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Small particle dynamics in glassy polymers:
diffusion, relaxation, and machine-learned
softness

S. J. Layding and R. A. Riggleman *

In this work, we explore the simulated transport dynamics of small particles through a polymer melt at

temperatures spanning from liquid-like behavior down to near and below the simulated glass transition

temperature. Using softness, a machine-learned scalar quantity, we connect the structural neighborhood

surrounding a particle with its dynamic behavior to relate the probability of a glassy rearrangement to its

local environment. An energetic and entropic scale for the rearrangement process of these small particles

emerges and is compared across systems of different particle sizes and interaction strengths. Diffusion

coefficients and relaxation times both show strong dependence on our tuning parameters, and the barriers

to rearrangement show increasing nonlinearity as the particles become smaller. The trends we observe

provide some insight into how local structure plays a role in small molecule transport when the surrounding

medium is undergoing a glass transition, leading to large changes in system mobility.

Introduction

Chemical separations processes like distillation and other
thermally-driven methods account for nearly fifteen percent
of global annual energy consumption.1 The gradual reduction
of the world’s energy budget and the carbon intensity of the
energy economy have been identified as key elements of a
strategy to combat climate change.2,3 Increasing concentrations
of atmospheric carbon dioxide and other pollutants4 have been
shown unequivocally to be direct causes of climate change5 and
could be mitigated through either point-source capture upon
emission,6–8 or direct air capture of legacy emissions from the
atmosphere.9,10 The need for not only a reduction in global
energy consumption but also with more advanced and increas-
ingly dilute separations processes points toward polymer
membrane, pressure-based separations processes as an attractive
alternative. Polymer membranes for gas separations have been in
use for decades11,12 and continue to be an area of intense
research to push the limits of performance13,14 and drive the
development of new hydrocarbon materials that exhibit the
potential for fast and energy-efficient separations.15–17

Many of these polymer membranes fall under the umbrella
of glassy disordered materials,18 which are amorphous and lack
long-range structural order like liquids yet possess many of the
physical properties of solids.19–21 Dynamical heterogeneities in
microscopic behavior of these materials below the glass

transition temperature Tg are observed, along with a growing
structural relaxation time to around 102 seconds alongside the
dynamic viscosity increasing to greater than 1013 centipoise.21

While ubiquitous in glass-forming materials, these behaviors
are not entirely explained by any one theoretical approach or
understanding.22–28

Building a clearer understanding of structure–function rela-
tionships for transport in polymers has important implications
in materials design and application for gas separations.29

Glassy polymer membranes used for gas separations processes
are characterized by high solubility coefficients for gas species,
moderate diffusion selectivity, and nonequilibrium free volume
distributions that allow glassy polymers to dominate the limits
of performance compared to rubbery polymers.14 The dynamics
of small tracer molecules within polymers can be studied
experimentally using photobleaching experiments30,31 and
tools like quasi-elastic and inelastic neutron scattering.32 Simu-
lations present an important complement to experimental
techniques for characterizing materials that have not yet been
synthesized or extensively studied at the lab scale.

Computational studies of gas diffusion through polymers
have been performed extensively33 over the years in both
coarse-grained34–37 and atomistic resolutions,38–41 inspired by
classic theoretical frameworks used to describe diffusion in
disordered media.42,43 Early atomistic simulation of oxygen
transport through linear n-alkane systems demonstrated that
diffusion in glassy systems is governed by a hopping mechanism
where particles spend much of their time in a single region
before moving to another potential energy basin.44 The hopping
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rearrangement process in glassy systems related to cooperative
motion with the nearby polymer chains and does not necessarily
correlate with any gradient in local free volume.45,46 The transi-
tions between these localized regions of permeation have been
further studied with other traditional methods such as kinetic
Monte Carlo in both glassy and rubbery polymers,35,47,48 which
have also found utility in other nanoporous materials such as
zeolites.49

In the last decade or so, the advent of machine learning
and increased capacity for computer simulation of large size
and longer timescales has unlocked a wealth of new tools and
measures to characterize the dynamics and plasticity of glassy
materials.50 One such measure is a scalar quantity called soft-
ness, which relates a glassy material’s dynamic behavior to its
static configuration at a given point in time by using a support
vector machine (SVM) to analyze a high-dimensional space of
local structural features.51–53 Softness has proven to be useful
in gaining understanding around a wide variety of phenomena
in glassy materials including the impacts of structural aging,54

spatial variations in thin-film relaxation,55 the behavior of
polymer nanocomposites under deformation,53,56–59 and the
relationship between static excess entropy and dynamics in the
supercooled regime.60 When compared with other methods
that relate local structure to free volume, such as Voronoi-
based indicators like local density, free volume, or Voronoi
anisotropy and its divergence, softness has been shown to
outperform them in simulations of both glassy quenched and
high-temperature Lennard-Jones systems; indeed, using other
metrics to measure local free volume and relate it to dynamics
has historically been a challenge.61–63 Softness has been success-
fully used both in experimental systems51 and in simulations of
simple models like the Kob–Andersen glass former52,54,60,64 or
coarse-grained bead-spring polymers,55–59,65,66 making it a versa-
tile approach for characterizing glassy dynamics.

The importance of local structure to diffusion and hopping
dynamics makes it tempting to use softness or other high-
dimensional machine learning tools to investigate the
dynamics of small penetrants through a glassy matrix. Softness
has been applied extensively to the binary Kob–Andersen
system and to bead-spring polymers, but to our knowledge
softness has not yet been used to explore the relationship
between local structure and dynamics of small particles moving
though a glassy medium. Recent work characterizing the diffu-
sion behavior of small penetrants in both rubbery and glassy
polymer materials has included the application of self-
consistent nonlinear Langevin equation (SCNLE) theory67 and
self-consistent cooperative hopping theory (SCCHT),68 which
may be used to relate the penetrant–segment size ratio,
strength of penetrant attraction to the polymer, and tempera-
ture to the diffusion.69–71 These theories are based on the idea
that the dynamics in the glassy state are slowed due to a
combination of a local barrier for a segment (polymer mono-
mer or a penetrant) to escape its local cage, and the barrier is
augmented at low temperatures by the elastic distortion of the
matrix required for the cage to dilate and allow the segment to
escape. These theories have been corroborated by not only

existing experimental measurements of small molecule diffu-
sion, but also molecular dynamics simulations of the purely
repulsive penetrant dynamics of small, gas-like molecules in
glassy polymers.34,36,37 Building on this work by examining
diffusion behavior of particles that have attractive interactions
with the surrounding polymer matrix may give some insights
into how systems with real chemical interactions can be tuned
to promote desirable transport properties.

In this work, we take the framework of softness and use it to
investigate the dynamics of small particle transport through a
model glass-forming polymer in the spirit of classic the
Kremer–Grest model.65,66 We use molecular dynamics (MD)
to simulate gas-like, monatomic tracer particles permeating a
polymer melt as it nears the glass transition, measuring the
self-diffusion and relaxation behavior of the tracers, and com-
pare the tends in mobility from these measures qualitatively
with the SCCHT model for activated diffusion in a polymer
matrix with cross-interactions. We then calculate softness for
these systems and extract the characteristic energetic and
entropic scales that describe the structural free energy barriers
to tracers’ glassy rearrangement. Finally, we compare these
barriers across systems with different tracer particle sizes and
interaction strengths with the polymer medium to assess how
softness can relate local structure to transport dynamics in
glassy systems. We examine the differences between energy
barriers computed from softness and from diffusion coeffi-
cients or relaxation times and theoretical predictions for
activation barriers in penetrating improving the overall under-
standing of connections between these barriers to activated
transport is important in its own right and may be practically
helpful in designing new materials that exhibit desirable diffu-
sion behavior for use in separations processes and other
important engineering applications.

Methods
System initialization and equilibration

The simulations in this work consider bead-spring polymer
chains65,66 consisting of 20 Lennard-Jones (LJ) interaction sites,
each representing a monomer of species A. Gas-like tracer parti-
cles, which we refer to as species B, are represented as freely
moving single LJ interaction sites. We use the standard Lennard-

Jones reduced units throughout for time t ¼ t
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

ms2=e
p� �

, tem-

perature (T* = T/(e/kB)), pressure (P* = P/(s3/e)), volume (V* = V/s3),
and energy (U* = U/e), where s, e, and m are the length, energy, and
mass units of the reduced Lennard-Jones potential and kB is
Boltzmann’s constant.

The reduced Lennard-Jones potential72,73 in its cut-and-
shifted form,

Unb rij
� �

¼ 4eij
sij
rij

� �12

� sij
rij

� �6
" #

�Ucut; rij o 2:5s (1)

is used for all non-bonded interactions in the system with a
cutoff distance of rnb

c = 2.5s and shifted by Ucut to be zero at
r = rcut. The polymer–polymer site interaction size and energy
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are fixed at sAA = 1.0s and eAA = 1.0e respectively. The tracer–
tracer interaction sizes are varied at values of sBB = 0.3, 0.5, 0.8
and 1.0s while the tracer–tracer interaction energies are fixed at
eBB = 1.0e. The polymer–tracer interaction sizes sAB are set by

the Lorentz rule,74 sij ¼
sii þ sjj

2
, while the polymer–tracer

interaction energies are chosen to be either eAB = 1.0, 1.2, or
1.5e. A combining rule is not used for interaction energies to
suppress spontaneous phase separation at lower temperatures.
A unit Lennard-Jones mass of m = 1 is assigned to both the
individual monomer beads and to the tracers.

Adjacent monomer beads along a single polymer chain are
bonded together and do not experience the Unb potential with
one another. The bonded interactions in our system are defined
by the finitely-extensible nonlinear elastic (FENE) bonding
potential,65,66 which has the form

Ub rij
� �

¼ � 0:5KR0
2 ln 1� rij

R0

� �2
" #

þ 4eij
sij
rij

� �12

� sij
rij

� �6
" #

þ eij

(2)

with bond stiffness K = 30e/s2 and maximum extensibility of
R0 = 1.5s. The first term describes the restorative force of the
bond; the second term is the complete non-bonded LJ potential
between two monomers; the third term shifts the magnitude of
the LJ potential to be zero at its minimum. The second and
third terms collectively form the purely repulsive Weeks–
Chandler–Anderson (WCA) potential,75 which is truncated
at its minimum value; for this system, this corresponds
to rnb

c = 21/6s.
All simulations are performed in the LAMMPS76,77 package

with data files initialized by a custom Python script. Each
simulation box in our work contains 500 tracer particles and
475 polymer chains, or 10 000 total particles. Since all particles
have a unit mass, the mass fraction of tracers in each simula-
tion box is equal to the number fraction of 5%. The total
volume fractions of tracers, taken to be the Lennard-Jones
volume of the tracers divided by the total Lennard-Jones
volume of all beads in the box, correspond to fB = 0.142%,
0.654%, 2.62%, or 5% for tracers of size sBB = 0.3s, 0.5s, 0.8s,
and 1.0s, respectively. For the larger tracer sizes, these are
outside of the dilute limit.

To ensure that our starting configuration is not too dense,
polymer chains are initialized using a random walk in a large
cubic simulation box, after which the tracer particles are
inserted randomly. The soft push-off method is then used to
relax the overlapping contacts, followed by a final energy
minimization.78,79 After the minimization procedure we perform
MD using an isothermal–isobaric (NPT) time integrator80,81 with
a timestep of dt = 0.002t and damping coefficients of Tdamp =
100dt and Pdamp = 1000dt for the temperature and pressure,
respectively. Velocities are randomly initialized at T* = 1.0 and
the system is run at a fixed temperature and pressure of T* = 1.0
and P* = 0.0 for 5 � 106dt or 104t to equilibrate, at which point

the mean-squared displacement of the monomers is several
times the mean end-to-end distance of the polymer chains.
The equilibrated snapshot is then saved for further use.

Cooling and production runs

An initialized configuration at T* = 1.0 and P* = 0.0 is decreased
gradually to zero temperature at a dimensionless cooling rate of
G = 10�4T*/t and constant P* = 0.0. Snapshots are saved along
the way at incremental temperatures. The density of the system
is recorded as a function of time to identify the temperature at
which a glass transition occurs, which we estimate using a
nonlinear fitting function used previously,82

logV� T�ð Þ ¼ w
M � G

2

� �
log cosh

T� � T�g
w

� �	 


þ T� � T�g

� � M þ G

2

� �
þ c:

(3)

Here, V* is the system volume (inverse density), w is the width
of the transition window in temperature units, M and G are the
thermal expansion coefficient of the melt and glass, respec-
tively, and c is the value of log V* at the glass transition
temperature T�g .

Simulation snapshots from temperatures of interest are
then used for production runs at constant temperature and
pressure, using the T* corresponding to their ramping time and
a constant P* = 0.0 for a total of 5 � 107dt or 105t. During these
quiescent simulations, several trajectories of 101 frames each
are recorded with linear spacing Dt between frames corres-
ponding to each decade from 10�2t to 103t to calculate relevant
dynamic properties, as well as the radial distribution function
g(r). For example, a trajectory is recorded during the entire
duration of the simulation with frame spacing of Dt = 103t.
Following the production run, a trajectory spaced by Dt = 10�1t
with 104 frames is generated spanning 103t or 1% of the
production time; this is used for evaluating softness in the
postprocessing steps, discussed below.

We characterize the structure of our systems using the
standard radial distribution function,83 and the dynamic prop-
erties are characterized using two metrics. First, we compute
the mean-squared displacements84 as

MSD ‘Dtð Þ ¼ 1

N M � ‘ð Þ
XN
i¼1

XM�‘
m¼1

ri;mþ‘ � ri;m
�� ��2;

‘ ¼ 1; 2; 3 . . .M � 2;M � 1

(4)

where ri(t) is the position of particle i at some time t. For a
trajectory with many samples of displacements over a time lag
Dt (i.e. from 0 to Dt, from Dt to 2Dt, etc.) the ensemble averaging
uses the moving time origin method, where M is the total
number of frames in the trajectory spaced evenly by time Dt, c
is the integer number of frames between which we are looking
at positional changes, and ri,m is the position of the particle i in
frame m. This expression yields MSD values for all lag times in
cDt, with smaller times being averaged over many more inde-
pendent displacements than larger times. In our analysis using
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trajectories of 101 frames spaced by a time interval which is a
power of 10 ranging from �2 to 3, we keep only the data
calculated for values of c up to 10 for all but the largest interval
of Dt = 103t. The second dynamic measure we use is the
intermediate scattering function,

Fs k; ‘Dtð Þ ¼ 1

N M � ‘ð Þ
XN
i¼1

XM�‘
m¼1

sin k ri;mþ‘ � ri;m
�� ��� �

k ri;mþ‘ � ri;m
�� �� ;

‘ ¼ 1; 2; 3 . . .M � 2;M � 1

(5)

where k is the wavevector associated with the calculation, M is
the total number of frames in the trajectory spaced evenly by
time Dt, c is the integer number of frames between which we
are looking at positional changes, and ri,m is the position of the
particle i in frame m. Fs(k,cDt) measures the structural relaxa-
tion time on length scales of the order B2p/k.

Dynamical indicator function and softness

Following the production run and the generation of a 1000t
trajectory with frames spaced by Dt = 0.1t for each system, we
evaluate the softness of each particle in each frame to quantify
the structure of the neighborhood around a particle with a
single parameter. To describe the local environment around a
particle, we employ a set of two-body Gaussian radial structure
functions G inspired by Behler and Parrinello85 that have been
extensively used for softness,51–60

GX i; r; dð Þ ¼
X
j2X

e
� 1
2d2 r� rijj jð Þ2 (6)

where we are probing the density of the j particles of species X
at some radius r away from our central particle i. The magni-
tude of the pairwise separation of the two particles is |rij| and
the Gaussian smearing has some standard deviation which we
fix at d = 0.1s. We use a set of 60 structure functions, 30 each
probing the density of species A and B in the radial direction
out to a distance of 3.0s from the central particle; this encap-
sulates the force cutoff of 2.5s and multiple peaks of g(r) in the
system.

Using the set of structure functions, a 60-dimensional
feature vector Fn is constructed for the particles, the elements
of which are used as training data. The training data are
divided into an equally sized set of rearranging and non-
rearranging particles, which correspond to some binary vari-
able y with values 1 and 0 respectively. We choose an indicator
function to assess whether particles in our training set are
currently undergoing a rearrangement. The dynamic quantity
phop has been extensively studied not only as a way of monitor-
ing glassy rearrangements during simulation86,87 but also as a
useful indicator function for evaluating softness.52,54,55,57,60

This function has the form,

phop i; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri tð Þ � rih iB
�� ��2D E

A
ri tð Þ � rih iA
�� ��2D E

B

r
(7)

where i is the particle index, ri(t) is its position at time t, and the
angle bracketed quantities hiA and hiB are averages over the

time intervals A and B. These intervals are determined by a
rearrangement timescale tR,

A = [t � tR/2, t] (8)

B = [t, tR/2] (9)

and correspond to the times before or after rearrangement
occurs. The value of phop for a particle tends to be very small
during times between rearrangements (caging behavior) and
peak during a rearrangement from one region to another.86,87

The value of tR is chosen to be smaller than the average
relaxation time of the tracer particles system. Particles which
are rearranging are chosen to have a phop value greater than
pcut,R = 0.25 while non-rearranging particles are those whose
value of phop remains below pcut,NR = 0.02 for longer than at
least the rearrangement timescale tR. These choices are moti-
vated further in Appendix S1.

Using the rearranging and non-rearranging training data, a
linear support vector machine (SVM) is used to construct a
hyperplane that best separates the two classes in the high-
dimensional space defined by the Fn feature vectors. The hyper-
plane, defined by,

wn�Fn � b = 0 (10)

gives us a vector of weights wn which correspond to each
structure function and b is an offset value. We then define
the softness, S,

S = wn�Fn � b (11)

which is a scalar value that contains the data captured by the
feature vector Fn for each particle in each frame. To quantify the
accuracy A of the hyperplane, we use

A ¼
ð1
mS

P SjRð ÞdS (12)

where mS is the mean of the distribution of all softness values
and P(S|R)dS is the normalized probability distribution soft-
ness for all rearranging particles. This is the fraction of all
rearranging particles’ softness values that lie above the mean of
the distribution for the entire trajectory from which the train-
ing data is drawn.

Softness is known to provide a relationship between its
conveyance of local structure and the probability of rearrange-
ment through a temperature-independent free energy of rear-
rangement. The rearrangement barrier DF(S) is taken from the
Arrhenius definition of the rearrangement probability,

PR S;Tð Þ ¼ e�
DF Sð Þ

T (13)

DF(S) = DE(S) � TS(S) (14)

where DE(S) and S(S) are structure-dependent energetic and
entropic barriers to the rearrangement process. Prior work
on softness51,52,58 has shown these two quantities to be
approximately linear in softness, though we make no prior
assumptions about their form for the gas-like tracers in our
system.
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Results
Glass transition temperature

The glass transition temperature Tg of our neat polymer is
computed from the thermal expansion coefficient defini-
tion and plotted below in Fig. 1 on the left-hand side. The
glass transition temperature is identified to be about
T�g ¼ 0:412� 0:005 in the neat system. The uncertainty and error

bars here and elsewhere in this work is defined as the standard
deviation of a measured value from three independent configura-
tions. The right-hand side of Fig. 1 shows the calculated values of
T�g for different combinations of sBB and eAB, and compares them

with that of the neat system. For all the systems considered, T�g
falls within about 4% of the value of the neat system, with the
lowest values for a given eAB occurring at the sBB = 0.5s size. For
tracer particles of size sBB = 0.5s and above, the value of T�g
increases with the strength of the cross-interaction eAB. The

changes in T�g due to the presence of tracers indicate that their

concentration in our systems is beyond the dilute limit.

Temperature-dependent diffusion

The ability of tracer particles to diffuse through the polymer
system is strongly influenced by temperature, as diffusion of
small molecules in porous media is typically an Arrhenius
process. Fig. 2(a) shows the MSD of tracers with varying size
at two temperatures. At a high temperature of T* = 0.95, over
twice T�g , the tracers all transition rapidly from the MSD p t2

ballistic regime to MSD p t1 diffusion. For a lower temperature
of T� ¼ 0:425 � T�g , there is a reduction in the mobility related

to the polymer glass transition. While the tracers of the
smallest size are readily diffusive, the larger particles see a
precipitous decrease in their mobility, with the sBB = 1.0s
tracers moving on average about 10 particle diameters over
105 time units. Tracers of the same particle size as a single
monomer bead have only a few times greater mobility than the
smallest tracers at temperatures near the glass transition
temperature. The rigid, glassy structure of the polymer at low
temperatures prevents the larger particles from being able to
move through the interstices of the glassy matrix without
overcoming exceedingly high energy barriers to rearrangement.
Changes in the interaction potential eAB between the tracers
and the surrounding polymer at a constant size sBB also impact
the MSD, as shown in Fig. 2(b). The increase in the depth of the
potential well impedes the motion of the tracers, though the
impact is minimal for the particles above Tg.

The self-diffusion coefficient D is measured using the long-
time slope of the MSD. The Einstein relation for diffusion88 in
three dimensions gives the dependence of D,

D ¼ 1

6
lim
t!1

@

@t

1

N

XN
i

ri tð Þ � ri 0ð Þj j2
* +

(15)

where the limit t - N is where MSD p t1. Values of D are
found by taking a linear fit with a slope of 1 to the data,
log MSD = b + log t, and transforming its y-intercept b back to a

Fig. 1 (a) Plot of log V* vs. T* for neat polymer system with T�g indicated.
(b) Gass transition temperatures for various combinations of sBB and eAB,
compared with that of the neat system indicated by the purple horizontal line.

Fig. 2 MSD of tracer particles with (a) varying size sBB and constant eAB = 1.0e at high and low T*, and (b) varying interaction strength eAB and constant
size sBB = 1.0s at high, moderate, and low T*. Error bars are smaller than the symbols’ size, and connecting lines are drawn to guide the eye.
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diffusion coefficient, D = eb/6, to get the result in units of s2/t. A
higher relative value of D indicates that under those conditions
one type of particle has on average greater mobility. The values
of D are shown in Fig. 3.

For the smallest of the particles, sBB = 0.3s, we see that the
relationship between D and temperature is Arrhenius, until just
above T�g , when the value of log D no longer decays linearly with

inverse temperature and the activation energy increases. The
increase in activation energy is further exacerbated by increases
in eAB. The larger sizes of particles, sBB Z 0.5s, which are closer
in size to a segment of the polymer chain exhibit a more
pronounced drop in diffusion that becomes stronger with
increasing sBB and eAB. This makes sense intuitively and is
analogous to the predicted increase in the relaxation time ta for
penetrant molecules with cross-interactions in a polymer
matrix by SCCHT, which demonstrated that either increasing
tracer size (sBB) or attraction strength (eAB) would lead to an
increase in both ta and the activation energy. The diffusion
coefficient of small penetrants is generally known to be size-
dependent to some extent, and we examine this relationship below.

For each system, the results for D may be fit to the empirical
expression of the Vogel–Fulcher–Tammann (VFT) type,

D ¼ D0e
�B

T�TVF (16)

where TVF is a divergence temperature which in all these
cases lies below Tg and B is a material property of the
system.20,89 This is consistent with our identification of a glass
transition in our polymer system and the tracer particles
experiencing a dynamic slowdown as they approach those
conditions.

Experiment and theory has demonstrated that, in polymeric
supercooled liquids, the diffusion coefficient obeys a depen-
dence such that log(1/D) B (Tg/T)l, where the exponent l is
related to system chemistry and is roughly 2 for nonpolar
liquids and in the range of 2.2–2.6 for some typical
polymers.70 SCCHT predictions for this dependence note that

in the low-size-ratio limit, the l dependence should hold, while
in the high-size-ratio limit the exponential scaling should be 3l,
which is due to differences in the local cage vs. elastic barrier
being the limiting factor. We can examine our own data in this
lens by performing a linear fit to extract the scaling exponent l

and the prefactor K in the expression log D0=Dð Þ ¼ K T�g

.
T

� �l
,

where we de-dimensionalize the diffusion coefficient by the
prefactor from (16). To do this we simply plot

log log D0=Dð Þð Þ ¼ bþ a log T�g

.
T

� �
, and find K = eb and l = a.

Linearized plots listing the fit parameters when the data above
the glass transition region (0.45 r T* r 0.75) can be found in
Fig. S2.1. The fit parameters are shown in Fig. 4.

We identify that, for our smallest particles of size sBB = 0.3s,
the scaling exponent is around l = 1.2, which increases with
tracer size to a value around l = 2 or just greater. The prefactor
K appears to be a logarithmic function of the tracer size, as has
been predicted for the large-size-ratio limit in the SCCHT.
While generally the value of the scaling exponent increases
with tracer size, there is no obvious functional form. It is
important to note that in the SCCHT model, the value of the
scaling exponent is not a fit parameter – it is taken from
experiments or theoretical predictions. While we can draw
qualitative and some quantitative comparisons to what one
might expect from theory, it is important to note that we are
limited by the dynamics in the supercooled and glassy regime
that can be reasonably observed in simulations (this is further
discussed at the end of the next section). It is important to
consider how we might quantify the barrier to the diffusion
process based on our calculated values of D, so we might
compare them with other energy scales. Recall that for an
Arrhenius process, the activation energy Ea is determined from
the slope of a line of the logarithm of the measured property
versus inverse temperature,

Ea

R
¼ � @ logD

@1=T

� �
(17)

Fig. 3 Diffusion coefficients D for tracer particles as a function of
T�g
T�

for varying sBB and eAB symbols indicate sBB, while subplots indicate eAB values of

(a) 1.0e, (b) 1.2e, and (c) 1.5e. VFT fit is shown with solid connecting lines and extrapolated with dotted lines. Arrhenius fits to high-temperature region are
shown with dashed lines. Error bars are smaller than the symbols’ size.
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which is constant across temperatures. We have identified that
diffusion is a non-Arrhenius process as we approach the glass
transition, so the activation barrier from the instantaneous
slope on an Arrhenius-like plot will be dependent on tempera-
ture. We can approximate this temperature-dependent energy
barrier by substituting (16) into (17) to get a general expression,

EVFT ¼ Bj j TVF

T
� 1

� ��2
(18)

which gives an energy barrier associated with a process that has
a VFT-like temperature dependence.

Tracer relaxation behavior

Tracer particle relaxation times in the polymer melt are calcu-
lated by evaluating the SISF for the wavevector of magnitude
k = 7.14s�1. This value of k approximately corresponds to the
first peak of the static structure factor S(k) for the system and
serves as a characteristic inverse length scale of the polymer

that is constant across all combinations of tracer sBB and eAB

values. As previously with the diffusion coefficients, Fig. 5(a)
shows the effect of varying particle size at a high and low
temperature while Fig. 5(b) shows the impact of changing the
interaction strength for a constant particle size.

As cooled towards T�g , we see the emergence of a two-step
relaxation behavior in the decay of the SISF, one of the hall-
marks of glassy dynamics.89 The shorter b-relaxation takes
place on a time scale B1t, while the longer a-relaxation decays
on longer time scales as either sBB and eAB increase or with
decreasing temperature. In the least mobile of particles, a
caging plateau like that observed in the MSD of particles near
T�g emerges. The relative kinetic arrest of the polymer at T�g
means that the motion of polymer chains restricts particles
whose sizes are comparable to one of the segments along the
chain. To estimate the relaxation time ta from the decay of Fs,
the data are fit to a sum of two Kohlrausch–Wiliams–Watts
(KWW) stretched exponential functions,90,91

Fs tð Þ ¼ 1� Að Þe� t=tbð Þbb þ Ae� t=tað Þba (19)

where the first term represents the fast (beta, b) relaxation with
its own timescale and stretching exponent, A captures the
fraction of the decay due to the slower a process, and bb and
ba are stretching/compression exponents. When a system exhi-
bits dynamic heterogeneity, typically ba o 1. We use the fitted
function to calculate an effective relaxation time teff

a , by inte-
grating the KWW function over the time domain,92

teffa ¼
ð1
0

Ae� t=tað Þba dt ¼ A
ta
ba

� �
G

1

ba

� �
(20)

where G(x) is the gamma function.
The calculated values of teff

a are plotted as functions of
inverse temperature in an Arrhenius-style manner for each
system in Fig. 6, and the stretching exponents ba in Fig. S2.2.
As we can see, relaxation times are super-Arrhenius in nature,
increasing by several orders of magnitude in the larger particles
as the glass transition is approached. Much like the behavior of

Fig. 4 Diffusion coefficient fit parameters as they vary with sBB and eAB.
Scaling coefficient l is shown in (a) with lines to guide the eye, while the
prefactor K is shown in (b) with the logarithmic fit to the data indicated.

Fig. 5 SISF of tracer particles with (a) varying size sBB and constant eAB = 1.0e at high and low T*, and (b) varying interaction strength eAB and constant size
sBB = 1.0s at high, moderate, and low T*. Connecting lines are drawn to guide the eye.
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the diffusion coefficients, this is to be expected for a system
with glassy dynamics and the measured values can be fit to a
VFT expression. As with the empirical fits to the diffusion
coefficients, a temperature-dependent activation barrier may
be found by using (16) and (18) with the replacement B -�B to
account for the inverse temperature dependence of ta com-
pared to the diffusivity.

The stretching exponents shown in Fig. S2.2 are also below a
value of 1.0 at temperatures below the onset of glassy dynamics,
indicating clearly that there is dynamical heterogeneity in the
motion of the particles. Calculated values of ba larger than unity
at high T* are due to the interference of ballistic dynamics with
the a relaxation at temperatures where there is not a pro-
nounced caging plateau.

By inspection, the relaxation times increase with particle
size and with interaction strength, meaning that smaller parti-
cles will be able to overcome the dynamic slowdown at low
temperatures, but a decrease in size may not be enough to
overcome particularly strong attraction between the chains and
the species of interest. For example, in our results, we find
some overlap in the relaxation times for the high size ratio
particles with sBB = 0.8 and 1.0s when the value of eAB is
increased. Theoretical predictions for activated penetrant
dynamics have previously identified such non-monotonic behav-
ior in the relaxation time when size ratio and interaction strength
are increased.71 We fit the ratio of the relative effective relaxation
time teff

a /t0, where t0 is the prefactor in a fit to eqn (16), to an
inverse power-law relationship with a scaling exponent l. Like the
fit for the inverse diffusion coefficients in the prior section, we use
data above the glass transition region (0.45 r T* r 0.75). Results
for the fit parameters are shown on the linearized plots in Fig.
S2.3. While the prefactor K was not found to be a logarithmic
function of tracer size for the relaxation time data as it was for the
diffusion data, the value of l increases with both sBB and eAB as
before.

The dynamic slowdown of the penetrants in the system can
be quantified relative to the dynamics of the polymer itself.

Following the same method outlined above, we calculate the
values of the polymer segmental relaxation time teff

a across
different systems and temperatures and compare the polymer
relaxation times in the presence of penetrants with results from
simulation of a neat polymer. Fig. 7 shows how the polymer

segmental relaxation time teff
a,poly evolves with T�g

.
T�, parame-

trized by either sBB or eAB of the penetrant species. It is
important to note the collapse in teff

a,poly across different systems
when temperature is scaled by T�g , showing that the segmental

dynamics are perturbed by the presence of the penetrating
species insomuch as the penetrants affect the glass transition
temperature.

The dynamical decoupling between the mobile penetrants
and the polymer matrix can be quantified by plotting the ratio

Fig. 6 Effective relaxation times teff
a for tracer molecules as a function of T�g

.
T�. Symbols indicate sBB, while subplots indicate eAB values of (a) 1.0e,

(b) 1.2e, and (c) 1.5e. VFT fit is shown with solid connecting lines and extrapolated with dotted lines. Arrhenius fits to high-temperature region are shown
with dashed lines. Error bars are smaller than the symbols’ size.

Fig. 7 Polymer segmental relaxation times teff
a plotted against T�g

.
T�.

Panel (a) shows the effect of changing sBB for eAB = 1.0e while (b) shows the
effect of changing eAB for sBB = 1.0s. Stars indicate the segmental
relaxation time in a neat polymer system. Note the collapse at constant
temperature relative to T�g .
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of the relaxation times of the penetrants to the polymer mono-
mers. A ratio of the penetrant-to-segmental relaxation time-
scales on the order of 1 would imply that the penetrant
dynamics track the polymer segmental dynamics, while a
smaller value indicates that the tracers are able to resist the
slowdown. From the ratios plotted in Fig. 8, we find that tracer
dynamics become increasingly decoupled from the matrix as
T�g is approached from above. Increasing the interaction

strength eAB indeed increases the ratio, confirming our prior
observation that an increase in the interaction strength leads to
reduced mobility of penetrants. For the largest penetrants,
increasing the interaction strength above that of the polymer–
polymer interaction (eAB 4 1e) slows their relaxation times
beyond those of the polymer segments. This is consistent with
results from a theoretical approach in SCCHT tailored to
polymer–penetrant interactions in a homopolymer liquid.71

That work found a decoupling of the relaxation times with
increasing effective packing fraction feff of polymer in the
system, which approaches a kinetic glass transition in a man-
ner equivalent to our temperature approach to T�g , and that

increasing the strength of the interaction at a given value of
feff (or equivalently T*) reduces the rate of decoupling. In the
case of theoretical systems where penetrant–polymer interac-
tions were not considered, packing fractions denser than a
glass transition of vitrification point fglass (or equivalently,
temperatures below T�g ) are needed to observe this dynamic

decoupling.
The SCCHT approach also predicts that there is a decrease

in the decoupling at equivalent packing fractions with increas-
ing size, meaning that the ratio of relaxation times is larger.
Interestingly, our work finds that tracers of size sBB = 0.8 and
1.0s show no dynamic decoupling through their approach to T�g
for the time scales accessible in our simulations. Though the
particles with the same size as a Kuhn segment modeled
using SCCHT had a slight increase in the calculated valued of
teff
a,tracer/t

eff
a,polymer with increasing feff, they saw a sharp decrease

in the region where feff reflects a glass transition or vitrification

of the system.71 One possible explanation for this is that the
systems modeled in this work feature a high enough concen-
tration of penetrants that the dilute limit predictions from
SCCHT begin to break down; we find that for all particle sizes,
the glass transition temperature T�g is perturbed from the neat

polymer system, which necessitates being outside the dilute
limit. We have, however, identified that the relaxation time of
the polymer is roughly constant across systems at the same

value of T�g

.
T�, meaning that relative mobility should be

comparable across systems at the same relative temperature.
It is also relevant to note that in the SCHHT theory, the
interactions between penetrants and polymer beads have a
range of only 0.15 times a segment diameter, meaning that
the contacts must be very close for them to interact; in this
work, the Lennard-Jones potential has an attractive radius 2.5s,
over 16 times that employed in SCCHT. That work found that
increasing the standard range of attractions led to an increase
in relaxation time, particularly at high penetrant–polymer
interaction strengths.71 Finally, it is known that the accessi-
bility of glassy temperature regimes in equilibrium simulations
is subject to greater limitations than in experiments or theory
because of the long timescales in real systems and the difficulty
in gathering adequate statistics. Simulations on a longer time-
scale (comparable to that of experiments) that were able to
reach an equilibrium closer to or just below the glass transition
temperature may demonstrate the beginnings of dynamic
decoupling for our largest penetrant particles through the
polymer matrix. This would be similar to the predictions in
the theoretical approach with the feff E 0.64 reported
previously.71 These known limitations in molecular dynamics
studies of glassy systems mean that an alternate approach
would be warranted in future work.

To directly compare the dynamics in the systems we have
studied and to draw analogy to existing experimental and
theoretical work on small particle transport, we can also plot
the decoupling factor for the tracer molecules, or the product of
the diffusion coefficient D and the effective alpha-relaxation

Fig. 8 Ratio of tracer-to-polymer relaxation times fitted from eqn (20) plotted against T�g

.
T�. Symbols indicate sBB, while subplots indicate eAB values of

(a) 1.0e, (b) 1.2e, and (c) 1.5e.
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time teff
a . For systems where there is dynamic decoupling

between penetrant and matrix, as demonstrated in Fig. 8, this
can be plotted as the product of the penetrant D and the
polymer teff

a . Plots of these quantities similar to Fig. 8 are
included in Appendix 2 as Fig. S2.4 and S2.5. The decoupling
factor remains less than 1 for all cases studied in the tracer–
tracer definition, while for the tracer–polymer definition it
demonstrates clear decoupling, Dt c 1, for large particle sizes
as is also seem in Fig. 8.

Softness and barriers to rearrangement

Using the training parameters described in the prior section
(pcut,R = 0.25, pcut_NR = 0.02, tR = 10t, and tNR = 10t), and a set of
M = 60 structure functions surrounding each tracer particle, we
trained a hyperplane to describe the softness of our tracers for
each of the four values of sBB at a fixed interaction strength of
eAB = 1.0e. We trained our systems at different temperatures to
ensure that enough non-rearranging (in the case of smaller
particles) or rearranging (in the case of larger particles) could
be identified for the set. The training temperatures and the
calculated accuracies using eqn (12) are shown in Table 1. A
sensitivity analysis of prediction accuracy and the size of the
training set versus the choice of pcut,R and pcut,NR for each value
of sBB with eAB = 1.0e was performed and results are shown in
Appendix 3. The non-rearrangement threshold of pcut,NR = 0.02
generally corresponds to the value below which there will be
less than several thousand examples of both rearranging and
non-rearranging particles in all cases. The rearrangement
threshold of pcut,R = 0.25 ensures that we are probing displace-
ments that are at least size 0.5s. Choosing a value below this
would increase the size of the training set but not necessarily
the accuracy of the classification.

Overall, the accuracy of rearrangement prediction from
softness with this set of training parameters and structure
functions decreases with increasing particle size. Typical
accuracies reported in other computational studies vary from
70% to 90%.58,60 While tuning these parameters further may be
able to improve the prediction accuracy for a specific set of
interactions, since we are interested in trying to directly com-
pare the barriers derived from softness across several systems,
it is important that our definition of what a rearrangement is
consistent across systems. A constant cutoff value pcut,R ensures
that we are probing rearrangements of at least 0.5s in all cases.
The influence of the choice of pcut on our results is discussed
further at the end of this section.

Following the training procedure, we take the hyperplane
constructed for some sBB and eAB = 1.0 and evaluate S for all our
particles, using this particle-size hyperplane for each inter-
action strength to directly compare the values for similar
systems. For each system replica and at each T*, we build two
histograms of softness values: one for all particles, and one for
rearranging particles, both with a bin size of 0.1 softness units.
For a given pair of histograms, the value of the rearrangement
probability PR(S) is calculated as the ratio of the two bins with
the same softness. As an example, Fig. 9(a) shows the overlaid
softness histograms for three independent replicas of the
sBB = 0.5s and eAB = 1.0e system at its training temperature of
T* = 0.375. The dynamical decomposition of the same system
from which the softness dependent energy and entropy barriers
are extracted is illustrated in Fig. 9(b). Equivalent plots to
Fig. 9(b) for other combinations of sBB and eAB may be found
in Appendix 4.

From the histograms, we obtain a normalized probability
distribution function (PDF) with some mean m and standard
deviation S. The values of mS and mR, with subscripts S and R
referring to the distribution of all softness values and those of
rearranging particles respectively, are plotted in Fig. 10. It is
interesting to note that, for the plots of m in the cases of
sBB = 0.8s and sBB = 1.0s, the slope of S(T*) of all particles
has a change in value near T�g � 0:425. In contrast, the smaller

particles for which mobility is less impaired below T�g , the

temperature dependence remains linear with no change in
slope. This gives insight into how smaller particles experience
the effects of the glass transition occurring in the medium
around them, or rather, how they do not.

It is important to understand the difference between the
softness distributions of the rearranging and of all particles.
When local structure plays a greater role in determining the
rearranging behavior, the distributions will become less similar
than at high temperatures. To quantify this, we define a signal-
to-noise-like quantity SNR,

SNR ¼ mR � mffiffiffiffiffiffiffiffiffiffiffiffiffi
sR � s
p (21)

where the subscript R indicates that the fit parameters are for
the rearranging particles. The difference mR � m is effectively
always positive by construction (rearranging particles have
higher S), and the difference between sR and s is typically small
but nonzero so we take the geometric mean of the two to ensure
that effects of both distribution widths are approximately
captured. The value of SNR will tend toward zero where the
distributions are very similar and increase as they separate
from one another (e.g. the softness and surrounding structure
of the rearranging particles are quite different), and a positive
SNR is approximately the number of standard deviations separ-
ating the rearranging and non-rearranging particles. The tem-
perature dependence for SNR is shown in Fig. 11; for each
penetrant size, SNR increases as T* is reduced, though the
increase begins at lower temperatures for the smaller pene-
trants, which tend to be less sensitive to the glassy nature of the
surrounding matrix. The data for T* o 0.4 in the sBB = 0.8 and

Table 1 Training temperatures and resulting accuracies for varying sBB

systems at eAB = 1.0

System (sBB) T�training Accuracy Að Þ

0.3s 0.300 80.68%
0.5s 0.375 77.25%
0.8s 0.450 74.63%
1.0s 0.450 66.56%
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1.0s case are noisy due to the difficulty in sampling rearranging
particles below T�g .

Next, to determine the softness-dependent barriers, we per-
form an Arrhenius decomposition as shown in Fig. 9(b)
above to extract the S-dependent functions DE(S) and S(S).
We fit the Arrhenius expression to the PR(S) data in the range
T�g 	 T� 	 0:6 to ensure that the system is in equilibrium with

the imposed temperature and that we are below the onset
temperature of glassy dynamics. We then directly compare
the values of absolute softness across systems with the same
sBB and varying eAB because the same hyperplane was used to
assess the local structure. This allows us to visualize the relative
impact of tuning the interaction strength on DE(S) and S(S).
Results are shown in Fig. 12.

It becomes challenging to compare the energy barriers to
rearrangement between systems, because they have been
trained on different hyperplanes and therefore have different
weights associated with the structure functions of the particle.
However, we have shown previously that a rearrangement
threshold in phop can translate across systems and corresponds
to motion of the about the same absolute distance; definition-
ally, our ‘‘rearranging’’ particles are all traveling at least some
escape distance (in this case, 0.5s) at the time of observation.
By taking advantage of this quality of phop, and with our
knowledge of the distribution of softness values for rearrang-
ing particles, we can explore how the barriers to this rearran-
gement change as a function of temperature for the different
systems.

Fig. 9 Softness and rearrangement data for the sBB = 0.5s and eAB = 1.0e system. (a) Normalized softness distribution histograms for the training data at
the training temperature of T* = 0.375. (b) Dynamical decomposition of softness for the system used to derive the energetic and entropic barriers to
rearrangement.

Fig. 10 Mean values m of average softness distributions for (a)–(d) all particles and (e)–(h) rearranging particles as functions of temperature. Error bars
indicate the standard deviation s of each average distribution.
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We use the fits to our barrier functions and integrate the
product of DE(S) or S(S) with the normalized probability
distribution function of softness values for the rearranging
particles at some temperature T, P(S|R,T)dS. The three quan-
tities of interest with units of energy are then,

DE T jRð Þh i ¼
ð1
�1

DE Sð ÞP SjR;Tð ÞdS (22)

T S T jRð Þh i ¼ T

ð1
�1

S Sð ÞP SjR;Tð ÞdS (23)

hDF(T|R)i = hDE(T|R)i � ThS(T|R)i (24)

which effectively yields the average energetic, entropic, and free
energy barriers of the rearranging particles. Note that this is
distinct from the average over all particles, since this analysis
will necessarily neglect particles that have not yet rearranged
and may have larger barriers.

With the energy barriers evaluated using eqn (22), we can
also compare these values with those energy barriers estimated

using the diffusion coefficient and relaxation times measured,
allowing us to draw a connection between those measures of
mobility and the hopping mechanism that gives us softness.
These results are shown in Fig. 13. The energy barrier to
hopping extracted from softness is of a similar magnitude to
the barriers assumed from D and teff

a at temperatures well above
T�g ; however, as we approach the glass transition of the system,

the energy barriers from D and teff
a increase rapidly, as opposed

to that from softness, which increases much more slowly. The
difference in the increase of the activation energy of on cooling
as extracted from D and teff

a is expected from the well-known
breakdown of the Stokes–Einstein relationship.93 In all cases,
for each mode of mobility considered, the extracted energy
barrier increases with both sBB and eAB at a constant tempera-
ture relative to T�g , and the barriers estimated from the alpha-

relaxation process are higher than those from diffusion.
The increase in the barrier height from softness with

increasing eAB is a valuable finding, as it is an extension of
the trends observed in the barriers from diffusion and relaxa-
tion. Directly comparing the magnitudes of energy barriers
derived from softness which were calculated from different
hyperplanes (i.e. for the different particle size systems) is
tempting but may be an inaccurate choice. Because the weights
associated with the individual structure functions in the con-
struction of softness are different, its physical meaning is not
the same. Our proposed transformation into temperature units
allows some comparison with other temperature-based trends
but does not eliminate this factor. It is worthwhile, however, to
examine how the barriers within a family of particle sizes
change relative to one another.

Notably, the softness-dependent barriers to rearrangement
show a temperature dependence that decreases with the pene-
trant size. For particles with a high size ratio, the barrier
predicted based on softness is nearly independent of tempera-
ture. This indicates that the local structure and variations in it
play less of a role in the transport of these penetrants and may
point to other barriers to the hopping process that are not

Fig. 12 Energetic and entropic rearrangement barriers as a function of S. Lines indicate a quadratic best fit.

Fig. 11 Signal-to-noise ratios of softness distributions for rearrangement
of particles as a function of temperature. Lines are drawn to guide the eye.
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captured by softness. We can again draw an analogue to
SCCHT, where it is demonstrated that local caging effects and
non-local collective elasticity both govern transport in the high-
size-ratio regime, but that the collective effects are negligible
for small particles.69,70 For our systems, this may be one
potential reason why softness does not fully capture the barrier
to rearrangement in larger particles, because the softness
analysis does not consider any contributions due to elasticity.
One might expect that the effects of elasticity would increase
the energy barrier associated with particles of a given softness,
as local hopping events lead to the nucleation of cage-
expansion effects in the SCCHT framework. Upon cooling the
matrix becomes more rigid, and a barrier that takes both the
local and nonlocal parts into account should then lead to super-
Arrhenius growth of the energy barrier. For the time scales
where we can reasonably measure the mobility of the pene-
trants, we do not observe any growth of energy barriers asso-
ciated with a particular softness value, and the origins of the
differences in the barriers estimated by softness and those from
direct mobility measures remain an open question.

Previous work on softness found that the choice of a
different rearrangement threshold changed the quantitative
measure of the barriers to rearrangement but did not affect
the qualitative result.52 It is therefore relevant to explore how a
change in the rearrangement definition might impact the
results of our analysis. We find that changing the value of pcut

affects the results of the analysis in this section quantitatively,
but not qualitatively. A lower threshold above which particles
are rearranging means that the average barrier to reach that
rearrangement threshold is lower, thus the energetic barrier
and entropic barrier to rearrangement as a function of softness
are shifted down. This is analogous to how relaxation times
would be shorter if quantified using a self-intermediate scatter-
ing function evaluated over a longer wavevector k (i.e., a shorter
length scale of relaxation). To give an example, when the value
of the threshold is cut in half to pcut = 0.125, we are now
probing rearrangements of at least an escape distance of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:125s2
p

� 0:35s. Retraining a hyperplane to seek rearrange-
ments at this value of pcut yields a slightly lower accuracy as
there are far greater distinct examples of rearranging particles.
When the analysis of this section is repeated, we find the same
qualitative result: the average barrier still decreases with
increasing softness, and when the transformation to tempera-
ture is performed, we see the same trend observed in Fig. 13 for
the softness barriers. Results of this comparison for varying sBB

and a constant eAB = 1.0e using pcut = 0.125 are shown in
Appendix 5.

Discussion

In this work, we took the well-known model of a bead-spring
polymer and used molecular dynamics to simulate the trans-
port of small particles in a manner analogous to gas molecules
moving through a glassy polymer. The particles’ relative size to
and interaction strength with the surrounding polymer was
varied to understand how the dynamics change in response to
more favorable interactions and less steric hindrance with the
surrounding chains. Super-Arrhenius behavior in the self-
diffusion coefficients and effective relaxation time for the
particles was observed, and we were able to fit these measured
quantities to an inverse-power-law relationship previously
described in theory on activated penetrant dynamics. The pre-
exponential factors for the inverse-power-law relationship of
the diffusion coefficients was found to be a logarithmic func-
tion of the penetrant size, in accordance with SCCHT predic-
tions for the large-size-limit ratio of activated penetrant
transport. Scaling of the power-law exponent was consistent
with the low-size-limit regime prediction, where the inverse
diffusion coefficient scales with (Tg/T)l and the exponent is on
the order of l = 2. While the discrepancy in penetrant size
regimes suggests that the systems we have modeled here lie in
the intermediate size region, the trends observed in these fits
are qualitatively consistent with the predictions from theory

Fig. 13 Energetic barriers to particle mobility plotted as a function of T�g

.
T� extracted from diffusion, relaxation, and softness. Panels (a)–(d) indicate

different penetrant sizes sBB, noted on the lower right of the panels.
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and with the kind of scaling observed in experiments.70 We
observed a relationship between the penetrant-to-matrix relaxa-
tion time ratio and the inverse temperature that is reminiscent
of predictions from SSCHT in a homopolymer liquid indicating
a dynamical decoupling in regions near the glass transition.71

To further compare the limited data we have in the super-
cooled region with theoretical predictions, it is relevant to
consider fitting the logarithm of both the inverse penetrant
diffusion coefficients and the penetrant-to-polymer relaxation
time ratios to the aforementioned power-law scaling. Shifting
the window of temperature data that we fit to the inverse-
power-law relationship from the 0.45 o T* o 0.75 previously
used in the text to 0.40 o T* o 0.55, closer to and just at the
point of glass transition, we can find the relevant values of l
and K and plot them in Fig. S2.6 for the diffusion coefficients
and Fig. S2.7 for the relaxation time ratios. The values of the
scaling exponent l increase by about 50% in the case of
diffusion of the largest-size penetrants with sBB = 1.0s, increas-
ing from a range of 2.0 o l o 2.2 to a range of 2.8 o l o 3.1.
While this is not exactly the 3l scaling of the theoretical
prediction in the high-size-ratio limit, the increase demon-
strates that close to the supercooled glassy regime the dynamics
we observe in simulations follow trends not unlike the theoretical
predictions. In the case of the relaxation time ratios, we see a
similar phenomenon where the scaling exponents in the high-size-
ratio limit increase from a range of 2.2 o l o 2.3 to a range of
3.3 o l o 3.5. Further simulations sampling a broader range of
size ratios and at lower particle concentrations to more accurately
study a dilute limit, as well as experimental studies in the deeply
supercooled and glassy regimes, are warranted to make additional
quantitative comparison with established theory.

Using the framework of softness, previously applied to other
glassy systems to study dynamics, we investigated the relation-
ship between the local structure around the tracer particles in a
glassy matrix and their mobility, extracting softness-dependent
energetic and entropic barriers to the rearrangement process.
These barriers, known to be approximately linear in systems
where all particles are similar in size, become nonlinear as the
particle size of the tracer shrinks, and the barriers increase in
magnitude with the increasing depth of the Lennard-Jones
potential well between tracer and polymer. For systems where
we delineate between rearranging and non-rearranging pene-
trants with the same set of local structure functions and training
parameters, the accuracy of the hyperplane training decreases
with increasing penetrant size. Typical accuracies reported in
other simulations are on the order of 70%–90% for either
homopolymers56–59 or Kob–Anderson glass formers52,54,60 where
the binary species have similar dynamics. The decrease in the
ability of softness, a proxy for the local structure, to accurately
predict rearrangements at the larger penetrant-to-matrix size
ratios gives rise to an interesting parallel with theory. For high-
size limit penetrants it is known that local cage barriers (pre-
sumably captured by softness) and collective matrix elasticity (not
captured by softness) both play a role in determining mobility,
whereas in low-size-limit systems the collective elasticity becomes
significantly less important.69,70 The increased role of collective

elasticity in determining mobility in the high-size limit may
explain why the changes in mobility are not adequately captured
by softness, which is a local measure.

Comparison between systems where softness is trained with
different hyperplanes has remained a challenge in drawing
similarities between the machine-learned quantities and more
well-understood, experimentally-accessible properties.94 We
propose a simple change-of-variables method to transform
the softness-dependent barriers to a temperature dependence
by integrating over the distribution of softness values at each
temperature, allowing for an examination of the barriers rela-
tive to the glass transition. We find that, consistent with other
measures examined in this work, the energetic barrier to
rearrangement for particles of a given size sBB increases with
polymer–penetrant interaction strength eAB. For the different
tracer sizes studied, each shows that the barrier height
increases as the glass transition temperature is approached,
with the rate of increase slowing as opposed to the super-
Arrhenius behavior we have seen in the barriers predicted from
diffusion coefficients and relaxation times. As we have sug-
gested above, this somewhat unspectacular finding may be
indicative of the phenomenon predicted by SCCHT which notes
that local caging effects play the dominant role in determining
mobility for small penetrants while large penetrants are also
affected by collective effects in the matrix. To further explore the
phenomena discussed here, future work should explore a greater
array of particle sizes and interaction strengths to identify
transitions between the low- and high-size-ratio regimes of
penetrant behavior to enable a deeper comparison with theory.

Finally, computational methods we have introduced here
may be used to extend softness methods to more complex
systems which it has not previously been applied to. For
purposes of exploring model gas separation systems, limiting
use to the low-size-ratio regimes would likely ensure that soft-
ness can accurately capture rearrangements in systems with
penetrants and a matrix that have decoupled dynamics. One
possible study could involve multicomponent diffusion in a
polymer matrix with two penetrant species, examining the
effects of changing both the penetrant–polymer interactions
and the penetrant–penetrant interaction. This could provide
some additional insights into the fundamental physics of
competitive penetrant transport in glassy systems and create
a direct comparison to the real-world application of the
membrane-based separation of gas mixtures.
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10.1039/d5sm00837a.

Data for this article, including volume vs. temperature data
from cooling simulations, mean-squared displacement, self-
intermediate scattering function, and softness histogram data,
are available at a GitHub repository hosted at https://github.
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