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Dynamics of evaporating, interconnected droplets

Chenyang Ren, ab Sri Ganesh Subramanian, ab Shresht Jain, ab

Andrew L. Hazel, bc Finn Box ab and Anne Juel *ab

We report on the dynamics of a pair of sessile droplets that are connected by a microchannel, yet open

to the atmosphere and hence free to evaporate. Our results reveal that fluid exchange between droplets

occurs via a pumping flow driven by differences in hydrostatic and Laplace pressure between the two

droplets. Evaporation causes the droplets to slowly lose volume and change shape, which subsequently

affects the fluid transport between them. We observe that, for equal contact areas, a larger droplet

typically feeds a smaller droplet during evaporation and the flow in the connecting channel is

unidirectional. However, for unequal contact areas, the flow can reverse in the connecting channel

following a sudden switch in droplet shape that occurs during evaporation. A stability analysis reveals

that the dynamics of the exchange flow are underpinned by a supercritical pitchfork bifurcation.

Evaporative volume loss permits the droplet pair to step through a sequence of quasi-stationary states

determined by the instantaneous volume of the system. Enforcing unequal contact area unfolds the

bifurcation such that droplet-shape switching and the associated flow reversal can be understood in

terms of a jump from the disconnected to the connected branch of the bifurcation. This establishes

symmetry breaking as a mechanism to induce evaporation-driven flow reversal in connected droplets.

1 Introduction

Microfluidic devices that are passively driven, rather than
requiring external pumping, have great potential as point-of-
care diagnostic tools,1 due to their compactness and given that
they do not require tethering to hardware, e.g., a pressure
controller or syringe pump. Capillary action is one mechanism
that provides a means of passively transporting fluids through
stand-alone devices and hence rendering them portable. Capil-
lary pumping, based on gradients in Laplace pressure, can be
achieved in closed systems with ‘fluid walls’,2,3 by confining
liquid circuitry beneath an immiscible fluid layer to prevent
evaporation of the working fluid. However, open microfluidics
have the advantage of being accessible and straight-forward to
manufacture4–6 and have found application as diagnostic tools
and in biochemical synthesis.4,7

Droplet driven capillary micropumps8–12 rely on flows between
droplets of different sizes i.e., a ‘pumping droplet’ and a ‘reservoir
droplet’. Liquid transport is primarily driven by internal pressure
differences between droplets and flow control can be engineered

by considering the material properties (hydrophobic vs. hydro-
philic) and geometry of the device and the droplets. Such
microfluidic platforms can reliably deliver microlitre volumes
of fluid without the need for external energy input,13 making
them particularly suitable for applications requiring precise
handling of small liquid volumes in resource-limited or
portable settings.

On short time scales, droplet evaporation can typically be
neglected. However, for volatile liquids, evaporation is inevita-
ble. Governed by the diffusion of liquid molecules into the
surrounding gas phase, evaporation typically occurs over long
timescales and can therefore be harnessed to induce sustained
microfluidic flows which can persist for minutes to hours.14

This has been demonstrated in sweat-sensing devices, which
imbibe sweat through a filter–paper interface and sustain
continuous fluid flow without any external pump.15,16 In open
capillary micropumps, however, evaporation leads to a reduc-
tion in droplet volume that alters droplet shape, leading to
changes in the pressure difference between the droplets, which
in turn affects the pumping flow. Yet the influence of evapora-
tion on open droplet-based microfluidic flows – including the
potential loss of working fluid – is typically overlooked.

Evaporative effects have been considered in other systems
comprising multiple, sessile droplets that are in close proxi-
mity.17–21 The vapour emitted by one droplet increases the local
ambient vapour concentration around its neighbours, thereby
reducing the local vapour concentration gradient that drives
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evaporation. As a result, droplets in close proximity exhibit
reduced evaporation rates and prolonged lifetimes compared
to their isolated counterparts – a phenomenon known as
‘shielding’. Here, we minimise vapour-mediated interactions
between droplets, by separating the droplets from one another,
and instead focus on how fluid is exchanged between droplets
via a connecting channel.

We investigate a model capillary micropump based on two
connected droplets and simultaneously examine both the fluid
transport between two droplets and the volume loss due to
evaporation. Our results reveal that, under certain conditions,
the direction of capillary flow between droplets can reverse,
rendering ephemeral the distinction between the ‘pumping’
and ‘reservoir’ droplets. Such a flow reversal has been pre-
viously observed in droplet-based micropumps,22,23 but was
attributed to inertial effects. We model the dynamics of inter-
connected droplets in the absence of inertia and, in doing so,
demonstrate that evaporation-induced flow reversal can instead
be a direct consequence of device and droplet geometry.

2 Experimental method

In experiments, a pair of droplets was positioned upon two
pillars connected via a channel. As the droplets evaporated,
the evolving profile of each droplet was monitored and the flow
field in the connecting channel was measured. A schem-
atic diagram of the experimental set up is shown in Fig. 1.
Experiments were performed using droplets of deionized water,
containing 0.04% (w/v) polystyrene particles of diameter
5 mm (TSI Inc. KOBO, SP-500, refractive index 1.53, density
r = 1.01 g mL�1), in ambient laboratory environments for which
the temperature and humidity were measured to be 23 � 0.1 1C

and 47 � 0.5%, respectively. The surface tension of the working
fluid was measured to be g = 71.5 � 0.5 � 10�3 N m�1 using
a Goniometer (Attension Theta Flex, Biolin Scientific), while
we use literature values for viscosity m = 0.95 mPas and density
r = 1000 kg m�3. We terminate our experiments once we are no
longer able to resolve droplets of finite volume or a droplet
contact line unpins from the edge of the pedestal on which
they rest.

The pillars and connecting channel were fabricated from
Perspex using a micromiller. Prior to experimentation, the
fabricated device was soaked in deionized water with 10% of
a surface active cleaning agent (Decon 90) for 10 hours, and
then rinsed in deionized water and dried with compressed
nitrogen. This cleaning procedure prevented surface contam-
ination – a result of the micromilling process – from affecting
the surface tension of the droplets.24 Before droplets were
deposited on the pillars, the connecting channel was filled
manually using a syringe. The droplets were then carefully
deposited upon their respective pillars using a micropipette
(Acura 826 XS, Socorex) with range 0.5–10 mL and accuracy
0.02–1.8%. The contact line of each droplet remained pinned at
the pillar edge throughout the experiment,25 such that droplet
contact areas are constant. The diameter of pillars and initial
droplet volumes were varied in experiments but the dimensions
of the connecting channel remained the same; a horizontal
section of length 10 mm and cross-section of 0.5 mm � 0.5 mm
was connected at its ends to the base of each pillar via vertical
cylindrical channels (see SI for exact channel geometry). The
length of the connecting channel maintained the two droplets
sufficiently far away from one another (i.e., greater than 10
droplet radii apart) that collective evaporation effects are con-
sidered to be small; the strength of vapour-mediated interac-
tions is predicted to scale with 1/r19 in quiescent environments

Fig. 1 Experimental system. Schematic diagram of the experiment, comprising two sessile droplets resting on pillars of circular cross-section with radii
a1 and a2, respectively. Each pillar has a circular hole at its center, denoted by O1 and O2, that forms the opening for a vertical, cylindrical channel. The two
cylindrical channels are connected by a horizontal microchannel of rectangular cross-section. The contact angles of the droplets are represented by y1

and y2, while their heights are indicated by H1 and H2. Since the droplets resemble spherical caps, their radii of curvature, r1 and r2, were determined by
fitting circles to the droplet profiles. Consequently, for a sessile droplet with a contact angle less than p/2, the center of the circular profile is depicted
below the droplet base, whereas for a droplet with a contact angle above p/2, the center is located above the base.
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however in the laboratory, air currents produced by e.g., air-
conditioning, likely diminish the interaction range considerably.
Droplets were illuminated with uniform, white back-lighting and
side-view profiles were imaged using a CCD camera (Genie,
Teledyne Dalsa) with a spatial resolution of 100 pixels per mm
and a frame rate of 40 images per second.

Throughout experiments, the Bond number Bo = rgH2/g,
where g is the acceleration of gravity and H is the droplet
height, is less than 0.86, which implies that hydrostatic con-
tributions to the pumping flow between droplets were small
yet non-negligible relative to Laplace pressure contributions.
However, droplet shape remained well-approximated by a
spherical cap, so we acquired measurements of the radius,
r(t), height, H(t) and volume V(t) of each droplet during eva-
poration by fitting circles to droplet profiles and assuming
axisymmetry; fits and measured profiles agreed to within 2.4%
throughout.

The pressure difference between channel ends were so
small, however, that they were beyond the lower resolution
limit of commercial pressure sensors. Hence, rather than
measuring pressure differences, we assessed the pumping flow
in the connecting channel using flow visualization. To measure
flow fields and flow velocities, the motion of tracer particles in
the interconnecting channel was imaged using a microscope
(AD4113ZTL, Dino-Lite) and we performed particle image velo-
cimetry (PIV) on images acquired with a time interval of 1 s,
using the PIVlab toolkit in Matlab. To measure the in-plane
flow field in the connecting channel, the camera was placed
underneath the channel, focused on the centre-line of the
channel, and imaged from below with 130.5� magnification
and a spatial resolution of 1.10 mm per pixel. For modelling
purposes, we are primarily concerned with the flow rate
Q ¼

Ð Ð
SudS inside the connecting channel, where u is the axial

velocity and S the cross-sectional area. We approximate Q E %uS
where %u is the depth-averaged velocity that, for a channel of
square cross-section, is related to the maximum speed along
the center line by umax(z = 0, y = 0) = 2.115 %u.26 To visualize the
flow inside the droplets, the mid-plane of the droplets was
illuminated using a light sheet of width 200 mm. To minimize
the influence of heat on the evaporation rate of the droplet, we
generated the light sheet using a cold light source (KL 2500
LED, Schott) in combination with a cylindrical lens.

3 Theory

The pressure at the channel ends, points Oi in Fig. 1, comprises
hydrostatic and Laplace pressure contributions,

Pi ¼ Patm þ
2g
ri
þ rgHi; (1)

where Patm is atmospheric pressure, g is the surface tension of
water, H is the height of droplet and r the radius of curvature of
the free surface of a drop, g is gravitational acceleration and
i = 1,2 denotes the droplet number. (We take the convention
that i = 1 represents the droplet on the left-hand side of side-
view images and i = 2 represents the droplet on the right).

Fluid is exchanged between interconnected droplets via a
pumping flow in the connecting microchannel. We assume the
liquid to be both incompressible and Newtonian, and model
the flow in the microchannel as fully-developed laminar flow
with no-slip boundary conditions, such that the flow rate Q is
related to the pressure drop between the two droplets by the
Hagen–Poiseuille equation:

Q = K�1DP, (2)

where DP = P1 � P2 is the pressure difference at the two ends of
the connecting channel and K = 8.73 � 109 kg m�4 s�1 is the
resistance coefficient of the connecting channel (see SI for
further details).

Droplet evaporation is controlled by the diffusion of vapour
from the free surface to the ambient environment. The rate of
volume loss of an individual sessile droplet with constant
contact radius is given by21

dVevap;i

dt
¼ pBiai

3 f yið Þ
sin yi

; (3)

where

Bi ¼
�2DDpM
rRTai2

: (4)

The volume of each droplet, Vevap,i, evolves in time because
of evaporation, which is driven by a pressure difference Dp =
p0 � pN between the saturation vapour pressure of water,
p0 = 2.065 kPa, and ambient vapour pressure far away from
the surface of the droplets pN; here, we determined the
ambient vapour pressure from the measured relative humidity
RH = pN/p0 = 0.47, giving Dp = p0(1 � RH) = 1.094 kPa. Since the
contact radius of the droplets, ai, is fixed by the pillar geometry,
the apparent contact angle of the droplets, yi, evolves in time.
Here, D = 2.3 � 10�5 m2 s�1 is the diffusion coefficient of water
vapour molecules in air, M = 18 g mol�1 is the molar mass of
water, and R = 8.3 J mol�1 K�1 and T are the gas constant and
ambient temperature, respectively, and f (y) is an empirical
function27,28 given by

f (y) = 0.00008957 + 0.6333y + 0.116y2 � 0.08878y3 + 0.01033y4,
(5)

for 0.175 r y r p, which matches the range of angles we can
resolve experimentally.

For a pair of interconnected droplets, the volume of each
individual droplet is therefore influenced both by evaporation
and the pumping flow within the connecting channel. As such,
the evolution of individual droplet volumes is coupled, and can
be written in terms of volumetric change associated with both
evaporation and pumping flow,

dV1

dt

dV2

dt

0
BBB@

1
CCCA ¼

dVevap;1

dt
� K�1DP

dVevap;2

dt
þ K�1DP

0
BBB@

1
CCCA: (6)

Assuming that the droplets take the form of a spherical cap
we invoke the following geometrical relations between droplet
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volume Vi, height Hi, radius ri and contact angle yi:

Vi ¼
pai3 2� 3 cos yi þ cos3 yi

� �
3 sin3 yi

; (7)

Hi ¼
ai 1� cos yið Þ

sin yi
; (8)

ri ¼
ai

sin yi
: (9)

This permits us to rewrite eqn (6) in terms of droplet contact
angles, yi, as

_y1

_y2

0
@

1
A¼

B1
f y1ð Þ cosy1þ1ð Þ2

siny1
�K�1 P1ðy1Þ�P2ðy2Þð Þ cosy1þ1ð Þ2

pa13

B2
f y2ð Þ cosy2þ1ð Þ2

siny2
þK�1 P1ðy1Þ�P2ðy2Þð Þ cosy2þ1ð Þ2

pa23

0
BBBB@

1
CCCCA;

(10)

where

Pi yið Þ¼
2gsinyi

ai
þrgai 1�cosyið Þ

sinyi
: (11)

Since the evaporative terms are dissipative, eqn (10) has one
stationary solution, y1 = y2 = 0, which physically implies that
evaporation can drive a pair of interconnected droplets to
evolve to have net zero volume, V1 = V2= 0, irrespective of initial
conditions. The evolution of yi with time can be calculated
numerically with the built-in initial value problem solver
ODE45 in Matlab, for initial values of yi,t = 0.

4 Results
4.1 Experimental observations

Our experiments reveal that the evolution of an interconnected
droplet pair occurs on two timescales, see Fig. 2, as fluid is
exchanged through the connecting channel and evaporation
occurs. Within t t 1 s of being deposited on the pillars, a rapid
redistribution of fluid between droplets causes sudden changes
in the size of individuals droplets. This early-time behaviour
demonstrates how the pumping flow – driven by a pressure
difference between the two ends of the channel, DP, and
moderated by channel resistance, as described by eqn (1) and
(2), respectively – exchanges fluid between droplets in the
absence of evaporation. In experiments, the time taken for this
initial fast exchange flow to stop varies because of differences
in initial droplet volumes (rather than differences in channel
resistance). On a longer timescale, t c 1 s, droplet volumes
change slowly as evaporation decreases the total volume of the
system. However, a pumping flow may persist during the slow
evaporation stage, and act to replenish fluid lost through
evaporation such that a single droplet may maintain its size
as the volume of the other droplet decreases.

First, we consider the case of droplets on connecting pillars
of equal radii i.e., for a1 = a2= 0.5 mm, see Fig. 2(A) and (B).
When both droplets have initial contact angles y1, y2 o p/2,
they rapidly acquire the same volume, as shown in Fig. 2(A) for
which V1,t = 0 = 0.15 mL and V2,t = 0 = 0.25 mL. Initially, within
t t 25 ms of deposition, both the hydrostatic and Laplace
contributions to pressure combine to drive fluid from the larger
droplet to the smaller droplet, see inset to Fig. 3(A). As they
then slowly evaporate on a longer timescale, t c 1 s, the
two droplets remain approximately identical in size and shape,

Fig. 2 Evolution of a pair of connected evaporating droplets. Images acquired at various instance in time (as indicated) demonstrate a rapid
redistribution of fluid between droplets at early times (t t 1 s) followed by a slow evolution of droplet shape at later times (t c 1 s). (A) Two droplets
of low initial volume on connected pillars of equal radii adopt a wetting configuration, such that both droplets have initial contact angles y1, y2 o p/2.
They rapidly acquire the same volume (t t 25 ms) and then remain approximately identical in size and shape as they evaporate (see Video S1 in SI).
(B) Two droplets of markedly-different initial volume on connected pillars of equal radii adopt an asymmetric configuration with y1 4 p/2 and y2 o p/2.
As they evaporate, the volume of the larger droplet decreases while the volume of the smaller droplet increases until the two have the same volume,
which indicates that there is a net flow in the connecting channel from the larger drop to the smaller drop (see Video S2 in SI). (C) Droplets on unequal
pillars; larger droplet on the larger pillar. After the rapid transition period (t t 500 ms), y1 4p/2 and y2 o p/2. With evaporation, the volume of the smaller
droplet remains nearly constant, indicating that there is a net flow in the connecting channel from the larger droplet to the smaller droplet (see Video S3
in SI). (D) Droplets on unequal pillars; smaller droplet on the larger pillar. During the slow evaporation stage the droplet volumes switch suddenly;
at t B 400 s the position of the largest drop rapidly changes from pillar (2 - 1) (see Video S4 in SI).
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see Fig. 3(A). As such, the pressure differential across the
channel is null, and the evaporative flux of each droplet is
equivalent, so the mean flow velocity within the connecting
channel is zero, see Fig. 3(B).

If instead, the contact angle of at least one droplet is yi 4
p/2, then at early times the smaller droplet shrinks and the
larger droplet grows so that an asymmetric configuration is
rapidly established with notable differences in droplet volume
and contact angle between the drops. For V1,t = 0 = 1.45 mL
and V2,t = 0 = 0.8 mL this rapid redistribution of fluid occurs
for t t 100 ms, as shown in Fig. 2(B), and suggests that the
pumping flow is initially dominated by a Laplace pressure
differential. However, as the drops evaporate, the larger droplet
shrinks while the smaller droplet grows slightly until the
droplets match in size and evaporate out in unison, see
Fig. 3(C). Although a flow driven by differences in evaporative
flux might be expected to wick fluid towards the larger droplet,
which has greater surface area and thus larger evaporative flux,

our measured flow velocities in the channel instead provide
evidence of a unidirectional flow from the larger droplet to the
smaller droplet, see Fig. 3(D), implying that the pumping flow
is instead governed by a pressure differential based on capillary
statics i.e., Laplace and hydrostatic contributions. Our mea-
surements show that the flow velocity diverges as the droplet
volumes become approximately equal, after which it reduces
to zero. This implies that pressure differences between the
drops continue to drive the flow in the connecting channel as
evaporation causes the droplets to change shape.

The distinction between these two aforementioned cases
arises from the nonlinear pressure-contact angle relationship
of a single sessile droplet, given by eqn (11), which has a local
maximum for yE p/2 that corresponds to a hemispherical drop
i.e., for Vi E 2pai

3/3. In Fig. 4, we show calculated pressures as a
function of contact angle for individual droplets with equal and
unequal contact radii. The pressure is the sum of Laplace
pressure and hydrostatic pressure contributions, see eqn (11),

Fig. 3 Connected droplets on equal pillars. Evolution of droplet volumes (A), (C) and channel flow speed (B), (D) measured as a function of time t for
pillars of equal radii a1 = a2 = 0.5 mm. A and B: V1,t = 0 = 0.15 mL and V2,t = 0 = 0.25 mL; the droplets are comparable in size during evaporation and the
pumping flow between the droplets is measured to be approximately zero throughout. (C) and (D) V1,t = 0 = 1.45 mL and V2,t = 0 = 0.8 mL; the difference in
droplet size generates a net pumping flow from drop 1 to drop 2 (i.e., from the larger drop to the smaller drop) during evaporation. Experimental data,
from Fig. 2(A) and (B), represented by markers (see legend), numerical data represented by black lines. Insets: Zooming in on early times (t t 1) highlights
the rapid redistribution of fluid between two droplets that occurs immediately after they are connected.
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and exhibits a local maximum for y E p/2 with an amplitude
that depends on contact radius. (We highlight that the contact
angle of maximum pressure is slightly greater than p/2 because
of the additional contribution of hydrostatic pressure.) This
nonlinear relation between pressure and contact angle is geo-
metric in origin and can render a droplet bistable for a given
pressure, although the corresponding droplet shapes have
different volumes.

A pair of droplets, each with maximal pressure, therefore
have a total volume equal to that of a sphere with an equatorial
cross-section given by the contact area (i.e., pillar base) and this
serves as a threshold value, Vcrit

tot E 4pa3/3 where a = a1 = a2. For
a pair of connected droplets with equal contact area and y1,
y2 o p/2, such that Vtot t Vcrit

tot , instantaneous pressure equali-
zation can only be achieved with equal volume drops, since
the pressure–volume relation of a single drop is monotonic for
y o p/2. Instead, for Vtot \ Vcrit

tot instantaneous equilibrium can
be attained with either an unequal pair (e.g., y1 o p/2 and
y2 4 p/2), since contact angle is a double-valued function of
pressure in the range 0 o yop, or with an equal pair for which
y1 = y2 o p/2. In Section 4.3, we demonstrate that the latter case
is an unstable configuration, however, such that perturbations
will drive the pair to instead take on different volumes and
contact angles.

The interplay of droplet geometry and pressure contribu-
tions can be further disentangled by examining interconnected
droplets on pillars of unequal radii i.e., for a1 4 a2, see Fig. 2(C)
and (D). First we consider the case in which both droplets have
sufficient volume that their initial contact angles y1, y2 4 p/2,
and the larger droplet is positioned on the larger pillar – as
shown in Fig. 2(C) for which V1,t = 0 = 2 mL, V2,t = 0 = 1.2 mL, a1 =
0.75 mm and a2 = 0.5 mm. Initially, fluid is rapidly redistrib-
uted from the smaller to the larger drop (see inset to Fig. 5(A)),
suggesting that the Laplace pressure differential dominates the
pumping flow at early times. After this rapid transition, an
instantaneous pressure balance is reached with y1 4 p/2 and
y2 o p/2. As evaporation occurs, and the system evolves, fluid

flows from the larger to the smaller drop such that the larger
droplet shrinks whilst the smaller droplet maintains its size,
see Fig. 5(A) and (B).

In all of the cases presented so far, the pumping flow
established during evaporation has been unidirectional (from
the larger to the smaller droplet) or null (for equal volume
droplets on equal radii pillars). However, if the smaller droplet,
y1 o p/2, is initially positioned on the larger pillar and the
larger droplet, y2 4 p/2, on the smaller pillar, we instead see
flow reversal during the slow evaporation stage that is asso-
ciated with a sudden switching of droplet shapes, see Fig. 2(D)
and 5(C), (D). Following droplet-shape switching, the pumping
flow in the connecting channel continues to feed the smaller
droplet as they evaporate out. In Fig. 6, we show measured flow
fields inside the two droplets and the connecting channel, and
velocity profiles within the connecting channel, at various
instants during droplet evaporation, for the same initial con-
ditions as the experiment shown in Fig. 5(C) and (D). Flow
visualization demonstrates how droplet-shape switching and
flow reversal combine to maintain the pumping flow from
larger droplet to smaller droplet. Visualization of flow fields
inside the droplets show that before droplet-shape switching,
for t t 380 s, the smaller droplet (droplet 1 in Fig. 6(A)) is fed by
the larger droplet (droplet 2 in Fig. 6(A)) and likewise after
switching, for t \ 380 s, the larger droplet continues to feeds
the smaller droplet. Flow velocities in the channel were
acquired by spatial averaging in the x-direction of instanta-
neous flow fields, exhibit the parabolic profile typical of fully-
developed Hagen–Poiseuille flow, and show how the flow in
the connecting channel reverses direction for t \ 380 s, see
Fig. 6(C). Using measured internal flow velocities, we estimate
the scale of the pressure difference induced by the internal flow
within the droplets to be DPf B m(Dv/Dy) B 10�6 Pa, where m is
the dynamic viscosity of fluids, and Dv is the difference in
velocity in the y-direction, between the droplet apex and the
channel outlet, such that the distance over which the pressure
difference occurs scales with droplet height Dy B Hi. Since this

Fig. 4 Droplet pressure. Numerical values of the pressure calculated from eqn (11) as a function of contact angle for individual sessile droplets of (A)
equal contact radii, a1 = a2 = 0.5 mm, and (B) unequal contact radii, a1 = 0.75 mm a2 = 0.5 mm. In all cases, the relation is non-monotonic with a local
maximum for y E p/2. (In the absence of gravity, the maximum pressure occurs for y = p/2.)
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flow-induced contribution to the pressure is much smaller than
either the Laplace or hydrostatic contributions i.e., on the order
of O 10�6

� �
Pa compared to O 100ð Þ Pa to O 10ð Þ Pa, respectively,

we neglect the pressure contributions due to internal droplet
flows in our analysis. (Although we note that the inertia of this
internal flow was responsible for flow reversal in Ju et al.22 and
Ju et al.23).

4.2 Droplet dynamics

Numerical solutions to the contact angle evolution equation,
eqn (10), enable us to construct a pseudo-phase portrait of an
interconnected droplet pair; initial values of yi were chosen for
portrait clarity. In Fig. 7(A) and (B), we present dynamical
portraits of an interconnected droplet-pair in the phase space
of the respective contact angles of the two droplets, (y1,y2) for
pillars of equal and unequal radii, and for initial conditions
yi,t = 0 o p. (We note that for finite contact radii droplets, the
y1 = y2 = p solutions are degenerate, corresponding to infinite
volume droplets with zero Laplace pressure.) Trajectories represent

the time-evolution of an inter-connected droplet pair; as evapora-
tion progresses and the total volume decreases, the contact
angles of each droplet evolve until reaching the stationary point
where y1 = y2 = 0. To highlight the two distinct timescales of
the system, we plot solutions for t o 1 s as faint grey lines
and solutions for t 4 1 s as solid black lines, and include
experimental data that is colour-coded by time after droplet
deposition.

For pillars of equal radii, a1 = a2 = 0.5 mm, we see that
droplet states rapidly converge onto slow evaporation pathways,
see Fig. 7(A). If both droplets are initially in a wetting configu-
ration i.e., for y1,t = 0 o p/2 and y2,t = 0 o p/2, the system quickly
converges onto a slow evaporation pathway defined by y1 = y2 o
p/2, and remain on that path as the total volume of the system
decreases until y1 = y2 = 0. As the droplets have equal contact
angles and equal contact areas, there exists zero pressure
difference between channels ends in this scenario, and hence
zero pumping flow along this path (droplets evaporate out
together in unison). However, if either of the droplets has an
initial contact angle p/2 o yi,t = 0 o p, and Vtot,t = 0 \ 4pai

3/3,

Fig. 5 Connected droplets on unequal pillars. Evolution of droplet volumes (A) and (C) and channel flow speed (B) and (D) measured as a function of
time t for pillars of radii a1 = 0.75 mm and a2 = 0.5 mm, respectively. A and B: V1,t = 0 = 2 mL and V2,t = 0 = 1.2 mL; during evaporation, the difference in
droplet size generates a net pumping flow from drop 1 to drop 2 (i.e., from the larger drop to the smaller drop). (C) and (D) V1,t = 0 = 0.8 mL and V2,t = 0 =
2.3 mL; initially the larger drop is positioned on the smaller pillar and the pumping flow is from drop 2 to drop 1 but, for t B 400 s, this configuration inverts
suddenly and flow reversal is observed in the connecting channel. Experimental data, Fig. 2(C) and (D), represented by markers (see legend), numerical
data represented by black lines. Insets: Zooming in on early times (t t 1) highlights the rapid redistribution of fluid between two droplets that occurs
immediately after they are connected.
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then the system rapidly converges onto an evaporation path
with one increasing contact angle and one decreasing contact
angle, for which a pumping flow feeds the smaller droplet,
before eventually reaching the low-volume evaporation pathway
defined by y1 = y2 o p/2. Our numerical results also indicate
trajectories rapidly diverge from the initial conditions p/2 o
y1 = y2 o p which suggests this an unstable state; the stability
of the system is discussed further in Section 4.3.

In the case of unequal pillars, with a1 = 0.75 mm and a2 =
0.5 mm, the symmetry of the system is broken, and this is
reflected in the resulting pseudo-phase portrait, see Fig. 7(B).
We find that initial conditions rapidly converge onto one of two
evaporative pathways. On the y2 4 y1 path, y2 decreases while
y1 increases, as time progresses. On the y1 4 y2 path, y1

decreases while y2 initially increases and then decreases, as

time evolves. However, our experiments (see Fig. 2(D)) show
that a droplet pair can instantaneously jump from one pathway
to the other, which manifests in experiments as a droplet-shape
switching event and flow reversal in the connecting channel.

4.3 Stability of an interconnected droplet pair

The typical timescales of fluid transport between droplets is
much less than the evaporative lifetime of the droplets. Indeed,
in the limit where evaporation is a much slower process than
the pumping flow, we can consider the dynamics on the short
timescale associated with fluid transportation between dro-
plets, i.e., for a constant volume, and neglect the slow dynamics
associated with evaporation. The instantaneous configuration
of the droplet pair can thus be considered to be a quasi-
steady state, corresponding to specific droplet volumes and a

Fig. 6 Visualising flow reversal. (A) Flow fields, measured on the mid-plane, of two connected droplets at various instances in time following deposition,
as indicated; the colorbar represents the magnitude of the velocity in the y-direction. The droplets’ initial total volume Vtot,t = 0 = 3 mL and, as they
evaporate, the droplets switch shape and the flows inside the droplets and in the connecting channel reverse direction. Droplet-shape switching and flow
reversal occurs at t B 400 s. (B) Instantaneous flow fields measured in the connecting channel before and after droplet switching demonstrate flow
reversal; the colorbar represents the magnitude of the velocity in the x-direction. (C) Measured velocity profiles within the connecting channel at various
instances in time before and after droplet-shape switching, as indicated. Data in B and C is from the same experiments as that shown in Fig. 5(C) and (D).
Data in A is from a different experiment but with the same initial conditions.
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corresponding set of contact angles; as the droplets evaporate,
the system steps through a sequence of quasi-steady states that
are determined by the instantaneous total volume of the
system.

To assess the stability of different droplet-pair configura-
tions for a given total volume, Vtot = V1 + V2, we note that, on the
timescale of the pumping flow, the equations that govern the
dynamics of the contact angle can be expressed as:

_y1
_y2

� �
¼

� P y1; a1; g; r; gð Þ � P y2; a2; g; r; gð Þð Þ cos y1 þ 1ð Þ2

pa13

P y1; a1; g; r; gð Þ � P y2; a2; g; r; gð Þð Þ cos y2 þ 1ð Þ2

pa23

0
BB@

1
CCA:

(12)

Eqn (12) has two sets of stationary solutions: one solution
set is given by P(y1,a1,g,r,g) � P(y2,a2,g,r,g) = 0, which corre-
sponds to a solution governed by the exchange of fluid between
droplets; the other set of stationary solutions, y1 = y2 = p,
represents spherical droplets, which is not relevant to our
experiments. To determine the stability of stationary points,
we perturb the relevant set of solutions and numerically calcu-
late eigenvalues of the corresponding Jacobian matrix; stability
is inferred from the sign of the least negative eigenvalue.

We present the findings of our linear stability analysis of
droplet-pair configurations in a parameter space based on the
difference in contact angle Dy = y1 � y2 and the total volume
Vtot = V1 + V2 in Fig. 8. Stable solutions are represented by solid
lines while the unstable solution is represented by the thick
dashed line.

In the case of pillars of equal radii, a1 = a2, we uncover a
supercritical pitchfork bifurcation, see Fig. 8(A), that breaks

droplet-shape symmetry. For low total volumes, one stable fixed
point exists and corresponds to a symmetric droplet-pair
configuration with Dy = 0. As the total volume increases, the
system bifurcates from having one fixed point to three fixed
points; the branching point, Vcrit

tot E 4pa3/3, is a consequence of
both droplets having constant contact area and hence a non-
linear pressure–volume relation with maxima for y E p/2
(as discussed in Section 4.1). In the triple-valued region, asym-
metric configurations are stable, and correspond to an unequal
droplet pair with pumping flow from the larger to the smaller
droplet, while the symmetric solution becomes unstable. This
implies that, as time evolves and volume decreases because of
evaporation, droplets regain symmetry (i.e., smoothly transi-
tion from an asymmetric to a symmetric configuration) once
Vtot r Vcrit

tot , before evaporating out together.
Breaking the symmetry of the system, by using pillars of

unequal radii, leads to an imperfect pitchfork bifurcation, see
Fig. 8(B). The upper branch now transitions smoothly down to
Vtot = 0 while the stable lower branch meets the unstable
symmetric solution at a finite Vcrit

tot . As such, a droplet pair that
begins on the disconnected, stable asymmetric branch must
jump catastrophically onto the connected asymmetric branch
once evaporation reduces the system volume below this critical
value. Indeed, the droplet-shape switching and accompanying
flow reversal, shown in Fig. 2(D), 5(D) and 6, are manifestations
of the discontinuous jump from one stable branch, that corre-
sponds to the smaller droplet having larger contact area, to the
other stable branch, that corresponds to the larger droplet
having larger contact area, which occurs as evaporation reduces
the total volume of the system.

Our stability analysis shows the unfolding of this pitchfork
bifurcation is governed by the ratio of the two pillar radii, a1/a2,

Fig. 7 Trajectories in pseudo-phase space. Phase portrait of the evolutionary trajectories of an evaporating, interconnected droplet pair, in the pseudo-
phase space of the their respective contact angles, for (A) equal pillars of radii a1 = a2 = 0.5 mm, and (B) unequal pillars of radii a1 = 0.75 mm and a2 =
0.5 mm. Numerical data of the evolution of the contact angles of the two droplets is represented by lines (faint, grey lines represent early-time behaviour
for t o 1 s and black lines represent late-time behaviour for t 4 1 s), with arrows indicating the direction of droplet evolution. The red star (at y1 = y2 = 0)
indicates the stationary solution of eqn (12), which is the terminal point of the evaporating droplets. Experimental data (for the same parameters as
indicated in Fig. 3(C) and 4(C), respectively) is represented by markers where the colour indicates time t, as indicated in the legend colormap. The red
arrows indicate the direction of the droplets evolution with time in the experiments. The black arrowheads are positioned at t = 10 ms along trajectories.
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see Fig. 8(C). Increasing this imperfection parameter causes the
size of the disconnection to increase. Physically, in the range
1 o a1/a2 r p, the limit point corresponds to the total volume
of the droplet pair when the droplet with larger contact area is
hemispherical, with maximal local pressure for y1 E p/2, while
the droplet with smaller contact area has a non-wetting
configuration with a volume that supplies the same pressure,
such that Vcrit

tot E 2pa1/3 + V2(P2 = P1(y1 E p/2), y 4 p/2), as
shown in Fig. 8(D). For a1/a2 4 p, only one stable branch exists
and that corresponds to a single droplet residing on the larger
pillar.

5 Conclusions & discussion

We have shown that the dynamics of an interconnected droplet
pair is governed by two timescales; a short timescale associated

with the pumping flow that exchanges fluid between the two
drops, and is determined by the pressure differential across the
connecting channel, and a long timescale associated with the
loss of fluid through evaporation. Initially, the two droplets
rapidly adjust their volumes (on a timescale t t 1 s) via a
pressure-driven pumping flow and attain a stable configu-
ration. Evaporation then causes the droplet pair to slowly
step-through a sequence of quasi-stationary states determined
by the instantaneous volume of the system. If the two droplets
have the same contact area, a1 = a2 = a, and total volume Vtot \

4pa3/3, then the droplets take on an asymmetric configuration
with the larger droplet feeding the smaller droplet, so the larger
droplet shrinks due to evaporative losses while the smaller
droplet maintains approximately the same size and shape.
Once Vtot t 4pa3/3, the two droplets take on the same shape,
the pumping flow between them reduces to zero, and they
evaporate out in unison. The evaporation-driven time-evolution

Fig. 8 Quasi-static stability of a pair of connected evaporating droplets. Bifurcation diagrams of the difference in contact angle Dy = y1 � y2 measured
as a function of the total volume Vtot = V1 + V2 for (A) equal pillars, a1 = a2 = 0.5 mm, manifests a pitchfork bifurcation, (B) unequal pillars, a1 = 0.75 mm and
a2 = 0.5 mm, manifests an imperfect pitchfork bifurcation, and (C) varying ratio of pillar radii in the range 1oa1/a2o3.5 demonstrates the unfolding of the
pitchfork bifurcation for increasing a1/a2. Results of a numerical stability analysis of the solutions of the governing equation on the timescale of pumping
i.e., without evaporation (eqn (12)), are represented by black lines; solid lines indicate stable solutions, while dashed lines indicate unstable solutions.
(D) Volume Vcrit

tot , and difference in contact angle Dycrit (inset), at the limit-point calculated as a function of imperfection parameter a1/a2. In A and B,
experimental data (for the same parameters as indicated in Fig. 3(C), (D) and 4(C), (D), respectively) is represented by markers where the colour represents
time, as indicated in the legend colormap, and demonstrates how the system evolves through a series of stable, quasi-static configurations because
of evaporation.
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of the droplet pair, from an asymmetric to a symmetric
configuration, is underpinned by a perfect pitchfork bifurca-
tion (of quasi-static nature) in the case of droplets of equal
contact area. Introducing pillars of unequal radii, and hence
contact area, breaks the symmetry of the system and leads to an
unfolding of the bifurcation with the distance between the
connected and disconnected branches increasing with imper-
fection parameter a1/a2. In experiments, jumping from the
disconnected to the connected branch manifests as a sudden
droplet-shape switching which changes the sign of the pressure
difference between channel ends and causes the flow in the
connecting channel to reverse.

Our findings permit engineering control of flow reversal
in capillary micropumps via platform design, which could be
harnessed for bidirectional transport in point-of-care applica-
tions,11 and a framework for avoiding flow reversal in systems
where a unidirectional flow is instead required throughout the
entire evaporation process. Future research directions include
examination of interactions between multiple evaporating
droplets connected via a network of channels, and the influ-
ence of the vapour phase on the interaction of nearby droplets
connected via a short channel.

We finish by drawing a parallel between the behaviour of inter-
connected droplets and that of two connected rubber balloons29.
In this canonical example of elasticity and stability,30–32 two neo-
Hookian rubber balloons are inflated to the same size and
connected to the two ends of a single pipe with a closed valve.
Once the valve is opened the two balloons can exchange air and, if
filled to an intermediate size, the initial configuration is unstable
and the symmetry is broken instantly as air flows from one
balloon to the other until a stable equilibrium is reached with
an asymmetric configuration comprising one smaller and one
larger balloon. The two-balloon demo is analogous to our
droplet experiments performed on equal pillars since, in both
cases, multiplicity arises from nonlinear pressure–volume rela-
tions and equilibrium states can be achieved for both unequal
and equal shapes of finite (i.e., non-zero) radii. However, in the
balloon experiment, multiplicity emerges from the nonlinear
pressure–volume relation that is typically a consequence of
both geometric and constitutive (i.e., material) nonlinearities,
while droplets dynamics are solely governed by a geometric
nonlinearity between volume and contact angle. We postulate
that a pair of connected deflating balloons would traverse an
analogous bifurcation pathway as is exhibited by intercon-
nected droplets as they evaporate; balloon shapes would be
regulated by air flow between balloons, while the slow volume
loss of the entire system would instead be controlled by
the deflation rate. Similarly, our findings on unequal pillars
suggest that the underlying symmetry of the two balloons could
be broken by using balloons with different intrinsic radii of
curvature, for example.

Recently, the inflation of connected balloons has been
proposed as a means of generating interactions between indi-
vidual hysteretic elements (or ‘hysterons’) that can switch
between states in a manner that depends on the path history
of their states.33 Interacting mechanical hysterons can store

and process information and therefore be programmed to
function as state machines.34 Pushing further the analogy
between our interconnected droplets and connected balloons,
we propose that interconnected droplets are an example of
interacting fluidic hysterons. Hence multiple interconnected
droplets have the potential to exhibit coupled switching orders
with evaporation-rate dependent pathways and memory effects,
and could even behave as a (short-lived) state machine. Indeed,
our results demonstrate that the transition pathways of these
interacting fluidic hysterons can be programmed, in a similar
vein to microfluidic bubble logic,35 via careful engineering of
system properties; in particular, through manipulation of dro-
plet contact area, the relative humidity of the environment and
the volatility of the droplets.
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