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Stretching and debonding of adhesive fibril

Krupal Patel, *a Matteo Ciccotti b and Etienne Barthelb

In pressure-sensitive adhesive (PSA) tapes, adhesive failure is often accompanied by cavitation and

fibrillation. In this paper, we focus specifically on fibrillation. We model the behavior using a single fibril

(mono-fibril) configuration with the axisymmetric boundary conditions. Using the finite element method,

we simulate the mono-fibril with varying aspect ratios using hyperelastic models such as Arruda–Boyce

and Yeoh. First, we explain why the deformation of these fibrils is not purely uniaxial. We then analyze

the normalized force–stretch response using appropriate scaling models. Then we examine the impact

of changing strain-hardening, inter-fibrillar distance, and bulk modulus on the fibril response. Following

this, we investigate fibril debonding using parameters of the Yeoh model fitted to the uniaxial

rheological experimental data from two PSA tapes, referred to as PSA types 6A and 6B. Based on this

analysis, we derive the power laws for debonding stretch and debonding force for both PSA types.

Finally, we compare our findings with experimental data on mono-fibril debonding from the literature.

1 Introduction

Let us first consider the peeling experiment of PSA tapes, in
which a commercial tape or custom-made tape is peeled from a
substrate such as glass, polydimethylsiloxane (PDMS), or any
other surface. Initially, the relatively soft adhesive layer is
sandwiched between the stiff backing and the substrate, and
gradually, it can be peeled from the surface by various means.
In this simple experiment, the peel force can be measured by a
dead weight as in Ciccotti et al.1

The pioneering work was by Kaelble2 who uncovered the
theory of peeling by an analytical method. Kaelble’s model
attempts to describe the cohesive zone by assuming the adhesive
layer to be a viscoelastic foundation. It differs from the
singularity-based approach of Linear Elastic Fracture Mechanics
extended to soft solids by Rivlin et al.3

During the peeling of a pressure-sensitive adhesive (PSA),
the adhesion energy G (the work that should be provided to peel
a unit tape area) is several orders of magnitude above the
thermodynamic Dupré surface energy G0 between the adhesive
and the underlying substrate. This demonstrates the dominant
role of energy dissipation. In the slow steady-state regime, G is
highly dependent on the temperature T and the peeling rate V.

G = G0[1 + F(T, V)] (1)

= G0 + GD (2)

where G0 is the intrinsic fracture energy and F is a factor to
account for the dissipative losses which depend on velocity V
and temperature T.4–8

Further experimental work demonstrated that the adhesion
energy depends not only on linear rheology4–8 but also on
nonlinear rheology.9,10 Villey et al.11 developed new tools that
highlighted that fibril stretching within the cohesive zone is
central to energy dissipation during steady-state peeling of
PSAs. Chopin et al.10 confirmed that non-linear rheological
responses such as strain hardening and strain softening govern
the peeling energy which had previously been modeled using
linear viscoelastic models.12–14

At the heart of these processes lies the fibril debonding
problem. Fibril debonding is the key missing ingredient in
modeling the adherence energy of PSA tapes, according to
Chopin et al.10 During peeling or a probe-tack test, cavitation
initiates voids in the adhesive layer, which translate into fibrils
that undergo elevated nonlinear, rate-dependent deformation
before detachment from the substrate.15–26 However, accurate
modeling of fibrillation and cavitation is difficult. Several
studies have attempted to simulate the mechanical response
of the adhesive using different approaches.27–33 This fibrilla-
tion dissipates large amounts of energy, explaining the high
values of G that are observed. While recent studies have
explored fibril dynamics in detail, a general predictive model
that quantitatively links fibril debonding to adhesion energy
remains lacking. Developing such a framework is therefore key
to understanding PSA performance and guiding the design of
advanced adhesives.

Krishnana et al.34 presented the numerical study of the large
deformation of soft elastic material that is modeled as a
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half-space and is in adhesive contact with a rigid cylindrical flat
punch. They considered the material of the half-space to be
Neo-Hookean and gave results for non-slip and frictionless
boundary condition. A more realistic problem occurs when
the soft layer is sandwiched between the stiff half-space and
stiff punch, which is investigated in the present study using the
material models involving strain hardening. In a recent article
by Duigou-Majumdar et al.,35 studied fibril debonding from the
PDMS pillar. In this study, they performed experiments show-
ing the detachment of the tape from the top surface of a single
micrometer-scale pillar of PDMS elastomer. At a constant
displacement rate, the pillar and the adhesive separate, result-
ing in the generation of a mono-fibril of adhesive material.
They provide the power laws for the maximum force and the
critical elongation of the fibril at debonding as a function of
fibril diameter obtained experimentally for the commercial
double-sided acrylic adhesive tape. However, their mathemati-
cal model is based on an extension of linear theory to describe
the phenomenon of nonlinear fibril debonding.

In this study, we will focus on modeling the nonlinear elastic
response of the mono-fibril. The paper is divided into four
sections: Introduction, Finite Element Method, Results, and
Summary and discussion. In the subsequent section, we will
define the problem statement, and in the later sections, we will
discuss the results and finish with the concluding remarks.

2 Finite element method

Let us first consider a SEM image of the fibrillation captured by
X. Morelle and B. Bresson at SIMM Lab, ESPCI Paris in Fig. 1a.

We made simple schematics in Fig. 1b out of the complex
fibrillation process as seen in Fig. 1a. In our model, we use the
axisymmetric boundary condition to simplify the finite element
calculations and reduce our task to simulating a 2D section of a
single fibril instead of several fibrils taken in 3D, as shown in
the image of adhesion rupture. The interaction with the other
fibrils is approximated by imposing the boundary conditions Ur

= 0 on the periphery of the domain, as can be observed in Fig. 2,
which is not the periodic boundary condition U1 = 0 as shown
in Fig. 1b because our simulation domain is axisymmetric. The
geometric parameters for the initial configuration of the fibril
confined between the substrate and the backing are described
in Fig. 2, where ‘a’ is the radius of the fibril, ‘t’ is the thickness
of the adhesive layer, ‘b’ is the half of the inter-fibrillar distance

and the fibril density is F ¼ a2

b2
.

We used ABAQUS to simulate the fibril. We utilized the
Arruda–Boyce36 and Yeoh37 model for simulating the nonlinear
elastic response of the Fibril. We put the initial crack at the
interface between the unindented part of the soft adhesive layer
and the rigid backing or stiff punch in ABAQUS, which means
that at the interface, the nodes are not connected, as depicted
in Fig. 2 as a crack. To calculate the energy release rate, we
employ the J-integral. To tackle the singularity at the tip of the
crack, a spiderweb-type mesh was used. With such a mesh, the
J-integral can be calculated over the concentric paths surround-
ing the node defined as the crack tip. The J-integral value is
taken on the contour number 100. When Poisson’s ratio is close
to 0.5, the bulk modulus approaches infinity. Under nearly
incompressible conditions, any small error in the predicted
volumetric strain will appear as a large error in the hydrostatic

Fig. 1 Fibrillation. Fig. 2 Geometry and boundary conditions for fibril simulations.
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pressure and subsequently in the stresses. This error will, in
turn, also affect the displacement prediction since external
loads are balanced by the stresses, and may result in displace-
ments very much smaller than they should be for a given mesh.
This is called locking, or no convergence at all. To overcome
these difficulties, a mixed displacement-pressure formulation
was developed that is available in the form of hybrid elements
in ABAQUS. Hence, hybrid and reduced integration type ele-
ments (CAX4RH and CAX3H) are used to take care of the
Poisson’s ratio, which is close to 0.5 in the case of an incom-
pressible adhesive layer.38

In the first part of the Results section, we discuss fibril
stretching by normalizing it with the uniaxial stretching
response and explain the behavior observed in the force–stretch
curves using scaling models. We then examine the impact of
varying the strain-hardening behavior in the material model, as
well as the effect of interfibrillar distance in the fibril geometry.
In addition, we investigated the influence of the bulk modulus
on fibril deformation. In the final part, we focus on fibril
debonding employing J-integrals within the fibril simulations.

3 Results

Parameters for the simulation using Arruda–Boyce model are
given in the Table 1. We first tested the mesh sensitivity of our
model. Representative results for a/t = 1.1 and l = 3 are shown
in Fig. S1(a) (SI) for 219 545 elements and in Fig. S1(b) (SI) for
329 682 elements. We find that the distribution remains con-
stant except in the neighborhood of the singularity. Hence, our
solutions are said to be grid-independent or robust with respect
to the degree of mesh refinement. We also tested the grid
independence at the other aspect ratios and details are avail-
able in Fig. S2(SI). To understand fibril deformation, it is
interesting to compare the values of shear stress and hydro-
static pressure. Triaxiality is defined as the ratio of the von
Mises stress to the absolute value of pressure. Representative
results are shown in Fig. 3: it can be said that the stress
triaxiality value is three at the center of the stretched fibril
and decreases at the top and bottom.

3.1 Fibril stretching

We aim to compare the fibril stretching to the uniaxial stretch-
ing. We calculated fibril stretching for various aspect ratios a/t
ranging from 0.12 to 2.2. In particular, we calculated the pulling
force, which will be denoted F. We also calculated the force F0

for uniaxial traction for the same material parameters. In Fig. 4,
we plot F/F0 versus l for the different aspect ratios. These results
show that the force needed to draw the fibril from a flat soft

film is larger than the force to extend cylindrical fibrils by a
factor of 3 to 14 depending on the value of aspect ratio. The
small strain values of F/F0 are shown in Fig. 5 and are seen to
first decrease with a/t and then increase again. The small a/t
regime can easily be explored by hand-waving arguments. For a
flat-punch indenting a homogeneous half-space, the force in
the linear regime is given by the following equation:

F B Ead (3)

and the uniaxial fibril force scales according to:

F0 � E
a2

t
d (4)

Hence,

F

F0
� t

a
(5)

where a { t and d{ a. It can be seen in Fig. 5 that when a { t,
the evolution of F/F0 follows the scaling argument according to
eqn (5), at a very small strain, and it is the intercept of F/F0 with
the vertical axis in Fig. 4a which represents the ratio of linear

Table 1 Parameter for simulations using Arruda–Boyce model: Poisson ratio of the soft layer = 0.4999

Parameter for simulations

Name Modulus of rigidity Compliance of compressibility Locking stretch

Rigid substrate and backing m2 = 1000 MPa D2 = 0.0001 MPa�1 lL2
= 3

Soft layer m1 = 1 MPa D1 = 0.0001 MPa�1 lL1
= 2

Fig. 3 Fibril simulations for a/t = 2.2, lL = 2, l = 3. Shear and pressure
distribution.
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contact stiffness. It can also be noticed that the boundary
element method (BEM) matches the FEM exactly for a { t.
For more details on the boundary element method, see our
previous work.39 Taking into account now larger stretches, for
smaller a/t (Fig. 4a), we find that the ratio of F/F0 increases

roughly linearly with stretch as we move from small to moder-
ate stretch. It is clear that as a/t decreases, the slope of this
linear relation increases. In contrast, for a/t roughly larger than
1 (Fig. 4b), the evolution of F/F0 with l has a negative initial
slope as the stretch increases from 1 to roughly 2. Above 2,
there is a behavior change, and the slope becomes positive
again. We also note that as a/t increases, the absolute value of
the slope in the first regime, where we have a negative slope,
increases. The same reasoning is true for the positive slope
regime (that is, the stretch of 2 onward). This behavior can be
explained qualitatively. Initially, when the adhesive layer is
confined between the backing and the substrate, the shear
energy is dominant, and the effective modulus is high. When
the stretch increases, the confinement decreases, and the
uniaxial part becomes dominant; hence, we have an initial
negative slope. However, due to strain hardening, a positive
slope is restored at the larger stretch.

We now give a more elaborate argument to explain the
response at moderate strain and small a as seen in Fig. 4a.
From Fig. 6a, it is clear that the affected area for this regime is
less than the thickness of the adhesive layer in the small strain.
Hence, it is near the half-space approximation as the thickness
of the adhesive layer increases for the given radius. For flat-
punch indenting over a homogeneous half-space, the force in
the large strain regime (a o d) scales according to the following
equation:

F B Ed2 (6)

Fig. 4 Normalised force in the fibril simulations for (a) a r t and (b) a Z t
using the Arruda–Boyce model: mrigid/msoft = 103, lL = 2, a = 1.1 mm, b =
10 mm and t is varying.

Fig. 5 Normalised force of the fibril in the linear regime: d = 0.001 mm.

Fig. 6 (a) Kinematics for the cases where a { t in the small strain regime
(b) evolution of F/F0 at small stretch for a { t and various a/t values as
predicted from eqn (5) and (7).
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instead of eqn (3) because the volume affected by the deforma-
tion is now of size d and not a. Hence,

F

F0
� d2t

a2d
� t2

a2
ðl� 1Þ (7)

where l� 1 ¼ d
t
. Eqn (7) qualitatively explains the linear beha-

vior with l at moderate strains and the increasing slope when
a { t in Fig. 4a.

In Fig. 4b, we see the initial negative slope of F/F0 versus l
graph. Here, a qualitative argument is provided for this initial
negative slope. It is based on the Neo-Hookean material model.
In brief, the approximate expression for the elastic energy for
uniaxial stretch is given by

Wuniaxial � a2tm l2 þ 2

l
� 3

� �
(8)

For the fibril in the confined case (see Fig. 7a), we will show
below that we have

Wfibril � a2tm lz2 þ
2

lz
� 3

� �
þ a2

t2
1

lz
� 1

lz3=2

� �2" #" #
(9)

We can see that Wfibril consists of two terms. The first is due to
uniaxial extension, and the second is due to shear. When a/t is
large and l is close to one, the shear part is dominant, but as l
increases, the uniaxial part takes over. Hence, we have a
negative slope, as seen in Fig. 7b. Please visit Appendix A for
the detailed derivation of eqn (9).

In Fig. 8, we plotted the slope of the force vs. stretch curve
against the stretch using FEM results for fibril and uniaxial
simulation. From the graph, we can say that the slope of the
force for fibril is decreasing approximately till stretch of 1.7 and
then it starts to increase while for the uniaxial case, it remains
almost constant till the stretch of 2.5. Hence we can say that
strain-hardening sets in earlier in the case of fibril than its
corresponding uniaxial simulation for the high aspect ratio
such as 2.2. Hence, we have positive slope in F/F0 curve starting
from stretch of 2 (when a c t), as seen in Fig. 4b.

3.2 Impact of strain hardening

Calculations were carried out with the parameters shown in
Table 2 for the Arruda–Boyce model. We varied the locking
stretch values from 2 to 5. From Fig. 9, we observe that the
values of F/F0 in the small strain for all the different locking
stretches remain the same. In the large strain regime, as the
value of the locking stretch increases, the value of F/F0

decreases for a given value of the stretch. In Fig. 9, we plot
the normalized force against the normalized strain. From this
graph, we see that all the curves have the same slope, but the
effect of strain hardening is visible by the shift of the curve
according to the strain hardening value.

3.3 Impact of changing the inter-fibrillar distance

Here, we study the effect of changing the inter-fibrillar distance
b on the F/F0 ratio for the given a/t ratio. In Fig. 10, we plotted
the F/F0 vs. l graph for the given a/t ratio and different b sizes. It

is observed that there is a moderate increase in the F/F0 ratio
when decreasing b and a moderate increase only appears for b/t
ratio smaller than 2, i.e. for rather densely packed fibrils. Even
in these conditions and despite the upward shift due to the
lateral confinement, the evolution of the graph remains
similar.

Fig. 7 (a) Kinematics for the cases where a c t (b) Neo-Hookean
material: Initial slope for a/t = 2.2 as predicted from eqn (9) and (8).

Fig. 8 Slope of force against stretch: Arruda–Boyce, a/t = 2.2, lL = 2, b =
10 mm: It gives an explanation of the positive slope in F/F0 curve for aspect
ratio: a/t = 2.2 starting from l = 2.
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3.4 Change in the shape of the fibril due to change in the bulk
modulus (i.e. compressibility)

Since confinement plays a role in the fibril response, it is
interesting to study the impact of compressibility on the shape
of the fibril. We used the standard Arruda–Boyce model with
m1 = 1 MPa and an aspect ratio a/t = 1 and changed the bulk
modulus from 2 to 2 � 104 MPa. We can observe in Fig. S3 (SI)
from (a) to (e) that compressibility indeed plays a crucial role in
determining the shape of the fibril. As we increase the bulk
modulus for the same other parameters, the angle at the
interface increases (ya = 1001, yb = 1331, yc = 1401, yd = 1531,
ye = 1501), which seems directly related to the force required to
pull these fibrils. Indeed, from Fig. 11, one can see that as the
bulk modulus increases, the force necessary to stretch the fibril
increases for a given value of the stretch. However, the initial
increase of the force is visible but after a particular value of the
bulk modulus, there is not much increase in the force at the
specific stretch. It is clear that the angle y increases mono-
tonously when decreasing compressibility, as shown in Fig.
S4(a) (SI). However, for the particular compressibility value,
when we vary the applied stretch on the fibril, this angle first
increases in the small strain and after a sudden increase,
remains almost stable in the large strain as shown by
Fig. S4(b) (SI).

In Fig. 12, we plotted the fibril force normalized by the force
of the corresponding uniaxial simulation of the cylinder of the
same patch diameter and thickness of the adhesive layer as that

of the fibril. We observe that as the bulk modulus decreases for
the given shear modulus value, the force required to pull these
fibrils decreases. And it costs less energy to pull the compres-
sible fibril than pulling the relatively incompressible one. The

Table 2 Parameter for simulations: Arruda–Boyce model

Parameter for simulations

Name
Modulus of
rigidity

Compliance of
compressibility

Locking
stretch

Rigid
substrate

m2 = 1000 MPa D2 = 0.0001 MPa�1 lL2
= 2, 3, 4, 5

Soft layer m1 = 0.001 MPa D1 = 0.0001 MPa�1 lL1
= 2, 3, 4, 5

Rigid
backing

m2 = 1000 MPa D2 = 0.0001 MPa�1 lL2
= 2, 3, 4, 5

Fig. 9 Normalised force vs. Normalised strain for the different strain
hardening value using the Arruda Boyce model: a/t = 1, mrigid/msoft = 106.

Fig. 10 F/F0 vs. l graph for the different b/t ratio for a given a/t: Arruda–
Boyce, mrigid/msoft = 103, lL = 2. It explains the impact of half-interfibrillar
distance: ‘b’.

Fig. 11 Effect of change in bulk modulus on the force required to pull the
fibril: Arruda–Boyce, a/t = 1, b = 10 mm, m = 1 MPa, lL = 2.
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value of the F/F0 factor also reduces with the reduction in the
bulk modulus.

3.5 Fibril debonding

Chopin et al.10 used two custom-made acrylate tapes made by
3M and labeled 6A and 6B in their work to model peeling
adherence based on measurements of the extensional rheology.
They measured the extensional data for several different strain
rates. In this section, we characterize the same data to get the
pertinent constitutive model parameters for our fibril simula-
tions. We started data fitting with the Arruda–Boyce model, but
the residuals after the fit procedure were too large. Hence, we
eventually used the Yeoh model that provides a better fit for the
two PSA tape as illustrated in Fig. S5 (SI). The fitting parameters
are reported in Table 3.

We will now consider the consequences of the large-strain
numerical simulations of the J-integral to discuss the conse-
quences of the change of geometrical and material parameters

on the debonding of the stretched fibril. In order to be close to
the properties of our custom tapes 6A and 6B, we used the Yeoh
model fit from Table 3 for the reference strain rate _e = 2 s�1,
which corresponds to a peeling speed of 0.1 mm s�1. The
parameters are reported in Table 4. We report in Fig. S9 (SI),
J-integral simulated curves for several patch sizes and a con-
stant tape thickness t = 20 mm as a function of stretch. We
tested the mesh convergence of the J-integrals and force-stretch
response and one can find that information in Fig. S6 and S8
(SI). In Fig. S7(SI), we tested the validity of ABAQUS’s imple-
mentation of J-Integral using the finite-difference method.

By imposing the criterion of debonding based on J = G,
where G represents the interfacial adhesion energy, we can
determine the value of the critical stretch for debonding. Then
we can evaluate by the force curve, as in Fig. S10 (SI), the
corresponding critical force for debonding. Taking into account
the constant value of G = 1, 4,35 1040 and 30 J m�2, we can thus
evaluate the dependence of both the critical force and the
stretch as a function of the size a of the contact patch for the
two custom PSA tapes (6A and 6B) as reported in Fig. S11 and
S12 (SI) for different values of G. From both figures, it is evident
that the debonding force increases with increasing path dia-
meter, while the debonding stretch (or debonding displace-
ment) decreases with patch diameter (where the adhesive
thickness is constant t = 20 mm). We also derive the powerlaw
for both the tapes (6A and 6B) based on our simulation as
reported in Fig. 13 and 14 as a function of fracture energy G. We
can compare it with an experimental investigation in the
literature. According to the experimental study by Duigou-
Majumdar et al.,35 fibril debonding force should increase with
the patch diameter as a power law of exponent 2.5, while the
debonding stretch should increase with the patch diameter as a
power law of exponent 0.5 while the present model predict that
the debonding force for the custom PSA tapes (6A and 6B,

Fig. 12 Effect of change in Bulk Modulus on F/F0 ratio: Arruda–Boyce,
a/t = 1, b = 10 mm, m = 1 MPa, lL = 2.

Table 3 Parameter for simulations for the different strain rate using Yeoh model

Fit parameters

Name Strain rate (S�1) C1 C2 C3

PSA type 6A 2 0.034 MPa 0.0011 MPa 0.000020 MPa
PSA type 6A 1 0.018 MPa 0.00021 MPa 2.4 � 10�6 MPa
PSA type 6A 0.2 0.0082 MPa 0.00012 MPa 1.2� 10�6 MPa
PSA type 6A 0.01 0.0074 MPa 0.00011 MPa 1.2� 10�6 MPa
PSA type 6B 2 0.034 MPa 0.0024 MPa 0.00012 MPa
PSA type 6B 1 0.019 MPa �0.00013 MPa 4.01� 10�6 MPa
PSA type 6B 0.2 0.020 MPa 0.00095 MPa 3.5� 10�5 MPa
PSA type 6B 0.01 0.0064 MPa �3.17� 10�5 MPa 1.44� 10�6 MPa

Table 4 Parameter for simulations: Yeoh Model, PSA tape 6A and PSA tape 6B

Name C1 C2 C3 D1 = D2 = D3

PSA tape 6A
Soft layer 0.034 MPa 0.0011 MPa 0.000020 MPa 6 � 10�1 MPa�1

Rigid backing and substrate 0.5 GPa �0.024 GPa 0.0017 GPa 0.04 GPa�1

PSA tape 6B
Soft layer 0.034 MPa 0.0024 MPa 0.00012 MPa 6 � 10�1 MPa�1

Rigid backing and substrate 0.5 GPa �0.024 GPa 0.0017 GPa 0.04 GPa�1
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adjusted by the Yeoh model) should increase with the patch
diameter as a power law of exponent between 1.6 to 2 based on
G, while the debonding stretch should decrease with the patch
diameter as a power law with negative exponent between
�0.4 and �0.16 based on G value (i.e. for PSA 6A: Fc p dm

and dc p dn and for PSA 6B: Fc p dp and dc p dq where m, n, p
and q are given in Fig. 13 and 14). In Fig. S13 (SI), we show the
effect of varying the adhesive’s compressibility parameter D on
the J-integral curves as a function of stretch. This allows
predicting that for the constant fracture energy G, incompres-
sible fibrils will debond earlier than more compressible fibrils.

4 Summary and discussion

We carried out the simulation of mono-fibril and checked the
effect of changing geometric and material parameters on the
nonlinear elastic response of fibril. We explored the impact
of aspect ratios, inter-fibrillar distance, bulk modulus and

strain-hardening. Finally, we discussed the powerlaw for fibril
debonding and its variability based on the chosen fracture
energy value.

Simulation confirms that the force to draw fibrils from a flat
soft adhesive film is larger than the force required to uniaxially
extend hypothetical independent strands of the adhesive. That
is the reason why we see the ‘‘factor of 5’’ in the work by Chopin
et al.10 It means peeling energy is 5 times more than uniaxially
extending a PSA tape in the rheometer. We explain the force vs.
stretch graph for the different aspect ratios of the simulated
fibril which is normalized by uniaxial stretching of the fibril by
scaling models. We also discussed the impact of changing
strain hardening, inter-fibriller distance and bulk modulus on
the normalized force required to pull the fibril. Our hyperelas-
tic simulation allows the definition of a fibril debonding
criteria based on critical energy release rate (evaluated by the
J-integral) that provides a valuable candidate to predict the
debonding stretch of fibrils, which is the most important

Fig. 13 PSA tape 6A, t = 20 mm, F = 5% (a) debonding force: Fc p dm,
where m depends on the fracture energy value used to derive the power
law. It tells that the debonding force increases with the patch diameter
with the positive power law exponent m (b) debonding displacement: dc p

dn, where n depends on the fracture energy value used to derive the power
law. It tells that the debonding displacement decreases with the patch
diameter with the negative power law exponent n.

Fig. 14 PSA tape 6B, t = 20 mm, F = 5% (a) debonding force: Fc p dp

where p is a function of fracture energy value used to derive the power
law. It tells that the debonding force increases with the patch diameter
with the positive power law exponent p (b) debonding displacement: dc p

dq, where q is a function of fracture energy value used to derive the power
law. It tells that the debonding displacement decreases with the patch
diameter with the negative power law exponent q.
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missing ingredient for a predictive modeling of the peeling
energy. Based on this model we could predict that the debond-
ing force for the custom PSA tapes (6A and 6B, adjusted by the
Yeoh model) should increase with the patch diameter as a
power law of exponent m and p, while the debonding stretch
should decrease with the patch diameter as a power law with
negative exponent n and q respectively (i.e. Fc p dm and dc p dn

for PSA 6A and Fc p dp and dc p dq for PSA 6B). While
experimental study by Duigou-Majumdar et al.35 suggest that
fibril debonding force should increase with the patch diameter
as a power law of exponent 2.5, while the debonding stretch
should increase with the patch diameter as a power law of
exponent 0.5 (i.e. Fc p d5/2 and dc p d1/2). This discrepancy may
be due to different tapes used in the experiment35 and our
simulation. Moreover, in the simulation, we did not consider
the viscoelasticity. In the future extension of this work, we
would like to use viscoelastic models in place of hyperelastic
models.
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Appendix
A Appendix

Here, we give the derivation of Wfibril as per eqn (9). In the
geometry of Fig. 7a, we can express the shear strain as follows:

eshear �
@ur
@z

(A.1)

� a 1� lað Þ
lzt

(A.2)

¼ a

t

1

lz
� 1

lz3=2

� �
(A.3)

where, lz = l, la ¼ ly ¼
1ffiffiffi
l
p because the material is incompres-

sible. From Fig. 7a, one can write the deformation gradient
using the cylindrical co-ordinate as per below:

F ¼

1þ @ur
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@ur
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� uy
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@ur
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@R

1þ 1
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F ¼
la 0

a

t

1

lz
� 1

lz3=2

� �
0 la 0
0 0 lz

2
664

3
775 (A.5)

Now, the Green–Lagrange strain tensor is given by E ¼
1

2
FTF � I
h i

E ¼

la2 � 1 0 la
a

t

1

lz
� 1

lz3=2

� �
0 la2 � 1 0

la
a

t

1

lz
� 1

lz3=2

� �
0 lz2 þ

a2

t2
1

lz
� 1

lz3=2

� �2
�1

2
66664

3
77775

(A.6)

If V is the volume of the elastomer, then Wfibril is given by

Wfibril � m trace E
� �

V (A.7)

Wfibril � a2tm lz2 þ
2

lz
þ a2

t2
1

lz
� 1

lz3=2

� �2
�3

" #
(A.8)

The derivation of the expression for force is given as follows.

F ¼ @W
@d

(A.9)

F ¼ 1

t

@W

@l
(A.10)

Ffibril � a2m 2lz �
2

lz2
þ 2a2

t2
1

lz
� 1

lz3=2

� �
3

2lz5=2
� 1

lz2

� �� �
(A.11)

Funiaxial � a2m 2lz �
2

lz2

� �
(A.12)

when we put lz ¼ 1þ d
t

in the eqn (A.11) and consider the small

strain limit by neglecting the higher order terms (lz
5/2 and lz

3/2),
we would recover the force equation given by the poker
chip model.
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