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Dynamics of phase separation in non-local
elastic networks

Oliver W. Paulin, Yicheng Qiang and David Zwicker *

Phase separation of a liquid mixture embedded within an elastic network is relevant to a wide range of

natural and industrial systems, including biomolecular condensates interacting with the cytoskeleton,

structural colouring in bird feathers, and gas bubbles forming within soft sediments. Recent experiments

in synthetic polymer gels have demonstrated that when the size of phase-separated domains is

comparable to the characteristic pore size of the network, a patterned phase with a well-defined length

scale may emerge. Theoretical works based on an equilibrium approach have attributed this pattern

formation to non-local elastic effects arising from heterogeneity of the underlying network. Here, we

extend these ideas by developing a dynamic theory in which phase separation is coupled to non-local

elasticity via the framework of large-deformation poroelasticity. We study our model via both linear

stability analysis and numerical simulation, identifying the parameter space in which phase separation

occurs, and investigating the impact of different elasticity models. We find that although local elasticity

can inhibit phase separation and affect domain count, it is unable to completely suppress coarsening. In

contrast, non-local elasticity arrests coarsening to form patterned domains with a well-defined length

scale that decreases with increasing stiffness. Our modelling framework thus paves the way for

quantitative comparisons between simulations and experiments, for example by considering a strain-

stiffening network rheology.

1 Introduction

The spontaneous phase separation of two immiscible fluids
from a homogeneous mixture is a familiar everyday phenomenon.
Fluid–fluid phase separation of a mixture confined within the pore
space of a deformable solid network is also widespread throughout
natural and industrial settings. Natural examples include sub-
cellular condensates interacting with the cytoskeleton,1–3 and the
formation of gas bubbles within soft geophysical materials such as
seabed sediments and peatlands.4–6 In materials science, phase
separation in an elastic network can be utilised for the construc-
tion of novel micro-structured7,8 and stimulus-responsive9,10 mate-
rials. Finally, the texture and mechanical properties of many food
products, such as chocolate and bread, depend sensitively on the
size and distribution of small gas bubbles within the product,11,12

which are in turn determined by the interactions of these bubbles
with the surrounding solid material as they are formed.

Historical research into elastically mediated phase separa-
tion originated in the study of spinodal decomposition in
hydrogel systems [e.g. ref. 13]. Recently, significant interest in
this field has been stimulated by experiments involving poly-
mer gels saturated with an oil–oil mixture that phase separates

into micron-scale droplets which exclude the elastic polymer
network.8,14–16 It is now widely recognised that the additional
energetic cost of network deformations induced by phase
separation can inhibit the onset of phase separation, limit
the size of phase-separated domains, and control domain
morphology. For gels in which there exists a gradient in
material stiffness, phase separation will occur preferentially
in softer regions of the gel. This result can lead to an ‘elastic
ripening’ effect, in which droplets in softer regions grow at
the expense of droplets in stiffer regions.15,17,18 Further works
have also studied the role of kinetic effects18 or a strain-
stiffening network rheology19,20 in droplet size control, as
well as investigating the impact of network damage5,21 and
wetting effects.5,22,23

Recent experiments in the same system have also demon-
strated the formation of persistent patterned phases that do not
coarsen over time (Fig. 1), and that can form either droplet-like
or bicontinuous morphologies.8 It has been hypothesised that
these phases are equilibrium states that can form via a con-
tinuous phase transition from a homogeneous gel.8 Recent
theoretical work has suggested that the observed size selection
results from a competition between two different length scales:
the elasto-capillary length; and a non-locality length arising
from heterogeneities in the network mesh structure that man-
ifest in a non-local elastic response.24 Multi-dimensional
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extensions to this approach have studied the role of non-local
elastic effects in controlling domain morphology.25,26 The very
recent work of Oudich et al.22 also explores dynamic simulations of
this phenomenon, in a partially linearised elastic framework. First
steps towards quantitive comparisons between experiments and
theory have been formulated by considering a strain-stiffening
rheology for the elastic network.27

Here, we extend the equilibrium theory of Qiang et al.26 to
study the dynamics of phase separation in a non-local elastic
network, taking into account finite (large) deformations of the
mesh. Network deformation within swollen regions is typically
extremely large, and so a theory that takes into account large
deformations is needed. Theories of phase separation in poly-
mer gels that account for finite elastic deformations have
previously been developed for studying the volume phase
transition and spinodal decomposition in hydrogels.13,28–33

Our modelling approach represents an extension to these works
that also incorporates non-local elastic effects. In this manu-
script, we first layout our modelling framework (Section 2),
deriving a one-dimensional (1D) model for simplicity. In Sec-
tion 3, we then conduct a linear stability analysis of our model,
exploring the resulting dispersion relation and constructing
phase diagrams. Next, we use our model to conduct numerical
simulations of spontaneous phase separation, both for local
(Section 4) and non-local (Section 5) elastic responses. Finally,
in Section 6 we discuss the implications of our work and
connections to other similar studies.

2 Model development

To construct our model, we consider a two-component mixture
comprising an elastic network and a viscous solvent in 1D.
In order to describe the evolution of this mixture within the
framework of large-deformation poroelasticity [e.g. ref. 30
and 34], we begin by defining kinematic relations between an
Eulerian lab frame and a Lagrangian reference frame that is
attached to the elastic network. Next, we prescribe a free energy

functional that describes the energetic properties of the mix-
ture, before constructing transport equations for the mixture
via mass balance of each component. Finally, we derive a
constitutive law for the elastic stress in differential form that
takes into account non-local elastic interactions.

2.1 Kinematics

We develop our 1D model in the lab frame, with coordinates
denoted by x. Coordinates in the reference frame are denoted
by X. Transformations between the two coordinate systems are
governed by the deformation J = qx/qX, which quantifies the
ratio of volumes in the lab and reference coordinate systems.
Note that, in 1D, deformation is linked to the Eulerian dis-
placement of the network u(x) = x � X(x) via the relation J =
(1 � qu/qx)�1. To characterise mixture composition, we assume
that molecular volumes are constant, and hence work in terms
of relative volume fractions of each component. We then
define the Eulerian volume fraction of the network and solvent
components as fn(x) and fs(x), respectively, leading to the no-
void condition fn + fs = 1. Correspondingly, the network and
solvent together form an incompressible mixture, and only
one of fn and fs is required to fully determine the composition
of this mixture. Finally, we denote the volume fraction of
a homogeneous, undeformed network (J = 1) by the relaxed
network fraction fn(x) = f0

n. Network fraction can thus be
linked to deformation via J(x) = f0

n/fn(x).

2.2 Free energy

To describe the energetic interactions of the network–solvent
mixture, we follow Qiang et al.26 and assume that the total free
energy C can be written as a sum of a local part and a non-
local part,

C fn; J½ � ¼
ð
f0 fn; @xfnð Þdxþ

ð
fnl Jð ÞdX ; (1)

where we define the local free energy density f0 in the lab frame,
and the non-local energy density fnl in the reference frame.
We take f0 to be a symmetric Flory–Huggins energy of the form

f0 ¼
kBT

n

"
fn logfn þ 1� fnð Þ log 1� fnð Þ

þ wfn 1� fnð Þ þ k
@fn

@x

� �2
#
:

(2)

Here, kB is the Boltzmann constant, T is temperature, n is the
molecular size, w is the Flory interaction parameter, and k is
an interfacial coefficient. Note also that the integral is taken
over the one-dimensional volume element dx defined in the
lab frame.

For the elastic contribution to the energy, we assume that
the network has a compressible Neo-Hookean rheology. In 1D,
deformation is described solely by the scalar quantity J, and
hence the elastic energy can be written exclusively in terms of
this variable. For a local elastic model in 1D, the Neo-Hookean

Fig. 1 Liquid–liquid phase separation within an elastic network (gel) can
result in one of two distinct phenomenologies, depending on the type of
elastic response. For a network whose response to deformation is well
approximated by local elasticity, thermodynamic coarsening drives the
system towards an equilibrium state consisting of a single phase-separated
domain. In contrast, a non-local elastic response (over length c) inhibits
coarsening, leading to selection of a finite pattern length scale.
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rheology of the network is thus quantified by a hyperelastic
strain-energy density

Wel ¼
G

2
J2 � 1� 2 ln J
� �

þ K

2
J � 1ð Þ2; (3)

where G and K are the respective shear and bulk moduli of the
network. We capture non-local elastic effects by taking the non-
local energy to be a convolution of this energy with an isotropic
kernel gx(X) in the reference frame. The non-local free energy
density is then

fnl ¼
G

2
J

ð
J 0gx X 0 � Xð ÞdX 0 � 1� 2 ln ~J

� �

þ K

2
ðJ � 1Þ

ð
ðJ 0 � 1Þgx X 0 � Xð ÞdX 0;

(4)

where ~J ¼
Ð
J 0gx X 0 � Xð ÞdX 0, J0 is the value of J evaluated at X0,

and dX = dx/J is the one-dimensional volume element in the
reference frame. We use this expression for the non-local
contribution to the total energy to find a non-local constitutive
law for the elastic stress in Section 2.4 below.

2.3 Transport equations

We now derive transport equations describing the evolution of
mixture composition. To begin, we consider conservation of
mass of the network, writing the 1D continuity equation in the
Eulerian frame as

@fn

@t
þ @

@x
fnvnð Þ ¼ 0; (5)

where vn = du/dt is the Eulerian velocity of the network. Note
that we can use the kinematic relation J = (1 � qu/qx)�1 to
rewrite the total derivative du/dt = qu/qt + vnqu/qx in terms of
deformation J, resulting in vn = Jqu/qt. Similarly, conservation of
mass for the solvent implies that

@fs

@t
þ @

@x
fsvsð Þ ¼ 0; (6)

where vs is the Eulerian solvent velocity. Using fn + fs = 1, and
summing eqn (5) and (6) then gives qq/qx = 0, where
q = fnvn + fsvs is the total mixture flux. In our 1D formulation,
q is then constant, and is determined by the boundary condi-
tions. Defining the flux of solvent relative to the network as
js = fs(vs � vn), we can rewrite eqn (5) in terms of q and js as

@fn

@t
þ @

@x
fn q� jsð Þ½ � ¼ 0: (7)

Given an appropriate expression for the solvent flux js, eqn (7) then
provides a complete description of the dynamics of the mixture.
Note that by focussing on a system with periodic boundary
conditions, we can set q to zero without loss of generality.

To find an expression for js, we assume that fluxes are
driven by gradients in both chemical potential m and elastic
stress s,13,35

js ¼ �L
@m
@x
þ n
fn

@s
@x

� �
; (8)

where L(fn) is the solvent mobility, and the molecular size n
connects the relative contributions from chemical and
mechanical forcings. The exchange chemical potential m is
calculated as the variational derivative of the free energy with
respect to composition such that m = �ndC/dfn. For the free
energy defined in eqn (1), this gives

m ¼ kBT log 1� fnð Þ � logfn � w 1� 2fnð Þ þ k
@2fn

@x2

� �
: (9)

Similarly, an expression for the elastic stress s in terms of
deformation J is found by taking the derivative of energy with
respect to deformation, as discussed in detail below. Since J
can be written as an explicit function of fn, it is also possible
to reformulate the total free energy of the network–solvent
mixture as a functional of just fn, such that ~C = ~C[fn]. In
this case, we define an augmented chemical potential
~m = �nd ~C/dfn that also includes non-local elastic contributions.
The total solvent flux is then given by js = �Lq~m/qx. Both this
alternative formulation and that presented above are equivalent,
leading to identical expressions for the total solvent flux.

2.4 Non-local stress law

To quantify the elastic stress in the Eulerian frame, we work
with the Cauchy stress tensor, defined in a one dimensional
system as

s ¼ dC
dJ
: (10)

For the non-local elastic energy defined in eqn (4), we thus
find that

s ¼ G

ð
J 0gxdX

0 � 1

~J

� �
þ K

ð
ðJ 0 � 1ÞgxdX 0; (11)

where we recall that ~J ¼
Ð
J 0gxdX . For a given convolution

kernel, it may be possible to write an equation for this non-
local stress in differential form. To do this, it is convenient to
first split the elastic stress into two parts, such that s = s0 � s*,
where s0 ¼

Ð
GJ 0 þ KðJ 0 � 1Þ½ �gxdX 0 and s* = G/J̃. We then

choose the convolution kernel gx = exp(�|X|/x)/2x, where x is
the non-locality scale. This choice of kernel provides a mathema-
tically simple representation of non-local effects, in which non-
local stresses spread over a single length scale x. The precise
microscopic interpretation of this non-local length scale is still
unclear, but has been previously attributed to the scale of network
heterogeneities24 or the size of network elements between adja-
cent crosslinks.25 Using this kernel, we then find that

1� x2
@2

@X2

� �
s0 ¼ GJ þ KðJ � 1Þ (12)

and

1� x2
@2

@X2

� �
1

s�
¼ J

G
; (13)

where q/qX = Jq/qx is the spatial derivative with respect to
coordinates in the reference state, and we recall that J is linked
to network volume fraction via the kinematic relation J = f0

n/fn.
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Note that in the limit of zero non-locality length x = 0, we recover
the local Neo-Hookean stress s = G( J � 1/J) + K( J � 1).
A detailed derivation of these equations is provided in Appendix A.

2.5 Model summary and non-dimensionalisation

Eqn (7)–(9), along with eqn (12) and (13), provide a complete
set of coupled partial differential equations that describe the
evolution of the network–solvent mixture. Non-dimension-
alising our model by length scale

ffiffiffi
k
p

, time scale kn/LkBT, and
stress scale kBT/n motivates introducing the dimensionless
variables G ¼ Gn=kBT , K ¼ Kn=kBT , and c2 = x2/k. Here, G
and K are the rescaled shear and bulk moduli of the elastic
network, respectively, and c quantifies the size of the non-
locality length relative to the interfacial width

ffiffiffi
k
p

. Choosing a
solvent mobility of the form L(fn) = L(1 � fn)fn, we now
analyse our model via both linear stability analysis (Section 3)
and numerical simulations (Sections 4 and 5). To carry out
numerical simulations, we discretise in space on a uniform
grid, and approximate spatial derivatives with a centralised
finite difference scheme. We then solve for fn, s0 and s* at each
time step with MATLAB’s in-built ode solver ode15s.

3 Linear stability analysis

To gain insight into the parameters that control the onset of
phase separation, we now conduct a linear stability analysis
of our model. We linearise our system about a base state
corresponding to a uniformly swollen network with volume

fraction �fn. The corresponding base stress state is then

�s ¼ G �J � 1= �Jð Þ þ K �J � 1ð Þ, where %J = f0
n/ �fn. Setting fn ¼

�fn 1þ df̂n

	 

and s = �s(1 + dŝ), where d { 1, we arrive at the

following linearised equation for the evolution of perturbations
in network volume fraction

@f̂n

@t
¼ � 1� �fn

� �
�fn Df

@2

@x2
þ @4

@x4

� �
f̂n þ

@2ŝ
@x2

� �
; (14)

where Df = 2w� �fn
�1� (1� �fn)�1 is the linearised driving force

of phase separation. Similarly, we find the linearised stress
equation

1� ‘f0
n

�fn

� �2
@2

@x2

" #
ŝ ¼ G f0

n

�fn

þ
�fn

f0
n

 !
þKf

0
n

�fn

" #
f̂n: (15)

Substituting the ansatz f̂n, ŝ p exp(st + ikx), where s is the
growth rate of perturbations with wavenumber k, we arrive at
the dispersion relation

s ¼ Dfk2 � k4 � bk2

1þ a2k2
; (16)

with b ¼ G f0
n

.
�f
2

n þ 1


f0
n

	 

þKf0

n

.
�f
2

n a rescaled stiffness,

and a = cf0
n/ �fn a rescaled non-locality scale. If s(k) 4 0, a

uniformly swollen network will be unstable to perturbations of
wavenumber k. As such, the homogeneous base state is only
stable if s o 0 for all k. From eqn (16), we see that the interfacial

(k4) term is always stabilising, and dominates at large k. The
elastic contribution (b term) is also stabilising for all wavenum-
bers, and thus acts to inhibit the onset of phase separation.
In contrast, the thermodynamic driving force may be either
stabilising or destabilising depending on the sign of Df.

Depending on the relative magnitudes of Df, b, and a, we
identify four distinct functional forms for s(k2), labelled as
cases 1 to 4 in Fig. 2. Note that we plot the dispersion relation
in terms of the wavenumber squared (k2) for clarity. Case 1
occurs when s0(k2 = 0) = Df � b 4 0, and corresponds to the
classical spinodal instability. In case 2, s0(k2 = 0) o 0, but s 4 0
for some compact band of wavenumbers k2 A [k1

2, k2
2]. In this

case, we expect instabilities to arise at a well-defined finite
length scale. We refer to this possibility as the ‘patterned
instability’. For both case 3 and 4, s o 0 for all k2, and so the
homogeneous base state is stable. However, s(k2) may still have a
local maximum away from s = 0 (case 3), thus providing a length
scale that is less stable than neighbouring modes. In a noisy
system, this mode may be able to induce an instability and
nucleate phase-separated domains. In Sections 4.1 and 5.1 below,
we use the instability criteria derived here to reveal how the onset
of these instabilities depends on different model parameters, for
both local (Section 4.1) and non-local (Section 5.1) elasticity laws.

4 Phase separation with local elasticity

Before investigating the predictions of our full model, we first
focus on the limiting case of local elasticity (c = 0), to compare
to the results of previous studies. Previous results have shown
that elasticity can suppress phase separation entirely,5,19,20,30

limit the final size of phase-separated domains,18,20,21 and
decrease the rate of post-separation coarsening.13

4.1 Elasticity inhibits the onset of phase separation

To begin, we use the linear stability analysis presented in
Section 3 to identify regions of the parameter space in which
we expect a homogeneous mixture with network fraction �jn to
phase separate. For a local elasticity law, the dispersion relation
(eqn (16)) simplifies to s(k) = (Df� b)k2� k4. As such, only case 1
(classical spinodal instability) and case 4 (stable homogeneous
state) of those identified in Section 3 are possible.

Fig. 2 Dispersion relation showing growth rate s as a function of squared
wavenumber k2. We identify four distinct functional forms of s(k), labelled
cases 1 to 4. The inset highlights the behaviour of s(k) at small k. The
example dispersion relations presented in this figure correspond to para-
meter values �fn = 0.4, f0

n = 1, G ¼ K ¼ 0:1, c = 3, and w = 2.21, 2.16, 2.14,
and 2.11 (cases 1 to 4, respectively).
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For local elasticity, the spinodal curve is then defined by
Df = b. When G;K ¼ 0 (b = 0; no elasticity), the standard Flory–

Huggins spinodal 2w = �fn
�1 + (1� �fn)�1 is recovered. Inside the

spinodal curve, a homogenous mixture will be unstable to
small perturbations and will phase separate into domains of
high and low network fraction. As the impact of elasticity
increases (increasing G;K), the size of the spinodal region
decreases (Fig. 3A). Consistent with previous results,5,18,20,30

the additional energetic cost associated with deforming the
elastic network inhibits the onset of phase separation. Note

that the asymmetry of the spinodal curve about �fn = 0.5 results
from taking the initial homogeneous network to be swollen

relative to the reference state ( �fn o f0
n), therefore providing a

bias away from small network fractions. Fig. 3B shows the
spinodal curve as a function of elastic moduli G;K and inter-
action parameter w, highlighting that phase separation is
strongly inhibited at large stiffness.

4.2 A stiffer network leads to fewer droplets

To study the time evolution of the mixture predicted by our
model, we now perform numerical simulations of eqn (5)–(13)
with c = 0. Fig. 4A shows example simulation results for both
a soft (top) and stiff (bottom) network. In both cases,

a homogeneous mixture spontaneously phase separates into
distinct solvent-rich (droplet; fn B 0) and network-rich
(fn B 1) domains, via the classical spinodal instability. Over
time, these domains then coarsen, with the number of droplet
domains decreasing (Fig. 4B). Although coarsening is exponen-
tially slow in 1D, we expect the eventual steady state to consist
of a single droplet to minimise total interfacial area.

We find that for a stiff network, mean droplet size is
generally slightly larger than for a soft network. However, this
size difference is counteracted by a vastly smaller total number
of droplets in the stiff case, reconciling the expectation that the
total volume of solvent droplet in the system is smaller for a
stiffer material. Fig. 4B shows the mean droplet number
calculated from many simulations for different elastic moduli
G;K. We find that the coarsening rate appears relatively insen-
sitive to stiffness, but that the onset of phase separation is
slightly delayed for stiffer networks. The initial droplet spacing
is set by the spinodal wavenumber k*, which can be predicted
from the most unstable wavenumber (largest s) of the linear
stability analysis. Fig. 3B shows k* as a function of stiffness for
fixed �jn and w. We see that k* decreases with increasing G;K,
implying that droplets will be more spaced out, hence leading
to fewer droplets, in line with the observations from both our
numerical simulations and previous studies.

5 Phase separation with non-local
elasticity

Next, we explore the additional impact of non-local elasticity on
phase separation by studying our full model, via both linear
stability analysis and numerical simulations. These results
extend the work of Qiang et al.26 by considering the full temporal
evolution of the network–solvent mixture.

5.1 Linear stability analysis reveals different modes of
instability

Using our linear stability analysis, we now identify the stable
and unstable regions of the parameter space for the non-local

Fig. 3 Spinodal curves for a local elastic model (c = 0) with f0
n = 1

calculated via linear stability analysis. (A) Dark to light curves show
spinodals for increasing elastic moduli G;K. The dashed black curve shows
the limiting case G ¼ K ¼ 0. (B) Light to dark grey curves show spinodals

for increasing mean network fraction �fn. The thick red line shows the most

unstable wavenumber k* as a function of G;K for fixed w = 2.5, �fn = 0.4.
The spinodal curve for �fn = 0.4 is highlighted by a thicker line width.

Fig. 4 Numerical simulations of phase separation within a local elastic network. (A) Example simulations showing network fraction fn(x,t) for a soft
(G;K ¼ 0:01; top) and stiff (G;K ¼ 0:035; bottom) elastic network. Note that the results shown here are a representative snapshot of the full simulation
domain x A [0, 104]. (B) Mean number of droplets as a function of time for G;K ¼ 0; 0:01; 0:02 (dark to light colours). Solid lines show mean results from
100 simulations with different initial conditions, and shaded regions show one standard deviation either side of this mean. Other parameter values are
�fn = 0.4 and w = 2.5.
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model (Fig. 5). As for a local elastic response, we see that
increasing network stiffness increases the stability of the mix-
ture, and hence inhibits the onset of phase separation.
In contrast to the local elastic case, however, the inclusion of
non-local elasticity allows for two distinct modes of instability,
as identified in Section 3. When s0(k = 0) 4 0 (case 1), all
sufficiently long wavelengths are unstable to perturbations,
resulting in classical spinodal decomposition. The boundary
of the region in which this instability occurs is marked by the
black curves in Fig. 5. When s0(k = 0) o 0 (case 2), a discrete
band of unstable wavenumbers is now possible, with large
wavelength modes now stable. In addition to the classical
macroscopic spinodal identified in Section 4, we can thus also
identify a ‘patterned’ spinodal region (Fig. 5; blue line) that
corresponds to this case. A homogeneous state is then unstable
to perturbations if it is inside either the classical or patterned
spinodals.

As stiffness G;K increases, the size of the macroscopic
spinodal region decreases significantly, but the size of the
‘patterned region’ between the macroscopic (black line) and
patterned (blue line) spinodals increases. Non-local elastic
effects thus increase the range of parameters for which the
homogeneous state is unstable, promoting phase separation
relative to local elasticity. Increasing the non-locality length c
amplifies this effect (Fig. 5B) by further expanding the bound-
ary of the patterned spinodal.

Fig. 5B also shows the most unstable wavelength k* pre-
dicted by the linear stability analysis as a function of stiffness,
for fixed w and �fn. A notable feature of this result is that
k* remains finite at the boundary of the patterned region. This
feature is generically true for all points along the patterned
spinodal. In contrast, k* = 0 where the boundary of the unstable
region is defined by the macroscopic spinodal (both for local
and non-local elasticity). Finite k* at the spinodal implies that a
continuous quench across this boundary will preferentially
induce a finite wavelength instability. This result raises the
possibility of a continuous phase transition across the pat-
terned spinodal, as predicted previously via an equilibrium
approach.24

5.2 Non-local elasticity leads to arrested coarsening

To investigate the long term dynamics of a phase-separating
mixture, we now turn to numerical simulations of our model.
We simulate eqn (5)–(13) up until a fixed end time tend, starting
from an initial condition corresponding to a homogenous mix-
ture superimposed with small random perturbations. Fig. 6
shows the spatial distribution of network fraction fn and
elastic stress s at the end time of our simulations for various
values of the non-locality length c. Note that each plot shows
only a small snapshot of the full simulation domain.

For c = 0 (local elastic limit), we find phase-separated
domains of alternating high and low fn with irregular size

Fig. 5 Phase planes resulting from a linear stability analysis of the full non-local model. Black curves indicate the classical ‘macroscopic’ spinodal, and
blue curves indicate the ‘patterned’ spinodal. (A) Spinodal curves for different elastic moduli G;K, with c = 2. Blue shading identifies the most unstable
wavenumber k* at each point within the spinodal. (B) Light to dark blue curves show patterned spinodals corresponding to non-locality length c = 1, 2, 5

for fixed �fn = 0.4. The macroscopic spinodal (black curve) is the same for all values of c. The thick red curve shows the most unstable wavenumber k* as a

function of G;K for fixed w = 2.5, �fn = 0.4, c = 2. The spinodal curve for c = 2 is highlighted by a thicker line width for clarity.

Fig. 6 Spatial distribution of network fraction fn (blue curves) and elastic stress s (orange curves) at the final time point of numerical simulations, for
different non-locality lengths c = 0, 1, 5. Simulation results are shown at time tend = 108 and are representative snapshots of the full simulation domain
x A [0, 2 � 104]. Other parameter values are �fn = 0.4, G ¼ K ¼ 0:01 and w = 3.
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and spacing. If simulations were run for a longer time, we
would expect these domains to continue to coarsen to the
thermodynamic equilibrium of a single domain. Since coarsen-
ing is exponentially slow in 1D, we instead choose to end our
simulations at tend before this final state is reached, and high-
light the fact that no regular patterned structure is present in
this case. We also note that s correlates exactly with fn, with
regions of low network fraction corresponding to high tensile
stress. In regions of large fn, the elastic stress is relatively much
smaller, but still in tension since the initial condition corre-
sponds to a highly swollen network relative to the relaxed
network fraction f0

n = 1. For c = 1 and c = 5, however, we find
a regular periodic, or patterned, state at t = tend, which does not
evolve further with time. Here, the non-local elastic contribu-
tion spreads the elastic stress over a finite spatial width, leading
to much smaller variations in s than those observed for fn. As c
increases further, the stress becomes increasingly uniform, and
so the pattern length scale increases. In this case, our simula-
tions have reached a steady state by the end of the simulation
time, and do not coarsen further.

Fig. 7 shows fn (top) and s (bottom) as functions of space
and time for different elastic stiffness at fixed non-locality
length c = 2. As before, the results presented here represent a
small snapshot of the full simulation domain. At early times,
we see that phase separation initiates at the spinodal length
scale, forming many small droplets of low network fraction.
Initial phase separation is then followed by partial coarsening,
with large droplets growing at the expense of small droplets.
Eventually, however, coarsening is completely arrested and the
system reaches a steady patterned state. This patterned state
also persists for much longer simulation times than those
presented here. To demonstrate the approach to this steady
state, Appendix C shows how the total energy of the mixture
initially decreases during spinodal decomposition and subse-
quent partial coarsening, before reaching a constant value as
coarsening is arrested. The same phenomenology is observed
for all value of elastic stiffness G;K, but a larger stiffness results
in a smaller pattern length scale. We denote the pattern length
scale that emerges from these simulations by Lpatt. We note that
the value of Lpatt is robust to variations in the size of the

simulation domain, indicating that this is an energetically
selected length scale, rather than being set by the finite size
of our simulations.

To analyse the dependence of the emergent pattern length
scale on different model parameters, we now repeat our simu-
lations for 100 sets of different realisations of the random
perturbations applied to the initial condition. Fig. 8A shows
the mean size of droplet domains %R as a function of time. As in
Fig. 7, we see that initial coarsening is eventually arrested, with
the mean droplet size then remaining constant. In contrast to
the spinodal length scale (as discussed in Section 4.2), we find
that a stiff network (large G;K) leads to a smaller pattern length
scale than a soft network (small G;K), and thus a smaller mean
droplet size and larger droplet count. We also observe that a
larger stiffness leads to earlier arrest of coarsening. For extre-
mely soft networks, a steady patterned state is not reached
within the timeframe of our simulations. For sufficiently large
stiffness such that the system is initialised in the patterned
region identified in Section 5.1, we find that the mixture
immediately phase separates into the patterned state and thus
does not coarsen at all. Fig. 8B highlights the dependence of

Fig. 7 Kymographs showing network fraction fn (top) and elastic stress s (bottom) as functions of space and time for numerical simulations with
different elastic moduli G;K. These results show a representative snapshot of the full simulation domain x A [0, 2 � 104], and parameter values are the
same as for Fig. 6, with c = 2.

Fig. 8 (A) Mean droplet size %R as a function of time for different elastic
moduli varying between G;K ¼ 10�4 and 0.3 (dark to light curves). Other

parameter values are �fn = 0.4, w = 3 and c = 2. Solid lines show mean
values from 100 simulations with different realisations of the initial noise,
and shaded regions show one standard deviation about this mean. (B)

Mean pattern length %Lpatt at steady state as a function of elastic modulus
G;K for different values of the interaction parameter w. Mean values and
error bars of one standard deviation are calculated from 100 simulations,
and parameter values are the same as for panel (A). Note that this plot is
displayed on a double logarithmic scale.
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Lpatt on stiffness explicitly. Note that Lpatt is calculated by
identifying droplet interfaces via a threshold value fn = 0.5,
and then measuring the mean distance between consecutive
interfaces of the same type. Although our results show Lpatt

decreasing with stiffness, we note that this dependence is
weaker than the square root scaling predicted by previous
equilibrium theories.24,25 We hypothesise that this discrepancy
could result from simulations becoming trapped in a non-
equilibrium patterned state that corresponds to a local mini-
mum in the free energy landscape. We also repeat our simula-
tions for different values of the interaction parameter w. For all
values of w we see the same qualitative behaviour, but with
smaller values of w resulting in a larger pattern length scale
(Fig. 8B).

6 Conclusions

Recent experiments with synthetic polymer gels,14–16 as well as
potential applications to biomolecular condensates,1,2 have
fuelled significant interest in elastically mediated fluid–fluid
phase separation. The presence of a confining elastic network
that is permeated by a fluid mixture induces an additional
energetic cost to the phase separation of this mixture, and can
hence inhibit the onset of phase separation altogether. Further
recent experiments have also revealed the possibility of phase-
separated domains forming a regular pattern structure with a
well-defined length scale that does not coarsen over time.8 The
molecular basis that underlies this length-scale selection is still
a topic of active research, with recent simulations investigating
the role of crosslink density and network entanglement.36

In this manuscript, we have developed a 1D poromechanical
phase-field model that describes the phenomenology of pattern
formation in elastic networks by considering a non-local elastic
response to network deformation. We have used linear stability
analysis of our model to identify the parameters for which
phase separation can occur in such a system, and to explore the
conditions under which elasticity can inhibit phase separation.
Numerical simulations of our model reveal that non-local
effects are key for arresting phase separation and inducing
the formation of a patterned phase. We find that phase
separation initialises at small length scales determined by the
most unstable mode of the system. The resulting phase-
separated mixture then partially coarsens to an equilibrium
length scale that depends on the network stiffness. In the
absence of non-locality, the mixture instead coarsens comple-
tely towards a final state consisting of a single pair of phase-
separated domains.

Our modelling approach utilises a large-deformation poro-
mechanical framework that allows simulation of the dynamics
of this process, building on the equilibrium approach pre-
viously developed by Qiang et al.26 Compared to the similar
recent simulations of Oudich et al.,22 our model uses a fully
non-linear description of the deformation kinematics, and
considers non-local contributions to all components of the
elastic energy. However, our model and simulations have been

developed for a purely one-dimensional system. As such, it is
not possible to differentiate between the different phase-
separated morphologies (discrete droplets or bicontinuous
structures) that are observed in experiments,8 and which have
been reported in other recent theoretical works.25,26 In order to
quantitatively compare the predictions of our model to experi-
mental results, it will thus be essential to generalise the non-
local elastic stress law described here to multiple spatial
dimensions as well as more complex elastic responses.27,37 In
addition, many gels display a viscoelastic rheology, leading to
stress relaxation. Viscoelastic relaxation of the surrounding
network has been shown to lead to accelerated coarsening of
phase-separated domains,38 and the interplay of viscoelasticity
and non-local effects therefore represent an exciting avenue for
future work. Further, recent theoretical work has highlighted
the possibility of the coexistence of patterned and homoge-
neous phases in phase-separating systems with non-local
interactions,39 which would be interesting to explore in the
context of non-local elasticity. Nevertheless, the modelling
effort and analysis presented here for a purely elastic network
in 1D represents an important step towards understanding this
physically and conceptually complex system.
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Appendices
A Derivation of non-local stress law in differential form

For a Neo-Hookean-style non-local energy density of the form

fnl ¼
G

2
J

ð
J 0gxdX

0 � 1� 2 ln ~J

� �
þ K

2
ðJ � 1Þ

ð
ðJ 0 � 1ÞgxdX 0;

(A.1)

the elastic stress is given in integral form as

s ¼ G

ð
J 0gxdX

0 � 1

~J

� �
þ K

ð
ðJ 0 � 1ÞgxdX 0; (A.2)

where ~J ¼
Ð
J 0gxdX . For the convolution kernel gx = exp(�|X|/x)/

2x, it is possible to reformulate eqn (A.2) in a differential
form. First, we split the elastic stress into two parts such that
s = s0 � s*, where

s0 ¼
ð1
�1

GJ 0 þ KðJ 0 � 1Þ½ �gx X 0 � Xj jð ÞdX 0 (A.3)

and

1

s�
¼ 1

G

ð1
�1

J 0gx X 0 � Xj jð ÞdX: (A.4)
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Focussing first on s0, it is then convenient to split the integral
in eqn (A.3) into two parts,

s0 ¼
ðX
�1

GJ 0 þ KðJ 0 � 1Þ½ �gx�dX 0 þ
ð1
X

GJ 0 þ KðJ 0 � 1Þ½ �gxþdX 0;

(A.5)

where gx
� = exp(�(X � X0)/x)/2x and gx

+ = exp(�(X0 � X)/x)/2x.
Differentiating eqn (A.5) with respect to X and using that
gx
�(0) = 1/2x, we then find

@s0

@X
¼
ðX
�1

GJ 0 þ KðJ 0 � 1Þ½ �@gx
�

@X
dX 0 þ ½GJ þ KðJ � 1Þ�gx�ð0Þ

þ
ð1
X

GJ 0 þ KðJ 0 � 1Þ½ �@gx
þ

@X
dX 0 � ½GJ þ KðJ � 1Þ�gxþð0Þ;

(A.6)

and hence

@s0

@X
¼�

ðX
�1

GJ 0 þKðJ 0 �1Þ½ �gx
�

x
dX 0 þ

ð1
X

GJ 0 þKðJ 0 �1Þ½ �gx
þ

x
dX 0:

(A.7)

Similarly,

@2s0

@X2
¼
ðX
�1

GJ 0 þKðJ 0 �1Þ½ �gx
�

x2
dX 0 � ½GJþKðJ�1Þ�gx

�ð0Þ
x

þ
ð1
X

GJ 0 þKðJ 0 �1Þ½ �gx
þ

x2
dX 0 � ½GJþKðJ�1Þ�gx

þð0Þ
x

(A.8)

and therefore

@2s0

@X2
¼ 1

x2

ð1
�1

GJ 0 þKðJ 0 �1Þ½ �gxdX 0 � ½GJþKðJ�1Þ�
� �

:

(A.9)

Inserting the definition of s0 and rearranging, we thus find

1�x2
@2

@X2

� �
s0 ¼GJþKðJ�1Þ: (A.10)

Repeating this procedure for eqn (A.4) correspondingly yields

1� x2
@2

@X2

� �
1

s�
¼ J

G
: (A.11)

Given s0 and s* from eqn (A.10) and (A.11), the total elastic
stress is then s = s0 � s*.

B Conditions for spinodal curves

To calculate the spinodal curves presented in Fig. 3 and 5, we
must discriminate between the different types of instability that
can arise, as identified by the linear stability analysis in Section
3. The classical spinodal encloses regions of parameter space
for which the homogeneous state is unstable to perturbations
of vanishingly small wavenumber, as indicated by case 1 in
Fig. 2. As such, the classical spinodal region is defined by

2w4
1
�fn

þ 1

1� �fn

þ G f0
n

�fn
2
þ 1

f0
n

 !
þKf0

n

�fn
2
: (B.1)

Similarly, the patterned spinodal demarcates the region of
parameter space for which the homogeneous state is stable to
vanishingly small wavenumber perturbations, but unstable to
perturbations of a compact band of wavenumbers (case 2 in
Fig. 2). The patterned spinodal region thus occurs where

2wo
1
�fn

þ 1

1� �fn

þ G f0
n

�fn
2
þ 1

f0
n

 !
þKf0

n

�fn
2

(B.2a)

and

2w4
1
�fn

þ 1

1� �fn

þ
�fn

‘f0
n

 !2

(B.2b)

and

2w4
1
�fn

þ 1

1� �fn

�
�fn

‘f0
n

 !2

þ2fn

‘f0
n

G f0
n

�fn
2
þ 1

f0
n

 !
þKf0

n

�fn
2

" #1
2

:

(B.2c)

Outside of both the patterned region and the classical spinodal
region, the homogeneous state is stable.

C Evolution of total energy

To demonstrate the approach to a steady (patterned) state,
Fig. 9 shows how the total energy of the mixture C evolves over
time for one of the example simulations presented in Fig. 7.
We see that energy decreases during initial spinodal decom-
position and subsequent partial coarsening, before reaching a
constant value that persists for over 108 units of time. We also
plot the various contributions to this total energy, arising from
mixing, interfacial effects, and elasticity. We see that phase
separation results in a dramatic decrease in the mixing energy,
as network and solvent components become spatially segre-
gated. In contrast, the total elastic energy increases with time,
due to the energetic cost associated with deforming the elastic
network during phase separation. Following spinodal decom-
position, the formation of many network–solvent interfaces
drives an increase in the total interfacial energy, which then
decreases as the mixture partially coarsens.

Fig. 9 Temporal evolution of the total mixture energy during phase
separation and arrested coarsening, for the example simulation presented
in Fig. 7 G;K ¼ 0:01ð Þ. The thick blue line shows the total energy, and the
thin red, yellow, and purple lines show the respective contributions from
the mixing energy, interfacial energy, and elastic energy.
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