration resulting
from the cell’s initial adaption to the channel geometry, surface
tension remains largely homogeneous in active cells at this
early stage. Consequently, the cell, much like a passive droplet,
seeks to minimize its surface area and moves towards the wider
region of the channel. During this movement towards the
channel opening, the cell cortex, experiences frictional drag
from the nearby channel walls, causing it to move slower than
the cell body. The difference in velocity constitutes a retrograde
flow in the cell’s frame of reference transporting myosin to the
more-constricted end. At ¢ & 2, the increasing myosin concen-
tration on the constricted end surpasses the concentration on
the less-constricted side (Fig. 5(d)).

This journal is © The Royal Society of Chemistry 2026

This behavior is consistent with simulations of both active
cells and passive droplets. However, while passive droplets are
driven solely by homogeneous surface tension, active cells
migrate significantly faster due to the Marangoni forces created
by the myosin concentration gradient. This reinforces the
asymmetry and accelerates the migration process to signifi-
cantly larger speeds (Fig. 5(e)).

These findings suggest that directed migration into con-
stricted environments, as reported in some studies,">®
requires additional mechanisms beyond those modeled here.

3.5 Hydrodynamic interactions coordinate motion of nearby
cells

Cells are typically not isolated in biological organisms but
reside in close proximity to neighboring cells, often forming
cooperative groups such as cell trains.®* It is therefore of
interest to investigate how polarization and migration are
influenced by the presence of a neighboring cell. To this end,
we consider a minimal system consisting of two identical cells
placed side by side within a homogeneous narrow channel. The
two cells are not connected by adhesive interactions or signal-
ing pathways but are coupled solely through the shared velocity
field in the surrounding medium, Fig. 6(a).

During the initial contraction phase, the cortical flows
generated by each cell interfere with one another, leading to
a partial cancellation of the flow field in the region between

Soft Matter
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the left drives net migration to the right. Retrograde flow near the channel wall transports myosin toward the rear, reinforcing directional polarization. (b)
Cell conformation shows increasing asymmetry over time (t = 0, 4, 8 and 12), indicating progressive polarization and migration. (c) Velocity at the cell
ends over time. After an initial conforming-to-the-channel phase (orange) and contraction phase (red), the cell migrates consistently to the right (blue).
(d) Concentration profiles along the cell surface at different times. Initially, two peaks emerge, with the right side being more pronounced (t = 0.78,
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surface tension (dashed line).

them, Fig. 6(b). Despite this, the cells undergo symmetry break-
ing, with one of the two cells breaking symmetry earlier than
the other. As a result, the cortical flows are slightly stronger in
the cell where symmetry broke earlier, which hence achieves a
stronger polarity earlier, Fig. 6(d). As this small difference
amplifies over time, the more strongly polarized cell begins to
move, and - through their coupling via the incompressible
fluid between them - it drives the other cell to move in the same
direction. The resulting pair migration proceeds at a speed
comparable to that of a single cell, suggesting that mutual
hydrodynamic interactions facilitate directional coherence,
Fig. 6(e).

This minimal two-cell setup provides a foundation for
exploring more complex collective behaviors. In particular, it
raises intriguing questions about the outcome of interactions

Soft Matter

between already polarized cells approaching one another
from opposite directions - an avenue we propose for
future study.

4 Conclusion

We have introduced a phase-field model to study the motility of
non-adherent, deformable cells guided by a contractile instabil-
ity of the cell cortex. The model couples surface and bulk
hydrodynamics to surface flow of a diffusible species (myosin),
which generates an active contractile force. It accounts for
surface viscosity and includes a stabilizing auxiliary velocity
field, derived through asymptotic analysis, to maintain robust
interface dynamics under strong cortical deformations.

This journal is © The Royal Society of Chemistry 2026
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Fig. 6 Coordination of cell migration via hydrodynamic interaction. Two cells are initialized side by side within a channel, each with a nearly uniform
surface concentration and elongated shape. There is no direct physical contact between the cells — interaction occurs purely through the surrounding
flow field. (a 1) At an early time (t = 0.9), both cells contract due to surface tension and behave nearly independently. Each cell induces its own flow, which
partially cancel each other out between the cells and reduces velocities on the inner sides. (a Il) At t = 30, one cellis slightly more polarized and drives the
neighboring cell forward. Both cells exhibit rearward localization of concentration and migrate in the same direction. (b) Velocity profiles along the
channel centerline over time. Early profiles show near-zero velocity between the cells (at z = 0) due to mutual cancellation of the opposing flows.
(c) Velocity at the cell ends over time. Initially, both cells (blue and green) contract inward asymmetrically. The differences between the cell ends (dotted
left, dashed right) of each cell are larger than differences between the two cells. Around t = 20, the cells begin to mutually migrate in one direction.
(d) Concentration profiles along the surface of both cells (dotted left, solid right). Early contraction causes accumulation at both cell ends. Over time, the
initial concentration differences in each cell decrease, and the profile transitions into a single peak at the rear, indicating polarization. (e) Cell velocity over
time for four different initial conditions. In all cases, the two cells ultimately migrate in the same direction, illustrating the robustness of hydrodynamically

mediated coordination. Parameters: Pe = 20.

Through simulations, we systematically explored mechan-
isms guiding non-adherent cell migration. In the absence
of external cues, confined cells break symmetry spontaneously
via contractile activity, forming a single myosin-rich spot and
migrating persistently through retrograde flow. Introducing
gradients in the environmental properties revealed distinct
taxis behaviors (see Table 2): frictiotaxis and viscotaxis arise
from gradients in wall friction and extracellular viscosity,
respectively, both directing migration toward higher-resis-
tance areas. Rheotaxis, induced by external flow, aligns polari-
zation with the flow direction, causing active cells to move
faster than passive droplets. Barotaxis, driven by pressure
differences, directs movement toward low-pressure zones.
Topotaxis, triggered by gradients in environmental geometry,

This journal is © The Royal Society of Chemistry 2026

leads to migration away from constriction, resembling passive
droplet behavior. Finally, we examined cell pairs, showing that
hydrodynamic coupling induces collective migration of both
cells in the same direction. Because of their lack of focal
adhesion, both with the environment and with other cells,
non-adherent cells are thought to migrate mostly as single
cells. Our findings reveal that hydrodynamic interactions could
lead to collective amoeboid migration, which was observed in
recent experiments.®*%¢

We show that mechanical cues, such as friction, viscosity,
pressure, flow, and confinement, can each independently guide
non-adherent cell migration. Moreover, even weak hydro-
dynamic interactions enable coordinated motion in multi-cell
systems. Notably, passive and active responses differ under
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Table 2 Modeling modifications and behaviors in different modes of directed cell migration

Migration Schematic Passive
mode representation Model modifications Migration direction  droplets Ref.
Frictiotaxis L Additional friction force term in the momentum Towards high friction X 59
eqn (4)
Viscotaxis ; Introduction of a gradient in extracellular viscosity T.owar.d s high X 60
viscosity
- >
— —
Rheotaxis g = — Inflow at the channel openings With the flow v 3 and 65
- -

. . . 61 and
Barotaxis =P Additional pressure boundary conditions Towards low pressure 6
Topotaxis Alteration of the channel geomet Away from v 12 and

P & v confinement 63

specific conditions, emphasizing the role of the contractile
instability of the cell cortex in shaping stimulus-specific
behaviors.

Translating our simulation units into physical units using
the parameter estimates in Table 1, the characteristic time scale
of all our simulations is 1 min. Hence, the process of cell
polarization in our simulations sets in within seconds and is
complete within minutes, which is similar to the duration of
~10 min of noise-induced cell polarization in experiments.*’
Therefore, the noise level in our simulations is enough to desta-
bilize an unpolarized cell in a time scale similar to experimental
observations. Thus, the gradient values used in our simulations
inform the gradients that should be used in experiments to obtain
similarly robust guidance of cell migration against noise.

Moreover, while we studied cell propulsion in a simple fluid,
our results can also be interpreted in the context of a cell
moving through tissue. This broader applicability is supported
by our choice of large fluid viscosities (which mimic long-term
viscous behavior of tissue) and the observed robustness of our
results across various cortical-to-fluid viscosity ratios.

Although simulations were restricted to axisymmetric geo-
metries, the model is fully extensible to general 3D settings.
This opens avenues for investigating cell behavior in more
complex environments, including branched channels, obsta-
cles, and tissue-like matrices. These situations are relevant for
the migration of different cell types, such as immune cells
surveying tissues for pathogens or cancer cells invading healthy
tissues.®” Therefore, the guidance mechanisms identified here
may help explain how such cells make directional decisions in
their complex microenvironments.

Beyond cell migration, our model provides a foundation for
studying other biological processes involving active surfaces - for

Soft Matter

example, cytokinesis, where a contractile ring emerges in the
cell cortex and progressively constricts to divide the cell.®®®°
Minimal models'® suggest that the underlying mechanics are
the same as those explored here. Having demonstrated that our
approach is capable of describing cell-cell interaction, it also
opens the door to studying active surface dynamics in multi-
cellular systems, for example, those central to early animal
embryogenesis,””’" an area where computational modeling
remains remarkably limited.

Taken together, our results underscore how complex migra-
tory behaviors can emerge from minimal ingredients like
cortical contractility, hydrodynamic coupling, and environmen-
tal gradients within a unified physical framework. This sets the
stage for further theoretical and experimental studies into the
principles governing active surface-driven motility.
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Data availability

The numerical simulation code is available at Zenodo (https://
doi.org/10.5281/zenodo.17167539). Installation requires the
finite element library AMDIS,"" which is available online
(https://gitlab.math.tu-dresden.de/iwr/amdis).

Appendices
A Supplementary model details

A.1 Extending a surface equation to £2. In this subsection, we
formally justify the diffuse-domain formulation of the surface
concentration eqn (8). Therefore, we extend the sharp-interface
eqn (3) to the full domain Q. To this end, we introduce the weak
formulation by testing with a suitable test function y with
compact support in Q x [0,7]. This condition implies that
vanishes on the boundary of Q as well as at the initial time ¢ = 0
and final time ¢ = T. The weak formulation of eqn (3) can then
be written as

0 :J lp{%—kcvr-u—Arc dx
r|dt

d d
J a(a//) - Cal// +cyVr-u+ Vre- Vrydx.
r

Using the Reynolds transport theorem on surfaces yields

d d
=— d —c— . dx.
0 dIL(,)wC X + L cdtz// + Vre - Vrydx

Now the domain of integration can be extended to Q > I" by
use of the interface distribution Jr-.

0= EJ oryedx + J —5rc£lﬁ + orVe - Pr - Vidx.
dt)q Q dt

Using the ordinary Reynolds transport theorem (not on a
surface) yields

0 = J %(ww +0reyV -u+orVe - Pr- Vipdx
Q

= ‘ O (0re)y + V- (dreu)yy — V - (or PrVe)ypdx.
Ja

Going back to the strong formulation gives

0= at(ér(f) + V{(Srcu) - V(érPer)

The asymptotic analysis of this equation without the surface
projection Pr shows that the concentration is constant in
normal direction, n-Vc¢ = 0 for ¢ —» 0. In this case Pr-Vc¢ = Ve,
hence Pr can be omitted. Approximating the surface delta
function by |V¢| yields the diffuse interface concentration

eqn (8).

This journal is © The Royal Society of Chemistry 2026
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A.2 Asymptotic analysis. We will argue in this section, that
the solution v(x,¢) of

[Volv — |Vo|lu — V[|[Ve|(n ® nN)Vv]=0 onQ, (14)

is a constant normal extension of u, i.e. for ¢ — 0, the equations
converge formally to

v=u onl,

(15)

(m-Vljv=0 onT. (16)

To do so, we utilize matched asymptotic analysis and follow
the argumentation of ref. 39 and 72. We start by introducing
a new inner coordinate system in a neighborhood of the
surface I', such that for any x in the neighborhood there is an
unique s(x) € T with minimal distance to x. Then x can be
represented as

x = s(x) + r(x)n = s(x) + ez(x)n,

where ris a signed distance function withr < 0in Q, andr > 0
in Qo. The variable z is a scaled distance function defined by

z(x) r(x)

= ——=. The phase-field function can be expressed in terms
€
of these coordinates as

-l m(5))-Ho-m(3)

We expand u(x,c) and v(x,e) outside the interface region

(A1)

0 . -
in terms of the original coordinate system u=3¢&ul®),
=0

o0
v= > ¢V, This procedure is referred to as the outer expan-
i=0

sion. In the neighborhood of I' we introduce for 1(s,z) and ¥(s,z)
o) . -

the inner expansion i = 3 &'a(?),
i=0

new coordinate system. In an overlapping region, both are valid

representations of the same function and thus the following

matching conditions hold

) . -
v=>¢%" in terms of the
=0

. O(e ) — Tim 70 (¢
rl—lvrilo “ (57 ' ) zll»I:POo “ (57 Z) (A‘Z)
i O ) — im 5O
rliril() Y (57 ’) zl{rinoo ’ (57 Z) (AS)
; (0) . R H (1)
rlimi() VW (s,r) - n :Emioc A (s, 2). (A.4)

Inserting the outer expansions into eqn (14) then yields
0= [V — [V — V{|Ve|(n @ m)Vn]

which gives the trivial identity 0 = 0 away from the interface.
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In the inner coordinate system, eqn (14) turns to
0 =[Voly—[Vola

N (%n@ " Vr) . Dw)\(n ©n) (%n@ + Vr) v}
= |Volu—[Ve[v

1 L1 .
+ F—20:(|V(/)|8Zv) + ;Vr “(I[Vond.v),

where we used n-Vr = 0 and O,n = 0. By inserting the inner
expansion and comparing powers of ¢, we obtain the following
condition at order 1/¢*

0 = 3| V|05

Thus, |V|0,5) is constant in z. This constant value must
be zero since |V¢| — 0 for z —» +oo (see eqn (A.1)). Hence,
0,9 = 0. Using this result, we obtain at order 1/¢

0 = 3| V|09

Similarly to above, we deduce 9,/ = 0. Using matching
condition (A.4) we obtain the desired condition (16), as

V=0 onT.

Finally, we have at order 1

0= [Vo[a® — Vo[ + 8|V [25?) + V(| Ve md ™) =
[Vo|a® — [V[i® + 8, V|ai?).

Integrating from z = —o0 to z = +o0 yields

o
I

| {wolic® - w01 + o, (i) oz

+00 +00
= a<°>J |Vpl|dz — 9<°>J |V|dz
+00
+ [|V¢ 61\30)]_ ,

where we used that #® is constant in z as shown above and #®
is constant in z since u is a continuous function (in fact: #© = ur).
Further, from eqn (A.1) we conclude for z = +co that |V¢| = 0,
hence [|V¢|05®]'% = 0. Dividing by the (non-zero) integrals,
we obtain ¥° = 4° With conditions (A.2) and (A.3) we conclude
v° = 4°, from which we recover the desired eqn (15).

A.3 Time discretization. After establishing the equation
system, it remains to solve the six strongly coupled equations.
To reduce the size of the linear equation system that we have
to solve in each time step, we decouple them and solve
the Stokes-Cahn-Hilliard equations independently from the
velocity extension equation and the concentration equation.

We employ the stable linear semi-implicit time discretization
from ref. 35 for solving the coupled Stokes-Cahn-Hilliard-Navier

Soft Matter

View Article Online

Soft Matter

system in the n-th time step

¢n _ d)n—l

A = V(M) =Vt
W= A" e W) W (@) (97 - ¢ )],
_v. [;1(4)"*') (Vu” + (Vu")T)]
+ 9P = Pe(3V3o( ) V!
+ [Vt () Vi)
+ V- [V = PV
+ [V |t (v vt A,
Vu'=0.

where we calculated ¢™ ', v*"! and ¢ ' in the previous time step.
Using the current time steps ¢”" and u”, we obtain the
projected velocity v from

V"IV = V-(IV"|([" ®@ )W) = [V"|u".
Finally, we solve the concentration equation using the pre-

viously computed values for ¢" and v"

|V¢nlcn _ |V(bn—1 |C71—1
At

= oc\Vqﬁ”\(m(t”_l) —m(0)).

+ V- ([V@"eV') =V - ([V¢"[Ve)

Note that, even without the term on the right hand side (i.e. in
case o = 0), the proposed time discretization ensures mass
conservation on the discrete level. This property becomes obvious
in the weak from of the equation with a test function ¢ € H'(Q):

j IV e|e"dx — AzJ Vo - [([V9"[V") - ([V"[V)]dx
Q Q

:J ¢|Ve" e dx.
Q

This holds especially for ¢ = 1 and thus
J |V¢"|c"dx :J ]V(/)"’l‘c”’ldx
Q Q

which is the phase-field equivalent of exact mass conservation
J d'dx = [ I ldx.
Ind Jrn-1

However, due to adaptive grid refinement and coarsening,
small errors in surface mass may accumulate over time, requiring
the mass correction (« > 0) for long simulation times.

A.4 Space discretization. We solve the system of equations in
each time step with a finite element method based on the finite
element toolboxes DUNE*® and AMDiS.*"™** To decrease the
size of the system, we avoid solving the full 3D-problem and

This journal is © The Royal Society of Chemistry 2026
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assume that the cell shape and myosin concentration distribu-
tion are axisymmetric. This holds in particular for the biologi-
cally most relevant patterns, which are rings and single spots of
increased concentration. The assumption of axisymmetry
reduces computations effectively to a 2D domain from which
the full 3D-solution can be recovered by rotating the calculated
2D solution 360 degrees. Detailed explanations can be found in
the Appendix A.5.

An adaptive grid is employed to accurately resolve the phase
field and surface forces, see Fig. 1 (bottom right). Interfacial
grid refinement is heuristically chosen, based on the value of
the phase field, such that the grid size is A;, where 0.05 < ¢ <
0.95 and 7y otherwise.

The numerical approximations fi and Pr- become less accurate
when evaluated farther from the interface. To avoid numerical
errors accumulating in the outer areas, we replace |V¢| by

V4|, if[Ve|>107*
Vo[": = {

0, otherwise.

Interchanging |V¢|* with max(|V¢|*, 107" in the diffusion
terms in eqn (8) and (14), we ensure that the induced linear systems
remain regular. For the adjusted problem and the introduced
discretization, we use Lagrange-P2 elements for the phase field ¢,
the chemical potential y, the velocities u and v and the concen-
tration ¢, only for the pressure p we use a P1-ansatz space.

A.5 Axisymmetric formulation. As hinted before we use the
rotationally symmetric setup to our advantage and save computa-
tion time by solving a 2D-problem and then rotate the solution
around the z-axis turning it into 3D. For this we consider cylinder
coordinates (p,p,z) throughout this section. A vector u € R? is then
represented by u = u e, + u,e, + ue, and we write u = (ul,,u(/,,uZ)T and
use that notation for all vectors and matrices following.

To reduce the complexity of the problem, we utilize that the
solution will be axisymmetric, and thus constant in ¢-direction.
We therefore replace the usual 3D-Cartesian differential opera-
tors by their cylindrical equivalent without the ¢-direction.

We denote the unit vectors in cylindrical coordinates by e,
e, and e,. It holds

apep = 0; a(pep = e(/n azep = O,
0,8, =0, 0ye,=—€, 0,e,=0,
0,e,=0, 0,e;,=0, 0se,=0.

In cylindrical coordinates, the gradient is given by

1
Vr: = {epap + ey (;Q[,) + eza:} ®.

Specifically, the gradient of a scalar field fis

1 1 T
VRS = d,fe, + (;84,/') ey + Oofe. = (ap S, ;64,]’, adf)

This journal is © The Royal Society of Chemistry 2026
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and the gradient of a vector field u = u,e, + uye, + ue,
1
VRu=1¢e,® (8,,u) +ep® (;&pu) +e. ® (0:u)

Oty Opityp Oyt

= %(8(/,11,, — u¢) %(a,pu(p + up) ia(pu;

0-u,, O-uy O-u-

The divergence is defined in a similar fashion as the inner
product

1
VR := {e,,é?,, +eg (;84)) + é’;@;] .
thus the divergence of a vector field u is given by

1
VR - u=0yu, +;(8¢u¢ + up) + O-u.

We observe for a tensor A € R™"

pp Gp¢ Qpz
VR-4 =VRr-| app ap¢ a¢:
az,p az,r/) azﬁz
= Z €p - (9/, (a/ﬂ[ek ® 61)
kjl=p,p,z
1
+ Y ey =0y (arser @)
kizopz P

+ Y e O-(awer @e)

kl=p,p,z
1
= Z (Opapi)er +— Z (Opags +apr)e
I=p,p,z pl:px/),:
+a¢_;(8¢e,)+ Z (6;61;7/)61
I=p,p,z
1
= Z (Okars)er +— Z (Dpags + api)er
k:pd;z p/:p,d).z
I=p,p,z

1 1
+—agp ey — —Ap.pep-
p(b,p(ﬁ p4>4>p

Furthermore, the normal vector on the surface I' is of the
form n = n,e, + n,e, and

I—nm, 0 —nyn, Pop O pp:
Pr = 0 1 0 = 0 Po.p 0
—I’lpf’lz 0 1 — n:n; pp,z 0 p;z

Now we utilize that our system is constant in azimuthal
direction, in particular all first derivatives in ¢-direction vanish
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and u,, = 0. With that, the incompressibility condition (5) turns

to
1
ViR -u = [0’,80 + (;04))64) + Ozez} ‘u
1 up=0 1
= Opuy + ;(8¢u¢ +up) 4 Ou. = 58‘, (puy) + O-u..
For the conservation of momentum, eqn (10),
-V. [n(Vu + VuT)} + Vp
=V- [(31"(1 — V)Pr@r -u
(A.5)
+ vorPr(Vu+ Vu') Pr|
+ Pear(3\/§a( )YV + Prvo(c ))
Note that for shorter notation we write here o, instead of the
|[Vé$|. Now formulating this in the described axisymmetric

setting, yields for the first order derivatives

VRp = (8;)P)€p + (8zp)ez

Vr$ = (9,0)e, + (0:-¢)e:
PrVo(c) = o'(¢)PrVre = d'(c)Pr((9,¢)e, + (D-C)e:)
and for the second order derivatives
VR - [n(Vru+ Vru')]
20,u, 0 O.u,+ Opu-
=Vr 1 0 %un 0

8,,142 + Bzup 0 28:“:

= > (O + ndeu)e,

kjl=p,z

2
+ n Z (alup + 8’,1/{/)61 - —Zupeﬂ,
/)1:[,_; P

. [VérPr (VRH + VRUT) Pr}

2
= VR -vor Z Pre.i (O + Opui) pjrex @ ¢ +p¢¢;upp¢,¢e¢ ®eq

ij=p,z
k=p,z

Z Ok (Vér Z Pk, (3fu/+3jui)l?j,l> e

kjl=p,z ij=p,z

)
_‘_Vir (pr auj—l—(?u,)p]/)e;

pl/u ij=p,z

r
upep,
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Vk - [(1 — V)(Srﬁl‘,R . uPr}

1
= VR . (1 — l/)ér( E p,;j&»uj +p¢,¢pup> Pr

ij=p,z
)pk /)
)Pp €l

Finally, for the concentration eqn (8) the application of
rotational operators Vi and Vy- is straightforward. Similarly,
for the Cahn-Hilliard equation, A¢ is replaced by Vg-Vzo,
which is necessary for the chemical potential to approximate

= Z Ok <l—u <Zp,,,8u/
kjl=p.z

ij=p,z

+(1_+5FZ <Z pijOi; +

I=p,z \ij=p,2

the correct 3-dimensional curvature. However, we refrain from
using axisymmetric operators for Au to better preserve cell
volume. Imposing rotational symmetry in this term would
effectively increase the extracellular-to-intracellular volume
ratio, thereby promoting diffusion of the smaller intracellular
phase into the larger extracellular domain - a known artifact in
phase-field models.”® Since our objective is to conserve intra-
cellular volume, such rotational symmetry is intentionally
avoided in this specific term, thereby lowering droplet loss of
mass by decreasing the volume contrast of intracellular to
extracellular domains, due to two-dimensional instead of
three-dimensional domains. Note that since the primary pur-
pose of the phase field is to track the cellular interface,
rotationally symmetric operators are not necessary for Ayu; the
equations still approximate the same sharp interface limit.

A.6 Influence of the interface thickness ¢. To evaluate the
effect of the interface thickness parameter ¢, we performed two
validation studies. In the first study, we compared the initial
cell adaptation to the channel for three different values of e.
The simulation results (Fig. 7 (left)) indicate that the thickness
of the fluid film separating the cell from the wall increases with
the interface thickness parameter ¢, consistent with the
expected scaling behavior of phase-field models.

The second validation study investigates the influence of ¢
on the velocity of a cell that has already been initialized with a
prescribed shallow 1-mode deformation, thereby avoiding addi-
tional effects from pattern formation. The comparison across
different values of ¢ shows that the cell velocity converges as ¢
decreases, approaching a constant nonzero value. As expected,
cells move slightly faster for smaller ¢, since a thinner fluid
layer between the cell and the wall results in increased shear
interaction and, consequently, a higher net driving force.

Overall, these studies confirm that, for sufficiently small &,
the simulation results are largely independent of the precise
choice of the interface thickness, corroborating the robustness
of the findings presented in the main text.

A.7 Critical Péclet number and pattern formation. To assess
the onset of spontaneous polarization in our model, we per-
formed a systematic set of simulations for different Péclet
numbers Pe. Each simulation was initialized with a slight

This journal is © The Royal Society of Chemistry 2026
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Influence of interface thickness ¢ on cell adaptation and cell speed. Left: Cell contour at t = 10.0 for three interface thickness values (¢ = 0.04,

0.02, 0.01), showing that the thickness of the thin fluid film between cell and wall is proportional to ¢. Right: Cell speed uce, over time for different
interface thicknesses ¢. Smaller ¢ values lead to higher steady-state speeds, while the results converge for sufficiently small e.
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Fig. 8 Emergence of polar 1-mode concentration patterns depends on the Péclet number. Left: Centered concentration profile along the
axial coordinate z for different Péclet numbers at t = 10. For Pe < 20, profiles remain nearly left-right symmetric, while for Pe > 20, distinct
polar patterns emerge. The slight visible 2-mode pattern results from the presence of the channel walls and the corresponding initial adaption of
cell shape. Right: Time evolution of the left-right concentration difference, ck — c|, for varying Péclet numbers. Above the critical value
(Pe > 20), a persistent symmetry breaking and increasing polarity between cell ends is observed, while lower Péclet numbers result in negligible

polarization.

1-mode perturbation (amplitude 0.002) and we monitor both
the spatial concentration profile along the axial coordinate and
the concentration difference between the two cell ends
over time.

Fig. 8 (left) shows that for Péclet numbers below 15, the
concentration profiles remain nearly left-right symmetric.
Above Pe =~ 20, polar patterns consistently emerge, charac-
terized by high concentration at one cell end and low concen-
tration at the other. The slight visible 2-mode pattern results
from the presence of the channel walls and the corresponding
initial adaption of cell shape. This 2-mode, however, does not
further increase over time, indicating that the critical Pe
number is larger than 25 for this mode. Higher order modes
are not observed to grow in all considered cases.

Fig. 8 (right) quantifies the evolution of the concentration
difference between the right and left ends of the cell, cg — c;..
For Pe < 20, 1-mode polarity remains negligible, while for
Pe > 20, a pronounced and persistent increase is observed,

This journal is © The Royal Society of Chemistry 2026

signifying spontaneous emergence of polar 1-mode patterns.
The establishment of a slight concentration difference for
Pe = 20 indicates that this value is very close to the critical
Péclet number of the 1-mode.
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