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We report an approach to obtain effective pair potentials which describe the structure of two-
dimensional systems of active Brownian particles. The pair potential is found by an inverse method,
which matches the radial distribution function found from two different schemes. The inverse method,
previously demonstrated via simulated equilibrium configurations of passive particles, has now been
applied to a suspension of active particles. Interestingly, although active particles are inherently not in
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equilibrium, we still obtain effective interaction potentials which accurately describe the structure of the
active system. Treating these effective potentials as if they were those of equilibrium systems,
DOI: 10.1039/d5sm00706b furthermore allows us to measure effective chemical potentials and pressures. Both the passive

interactions and active motion of the active Brownian particles contribute to their effective interaction
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1 Introduction

Dispersions of active particles are non-equilibrium systems:
they dissipate energy in powering an active component to the
particle velocities."” The collective behaviour of active particles
manifests both structural and dynamic effects, as observed in,
e.g., flocks of birds, schools of fish, and suspensions of
bacteria.® Inspired by natural systems, synthetic active particle
systems can be designed to follow a particular behaviour, through
tuning the chemistry or physics of colloidal particles and/or their
external fields." Modelling active particles as active Brownian
particles (ABPs) provides a simple means to better understand
their behaviour; these are Brownian particles with an added self-
propulsion, the direction of which diffuses over time.>®

Structural effects observed in suspensions of active particles
include flocking,” clustering,®® chain and ring formation,
and motility-induced phase separation (MIPS), which occurs
in active Brownian particles due to particles slowing down in
higher density regions.*'*™" The physics of active Brownian
particles comprises passive interactions and the particles’
active motion.'* So far, it has not proved straightforward to
find a thermodynamic framework for active matter. For exam-
ple, it appears that mechanical pressure is only a state variable
for active particles in certain systems.">>'°
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In the framework for ABPs, the passive interactions are
described by the pair potential u(r), while the active component
is controlled by parameters such as the self-propulsion force
and translational and rotational diffusion coefficients. A con-
venient dimensionless measure of activity is the Péclet number,
which compares propulsion to diffusive motion."”” The pair
potential u(r) specifies the direct interaction between two
particles at separation r. Together with temperature and den-
sity, depending on the form of u(r)—e.g., hard-core repulsion,'®
soft repulsion® or Lennard-Jones type interaction®’—it sets the
equilibrium structure that would be obtained in the absence of
activity.

A steady radial distribution function, g(r), can be obtained
from ABPs given the particle number density, pair interaction,
u(r), and the strength of self-propulsion relative to diffusion. In
this way, ABPs can form a steady state structure with a repro-
ducible g(r), in a way similar to equilibrium systems.?" In this
work, we aim to address whether an equilibrium approach
could help us to understand the non-equilibrium structure of
active particles. We seek to do this by finding effective pair
potentials of an equivalent passive system. We begin by noting
that a variety of definitions for effective potentials have been
defined in previous works, alongside the warning of Louis,**
that—in systems with density-dependent interactions—there is
no single effective pair potential; the correct effective potential
needs to be derived according to its desired use.

Perhaps the simplest definition of an effective pair potential
is the potential of mean force, w(r).>* Physically, the potential of
mean force, w(r), represents the effective interaction felt
between two particles due to both their direct pair interaction
and the averaged influence of all other particles in the system.
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It is related to the radial distribution function through
g(r) = —exp[pw(r)]. However, only in the dilute limit does an equili-
brium simulation using w(r) fully reproduce the observed g(r).
Microscopy experiments on active particles have been conducted
with very dilute dispersions, in which case the potential of mean
force is an appropriate choice of effective pair potential.>*

Our approach seeks effective pair potentials which, when
simulated as a passive system (with only these effective pairwise
interactions), can regenerate the structure of the ABPs, as
described by a g(r)—and not just in the dilute limit. This
contrasts with, for example, the approach of Turci and
Wwilding,>® who also aimed to recreate the structure of the active
systems. They did this by separately finding 2, 3, ... N-body
interactions of ABPs by simulating systems containing 2, 3, ... N
particles, respectively. Their effective N-body interactions then do
not depend on density. Our approach instead finds only an
effective pair potential u.g(r) which alone regenerates g(r). Since
ABPs do have effective higher-order interactions, this ueg(r)
accounts for the effect of these. We will therefore find our ueg(r)
to be density-dependent. In this text, u.x(r) is used to refer
specifically to our definition of effective pair potential.

Due to the complexity of the relationship between g{r) and u(r)
for a passive system—related by a simulation, or approximated
using perturbation theory**—we do not expect there to be an
analytical relationship between an effective potential u.g(r) and
the parameters (density, u(r), and strength of self-propulsion
relative to diffusion) input into simulations of active particles.
We note that a machine learning approach already exists to find
activity parameters (one-body force) and u(r) (two-body force),
tested with ABPs and a variety of potentials.”” The choice of
whether to find w.g(r) or the true interaction u(r) and activity
parameters, depends on whether the primary interest is to
understand the system’s structure or dynamics.

Effective pair potentials, u.g(r), have been used to predict
phase separation of active particles; these effective potentials
have been obtained both by iterative Boltzmann inversion
(1BI)*® and by deriving a relationship between u(r) and ueg(r)
from the low-density limit.>® For weakly active systems, effective
pair potentials have been obtained using an adaptation of IBI:
the passive potential is used as input, and only the active
contribution to u.x(r) is found via IBL>' We note that the
definition of u.x(r) used by Evans et al.>" is the same as ours.
Iterative Ornstein-Zernike inversion, a modification of IBI, has
been used to obtain effective interactions between granular
particles—another inherently non-equilibrium system—again
to describe phase separation and segregation, as in ref. 30.

Inverse methods have been established for equilibrium
suspensions of purely passive particles, to relate their struc-
ture—as described by the radial distribution function g(r)—to
the underlying pair potential u(r). Such methods, based on
molecular simulation, include IBI*! and inverse Monte Carlo.*?
They involve an initial guess for u(r) followed by an update
scheme. Other methods are based on machine learning.>*?* A
particularly efficient form of inversion is based on test-particle
insertion (TPI), with the method’s efficiency resulting from
removing the need to rerun a Monte Carlo simulation at every
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iteration.> In addition, not regenerating particle coordinates
with further Monte Carlo simulation aids convergence to the
correct potential.’> As with IBI, TPI is a model-free inverse
method, not requiring any assumptions about the form of u(r).
The main limitations of TPI, also experienced with IBI, are
difficulties at high density and requiring equilibrium.*® The
test-particle insertion method involves finding the potential
energy change associated with inserting hypothetical test-
particles. With TPI, the difficulty at high density arises due to
poor sampling of ‘successful’ insertions.>®

This paper applies TPI to relate the structure of active particle
suspensions to effective pair potentials. The inversion raises the
question if there is an analogue of Henderson’s (1974)*” theo-
rem: as long as the active particles have reached a steady-state
structure, described by g(r), should we expect a unique corres-
ponding u.g(r) at a given temperature and density?

In cases where u.(r) can indeed be found, we subsequently
measure thermodynamic properties—such as the pressure and
chemical potential—of a system of passive particles interacting
via ueg(r), which we hope will shine light on questions around
the construction of a statistical mechanical framework describ-
ing active matter.?®

In what follows, we will outline the theory of the inverse
method, the simulations of ABPs, and the potentials modelled in
Section 2. The results of the inverse method as applied to ABPs are
presented and discussed in Section 3, before drawing conclusions.

2 Theory

2.1 Inverse method

The radial distribution function, g(r), is the ratio of the local
number density about a reference particle, p(r), and the bulk
number density, p:

goul(r) = p()/p, (1)

where r is the position relative to the reference particle.
Typically, g(r) is found via the distance-histogram method
(denoted by the subscript DH), whereby the domain is divided
into concentric rings of width Ar about the reference particle,
and the local number density in each ring evaluated.

An alternative method is based on test-particle insertion,
where g(r) is the ratio of the local to bulk ensemble average:

oy (exp[=B¥(r)])
i) = exp ) @

Here, we use the subscript TPI to denote that g(r) is found by
the test-particle insertion method. Also, = 1/kgT, with kgT
being the thermal energy. In the case of an equilibrium system,
¥ is the additional potential energy from the hypothetical
insertion of a test particle.*>*° Only considering pairwise
interactions between particles,

W= u(ry), 3)

i=1

where r,; denotes the distance between the test particle ¢ and a

This journal is © The Royal Society of Chemistry 2026
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real particle i, and N is the number of particles in the system. In
practice, we only consider particle-test-particle distances less
than a cutoff r. beyond which it is assumed that fu(r) ~ 0. In
the numerator of eqn (2), ¥(r) is measured with respect to a
specific particle-test-particle distance r; in the denominator,
¥ is no longer position dependent. Note that, in our notation,
p and ¥ refer to the reference density and potential, respec-
tively, whereas p(r) and ¥(r) refer to distance-dependent ones.

In this work on out-of-equilibrium ABP systems, instead of
using the true thermodynamic potential ¥, we adopt an effec-
tive additional potential energy, ¥ In eqn (2), we replace ¥

N
with P4 We calculate our effective Yerr = > uesr(ry;) only
i=1

considering effective pairwise interactions between particles.

For an equilibrium system, we note from eqn (2) that grp(7)
is a function of f¥(r), which is in turn a function of fu(r). This
leads to the formulation of an inverse method to find the fu(r)
which makes the g(r) obtained from each method match,
i.e., grpi(r) = gpu(r). From Henderson’s uniqueness theorem,
just one such u(r) up to a constant should be obtained for a
given structure, at a given temperature and density.>” Extend-
ing this to steady-state ABP systems, we likewise find the fug(r)
that makes g(r) from the two methods match.

Here, we use the following approach: we begin an iterative
predictor-corrector scheme with an initial guess,

Uet,o(r) = —kgT1n [gou(7)], (4)

where the index 0 denotes the Oth iteration. Then, the corrector
proposed by Schommers (1973),*°

gL(")} . )

Uerrj1(r) = terr;(r) — kBT]n|: ;
crsealr) =t v, (0]
is used to update the guess of . (r) until convergence is
achieved, where grpj(7) is found by test-particle insertion and

J is the iteration number.

2.1.1 Convergence. Convergence is assessed via the metric

“= > (gDH (r) — ngL/(r,-))z, where r has been discretised into

1
bins with midpoints r;. The initial guess [eqn (4)] corresponds
to u_4(r) = 0 inputted into the right-hand side of eqn (5); this is
the potential of mean force, which we denote as w(r).

Monte Carlo (MC) simulations (details in Appendix A) of
passive particles with the obtained fu.g(r) are then run, and the
obtained gpu mc(r) is compared with the gpy(r) from the origi-
nal simulations of the active particles. Convergence of the
inverse method, and agreement between gpu(r) and gpwu,mc(7),
were checked for all examples in this paper, but are not shown
for brevity.

The potential of mean force is expected to be a good
description of dilute passive systems. For relatively dilute
passive systems, this leads to fast convergence of the inverse
method. Similarity between u(r) and w(r) for an LJ passive
system, at the same density, is shown in Appendix C.

For a dilute gas, the pair potential is equal to the potential of
mean force, hence g(r) = —exp[fu(r)]. For denser fluids, this can
be considered the first term of an expansion of g(r) in terms of

This journal is © The Royal Society of Chemistry 2026

View Article Online

Paper

number density.*" We write g(r) = —exp[pw(r)], which is g(r) =
—exp[f(u(r) + uina(r))], where we have split w(r) into:

w(r) = u(r) + wina(r), (6)

with u;ng(r) accounting for indirect interaction. We interpret
some of the results for the effective pair potentials in this way,
l’,e., weff(r) = ueff(r) + uind,eﬁ(r).

2.2 Simulations

2.2.1 Potentials. The motion of ABPs combines passive
interactions with an active component to their velocity. For
the passive component, we model three different forms of
interaction potential between particles: the Lennard-Jones
(L)), the Weeks-Chandler-Anderson (WCA) and the shoulder
potential.

The LJ potential combines a steep short-range repulsion
with an attractive tail;>* we truncate and shift the potential at

r=2.50:
wo-s[@@] o

where r is the centre-to-centre distance between particles, and ¢
is the potential well depth, which we set as the energy scale. The
WCA potential is a purely hard-core repulsive potential formed
by truncating and shifting the Lennard-Jones potential to zero
after a cutoff of r = 2/°¢:*?

uwca(r) = 4e {(f) = (f) 6] +e. (8)

r r

The shoulder potential has two length scales: a hard repul-
sive core (diameter ¢) surrounded by a soft repulsive shell
(diameter o, height &), truncated and shifted at r = 2.80:

us(r) = s(?)—l—%&[l — tanh(ko(r — ay))]- 9)

The stiffness of the core is described by n and the steepness
of the shoulder decay is described by k. This work takes n = 14
and k, = 10/5.** All the examples in this work use o, = 2.5¢ and
&g = 2¢.

2.2.2 Active Brownian particles. Trajectories of the coordi-
nates of ABPs were obtained via 2D large-scale atomic/molecu-
lar massively parallel simulator (LAMMPS) simulation.** The
periodic box size was adjusted to contain 2500 particles. The
time evolution of the position, r;, and orientation relative to the
x-axis, 0;, of the ith active particle in an overdamped system is
described by:

. D
P kB}(—;VU(VU) -‘rFan,’) —+ \ 2Dt€i7 (10)
and
0; = \/2D:¢.p, (11)

where D, and D, are the translational and rotational diffusion
coefficients, respectively. We assume that D; and D, can be
varied independently in an active system."® Activity arises via a
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self-propulsion force, F,, acting along the orientation vector n;,
at angle 0; to the x-axis. The components of the thermal forces,
¢ and &y, are white noise with zero mean and correlations
(&7(0) ”5( t')) = 040,40(t — t'), where « and f are the x- and
y-components, and (& (£)&0(t)) = 0;0(t t), with t
denoting time.

We vary the inputted u(r) [eqn (10)], density and Péclet
number, Pe = 3F,M/cD,, where M = D/kgT is the mobility. The
Péclet number gives the ratio of advective active transport to
diffusive transport."® In this work, Pe is changed by varying F,,
with fixed M and D,. We obtain snapshots of the generated
particle coordinates for each combination. It is ensured that
the simulation has run for sufficient time to guarantee that the
system is in steady state. We average over the steady-state
snapshots and obtain gpy(r). This is inverted according to
Section 2.1 to obtain fucg(r) for each set of input parameters.

The (reduced) number density is computed as p = ¢°N/A,
where N = 2500 is the number of particles contained within the
box area A. We simulated runs of length 107 time steps, with a
time step of At/t = 10>, where «/;;(r), with m being the mass of
a particle. Every 10000th frame is saved for analysis (corres-
ponding to 1000 saved frames). Up to the first 200 of these
saved frames are discarded, due to not yet being at steady state.

2.3 Calculations

2.3.1 Effective chemical potential. For a system to be in
thermodynamic equilibrium, besides thermal and mechanical
equilibrium, it is also required to be in chemical equilibrium.
This is obtained when the chemical potential, x, of each species
is constant throughout the system. For ABPs, it is known that
there is no unique definition of state variables, such as pressure
and temperature,"®*> and similarly for chemical potential.*®
However, test-particle insertion leads to a simple method to
calculate an effective chemical potential, pieg:>°

Hett = .u + kBTlnp * Hexy (12)

where we assume that there exists a reference chemical
potential, 1°. The excess contribution is given by

ex = _kBTln(<eXp[_ﬂTeff]>)' (13)

This effective chemical potential is the chemical potential of
a passive system with pairwise interactions described by
Pucs(r). We note that the ensemble average (exp[—f¥.g]) was
already calculated for the denominator of eqn (2) (replacing ¥
with Y. in the equation), and so we directly obtain fu., from
Pues(r). The ensemble average is calculated as if we had an
equilibrium system, with particles interacting via u.g(r). Since
the box size was kept the same throughout a given LAMMPS
simulation, we follow the approach for finding a canonical
ensemble average. We note that there exist alternative
approaches to defining chemical potentials for active systems,
constructed such that the gradients in the chemical potential
correspond to flows.*'”*®*” In contrast, our definition of
effective chemical potential is related to the system structure
(not dynamics).
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2.3.2 Pressure

2.3.2.1 Effective pressure. The pressure of a passive system
described by u.(r) can be calculated. This approach does not
give the real pressure of the system (see Section 2.3.2.2), since it
does not account for the active contribution to the pressure.*®

The traditional method for calculating a pressure from a pair
potential would be through the virial equation.*® However, this
would require calculating the derivative du.g(r)/dr. Since the inver-
sion only obtains binned values for u.(r), the calculated derivative
will be noisy, leading to questions about the best smoothing and
uncertainty in the calculated effective pressure, Pe.

We adopt an alternative method that does not involve
calculating the virial, and so avoids the disadvantages asso-
ciated with evaluating the derivative ducg(r)/dr. The test-volume
method requires evaluating the energy changes with hypothetical
changes in the system volume, whereby the distances between
particles are proportionally expanded or contracted.”>>" In 2D, we
seek the limit as AA — 0 of

ﬁP eff =

In((exp(=pAU))), (14)

N 1
A AA
where AU is the difference in potential energy between the system
at areas A + A4 and A. The potential U is computed as

= %Z Z Ueft (l‘,’,‘) . (15)

The ensemble average (exp(—pAU)) is found by averaging
over the snapshots. Note that we use the particle coordinates as
generated from the ABP simulations in this calculation—as
opposed to using a passive simulation with u.g(r). This is because
the effective pressure is found by probing how the effective free
energy changes with small changes in volume. This probes how
Uege(r) changes with small changes in r. However, we find a
discretised u.g(r), which has two consequences: (1) making Peg
sensitive to the discretisation (so we will present error bars for Peg
based on this), and (2) making the coordinates from a passive
simulation with u.g(r) not as accurate as the original coordinates.
For the latter reason, we use the original ABP coordinates, to obtain
as accurate a measure of Peg as we can.

As further justification for finding the effective chemical
potential as per our definition, the relationship between P
and ¢ is discussed in light of the Gibbs-Duhem equation in
Appendix D. Evaluating pesr therefore offers another route to
finding Pes, which might be less sensitive to discretisation.
Moreover, we note that we find g using the original ABP
coordinates, since our inverse method naturally gives us ¥
based on these coordinates. It is therefore consistent to also use
these original ABP coordinates for the calculation of Peg.

2.3.2.2 Total pressure. The pressure of an active system can
be used to probe its phase behaviour.*®*> Whilst there is some
debate as to how to compute the pressure, P, for active

systems,"® we adopt

NkT
p— kB

| NN
ﬂzz< ”t/

i=1 j=I

N
Z (16)
i=1

This journal is © The Royal Society of Chemistry 2026
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where here the force between particles 7 and j, Fy;, acts along r,
such that Fyry = —du(r)/dr|rijr,'j.53 The first term is the ideal
contribution. The second term is the contribution from activity,
termed the ‘swimming pressure’.>**® The final term is the
contribution from the interaction potential (i.e., the usual virial
term). Our main aim is to acquire a measurement of pressure
for the ABPs, in order to compare with our effective pressures.
We adopt the definition that we have used in previous work.>?

3 Results and discussion
3.1 Effective pair potentials

A series of systematic studies are carried out, varying (1) the
underlying passive pair potential (for the shoulder, WCA and L]
potentials), (2) Péclet number (for the WCA potential), and (3)
density (for the shoulder potential). The particle number den-
sity was set to p = 0.3 in all cases, except for the study varying
density. This was chosen to be sufficiently dense to show some
structure, and not too dense as to pose difficulty for test-particle
insertion. Example snapshots from both the LAMMPS (ie.,
molecular dynamics, MD) simulations and the MC simulations
run using the obtained fucs(r) are presented for interest in
Fig. 1 (a subset) and in Appendix G (full set). Visually good
agreement is obtained in the structure of the MD and MC
snapshots, as expected, since gpy(7) has been regenerated with
low error. Differences in higher-order structural correlations
are unlikely to be visible by eye.

3.1.1 Varying potential types. We first observe that the
inverse method successfully finds fu.g(r) with different potential
types: L], WCA and shoulder potentials. For each potential, Fig. 2
compares the passive u(r) used in the LAMMPS simulations
[eqn (10)] with Bug(r) obtained by the inverse method.

Qualitatively similar shapes are obtained for u.g(r) for the
WCA potential as for the L] potential. In part, this is because at

Shoulder (Pe = 3.00e+02)
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Pe = 300, the activity is much more important than the under-
lying passive interactions.>® However, this similarity is interest-
ing, since WCA u(r) (Fig. 2b) is entirely repulsive, whilst L] u(r)
(Fig. 2a), in addition to its short-range repulsion, includes an
attractive tail. We conclude that the activity is responsible for
the attractive well in u.g(r) for the WCA potential, resulting in
similarity with the L] potential’s u.g(r). This attractive well in
Uere(r) was also found by ref. 21, which used a pseudo-hard
sphere u(r). Evans et al”*' find that weak activity promotes
percolation, even before MIPS takes place. For both LJ and
WCA, we observe small jumps in u.g(r) around r = 20. From
corresponding plots of g(r) (see Appendix B), which have a
secondary peak around r = 2¢, it appears that these bumps are
merely from the structure.?” Activity must be responsible for
the slight long-range repulsion in u.¢(r) around r = 2.2¢ for the
L] system.”’ The presence of this jump in the shoulder
potential’s u.g(r) might be hidden by the two length scales
in u(r).

Interestingly, whilst the shoulder potential is entirely repul-
sive, uqs(r) shows two attractive wells, around 7 = ¢ and r = .
These effective attractive regions must be due to the activity—
an emergent phenomenon of repulsive ABPs."? For passive
systems, multi-well potentials have been found to give rich
assembly results in simulations, in both 2D and 3D.***° We
have previously mapped a phase diagram for 2D shoulder
potential ABPs.>® The phase diagram has MIPS and homoge-
neous regions. Interestingly, within each phase, a rich range of
structures is observed, including monomers, dimers, trimers,
chains and hexagonal structures. This richness arises from the
shoulder potential having two length scales—which manifests
as two attractive wells in e ().

Appendix B demonstrates the convergence of the inverse
method for each potential type, additionally showing the very
good agreement between gpy(r) from the original LAMMPS

WCA (Pe = 3.00e+02) LJ (Pe = 3.00e+02)

o St e e AR

Fig.1 Zoomed snapshots of the MD (top row) and MC (bottom row) simulations for the studied potentials for selected densities and Péclet numbers.
From left to right: From the shoulder potential study at varying p, we present p = 0.4 (at Pe = 120, see Fig. 5). Then, for the study varying potential type, we
present the shoulder, WCA and LJ potentials (all at p = 0.3 and Pe = 300, see Fig. 2). (Snapshots for the complete set of studied parameters are shown in

Appendix G.)

This journal is © The Royal Society of Chemistry 2026
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Fig. 2 Varying potential type, with fixed Pe = 300 & p = 0.3, for (a) LJ, (b)
WCA and (c) shoulder potentials. Each plot shows the passive potential u(r)
and Bueg(r) from the inverse method.

simulation and gpuwmc(r) from MC simulations of passive
particles with the obtained Su.g(r). This is a key result: it shows
that Pu.g(r) is able to regenerate the structure, and so, in this
respect, is truly an effective passive potential for the active
Brownian particles. It is an interesting result in itself that there
is a Pueg(r) that regenerates g(r) in an equilibrium Monte Carlo
simulation. Furthermore, we consider what thermodynamic
properties, such as the pressure, might be encompassed in
Butegr(r).*® This is explored in Sections 3.2 and 3.3.
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3.1.2 Varying the Péclet number. The effect of varying
Péclet number is also studied: this shows the influence of
varying activity.

For the shoulder potential, at Péclet numbers lower than
120, particles do not have enough energy to penetrate the soft
repulsive shell, and so they tend to behave as particles with
larger diameter (o5 = 2.50). The effective packing fraction based
on this larger diameter is greater than one, leading to ‘fru-
strated’ structures.> This results in particles forming snake-
like paths of high local density. For the L] potential, at Péclet
numbers lower than 300, there was too much particle cluster-
ing—i.e., again, areas of local high density. This was reflected
in peaks in g(r) of high magnitude (e.g., >10). These areas of
high local density mean that test-particle insertion does not
work well. This is due to the difficulty of ‘successfully’ inserting
a particle in a region that is already very dense.® This leads to
either convergence not being achieved, or, if achieved, a noisy
Btere(r).

We therefore choose to present the effect of the Péclet
number using the WCA potential (see Fig. 3), which does not
have the above problems and allows the study of a range of Pe.
Note that there is no universal density limit above which test-
particle insertion fails; it depends on the effective potential. In
Appendix E, we discuss the second virial coefficient and what
that might tell us about the phase behaviour of the ABPs.

Plots of fueg(r) for the WCA potential with a selection of Pe
numbers (Pe = 6, 30, 60, 120 & 300) at p = 0.3 are shown in
Fig. 3a. For the WCA potential at each Pe tested, excellent
agreement between gpy(r) and grpi(7) is obtained (not shown).
We learn that the inverse method is able to work for different
Pe. We additionally plot the magnitude of the well depths in
Uer(r) as a function of further Pe values in Fig. 3b.

The magnitude of the well depths in wu.g(r) are observed to
initially increase as Pe is increased (from Pe = 6 to Pe = 22).
However, at higher Pe (Pe > 22), the magnitude of the well
depths in wu.x(r) decreases as Pe is increased. Whilst the
apparent attraction in wu.g(r) is attributed to the activity,
increasing activity appears to decrease the particle clustering.
This is because ABPs tend to slow at high density for steric
reasons, but increased activity reduces the effect of this slowing
down.”"°" In the limit of Pe — 0, we would recover the u(r) for a
purely passive simulation of the shoulder potential. In Appen-
dix F, we present how the mean free time between particle
collisions varies with Pe, finding similar trends to those
observed with ueg(r).

3.1.3 Effective potential of mean force. Taking the case of
ABPs with a L] potential shown in Fig. 2a, the effective potential
of mean force, weg(r) [eqn (4)], is plotted in Fig. 4a, as an
example to compare with u.g(r). The potentials Weg(r) and e (7)
appear very similar; this contributes to the rapid convergence of
the inverse scheme when using w.g(r) as an initial guess.®” In
Fig. 4b, we compare the target gpy(7) found from the original
data, with that from an MC simulation using weg(r). The
similarity between these g(r) reflects that between wu.g(r) and
Wegr(r). The first peak in the target gpp(7) is well reproduced. The
second peak is higher in gpu mc(7) (generated using weg(r)) than

This journal is © The Royal Society of Chemistry 2026
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Fig. 3 Varying Péclet number for the WCA potential, with fixed p = 0.3: (a)
Plot of Buek(r) at different Pe. (b) Plot of the magnitude of Bueg(r)'s well
depth as a function of Pe.

in gpu(r), as a result of the second well in weg(r). A third peak
appears in gpu mc(r) which is absent in gpy(r), as higher-order
structural correlations are more sensitive to small differences
in the interaction potential.

Therefore, it seems to be the case for relatively dilute active
Brownian particles, that the effective potential of mean force
explains most of the structure. The example in Fig. 4 is at high
Pe (Pe = 300); i.e., activity dominates the particles’ motion. We
learn that, for active Brownian particles at p = 0.3, effective
direct interactions, which are predominantly a result of the
activity, contribute most to the effective pair potential. Inter-
estingly, activity indirectly leads to structure, but emerges as a
direct contribution to the effective pair potential.

3.1.4 Varying the density. Finally, the effect of varying
particle density is examined, using the shoulder potential as
an example, at Pe = 120.

The shoulder potential is an interesting example because of
its two length scales. The results are presented in Fig. 5. This is
a particularly relevant study, as neither the u(r) or activity
change in the LAMMPS simulations of the ABPs. Nevertheless,
we observe differences in u.g(r) purely due to change in density.
As the density is increased, the ratio of the peak in g(r) around
r = ¢ to that around r = g, increases. This suggests that, at high
density, more particles are forced within the soft-shell region

This journal is © The Royal Society of Chemistry 2026
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Fig. 4 Demonstration of the closeness of fweg(r) to Puek(r), using the
example of ABPs with a LJ potential, with Pe = 300 & p = 0.3: (a)
Comparison of Bweg(r) with Buee(r). (b) Comparison of gpu(r) from the
original data with gpy mc(r) from a MC simulation using fwegk(r). These glr)
should not agree perfectly, as they correspond to different u(r), though
they are similar due to the closeness of fWee(r) to Bue(r).

due to steric restrictions. The density-dependence of g(r) is
unsurprising, since this is also observed in passive systems, due
to structure increasing as density increases.®> However, in
passive systems, the u(7) obtained from the inversion method
clearly does not depend on the density—since this u(r) should
have converged to the original u(r) used in the Monte Carlo
simulation that generated the particle coordinates. In contrast,
the u.g(r) obtained for the ABPs do depend on the density, since
the emergent effects of activity depend on the density. This is
via density-dependent particle velocities: whilst density-
dependence of the particle velocities is not directly coded into
the model, collisions are expected to slow particles down at
high density.""** We see that the activity leads to non-pairwise
additivity.

Looking at u.g(7), at all densities, attractive wells appear at
the two characteristic distances. The depth of the well around
r = ¢ increases slightly with increasing density. More generally,
considering the region between the two wells, the apparent
attractiveness of the interactions increases with increasing
density. This corresponds with the increased penetration of
the soft-shell observed in g(r) with increasing density. The
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Fig. 5 Shoulder potential at varying density, with fixed Pe = 120. (a) Plot
comparing gpn(r) and grpi(r), based on the converged Puc(r) from the
inverse method. (b) Plot comparing Bueg(r) with fweg(r). The colour code
in the key of (a) also applies to (b).

depth of the second attractive well, around r = g, is less affected
by the density.

Fig. 5b additionally shows we(r) at each density. This makes
it clear that similarity between u.g(r) and weg(r), as for passive
systems, decreases with increasing density. At p = 0.049, there is
very good agreement between us(r) and weg(r). As the density
increases, the agreement worsens because weg(r) changes more
with increasing p than u.g(r) does. This reflects our under-
standing that effective indirect interactions uingee(r) increase
with increasing density.

3.2 Effective chemical potential

Following the calculation method given in Section 2.3.1, we plot
either B(uesr — p1°) = Inp + Puex (Fig. 6a, varying p) or Puex
(Fig. 6b, fixed p) for the ABPs.

Considering the shoulder potential at varying density, Fig. 6a
shows that the ideal chemical potential increases with density,
whilst the effective excess chemical potential decreases; the
overall effective chemical potential shows a maximum.

At fixed density, In p is constant, so Fig. 6b plots the effective
excess chemical potential only. For the WCA potential, there is
a non-monotonic trend in the effective chemical potential as Pe
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Fig. 6 Plots of effective chemical potential as a function of (a) p (shoulder
potential with Pe = 120) and (b) Pe (shoulder, WCA and LJ potentials, p = 0.3).

300

is varied; this likely reflects the non-monotonic behaviour in
the well depths in u.g(r) (Fig. 3b). In addition to the WCA
potential, Fig. 6b also plots results for the L] and shoulder
potentials. The effective chemical potentials for the L], WCA
and shoulder potentials at Pe = 300 are close to each other. This
is expected: the passive pair potentials become less important
as the activity is increased, and the systems with the different
potentials become increasingly similar to each other. For the
shoulder potential, the effective chemical potential is higher at
Pe = 300 than at Pe = 120; higher chemical potential corre-
sponds with a less negative test-particle insertion energy [when
averaged as in eqn (13)].

3.3 Pressure

3.3.1 Effective pressure. In this section, using eqn (14), we
find the pressures of passive systems with the same u.g(r) as
the ABPs (using the ABP coordinates, as explained in Section
2.3.2). The results are presented in Fig. 7a and c. Strictly
speaking, u.g(r) is a function of p. Whilst this is ignored in
calculating Pe, the result should be reasonably accurate, since
the density-dependence of u.(r) is not too large (see Fig. 5b).>?
As with the effective chemical potential, the effective pressure
appears similar between the L], WCA and shoulder potentials at
high Pe (Pe = 300). For the shoulder potential at varying
densities (Fig. 7a), the effective pressure shows a maximum,
as did the effective chemical potential (Fig. 6a). Error bars are

This journal is © The Royal Society of Chemistry 2026
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drawn in Fig. 7a and c based on the standard deviation of
results from different bin widths. Due to the large error bar, the
sign of Py at p = 0.4 is uncertain. We stress that there is still
less variance with bin width using this method than with the
virial method.

For a passive system, the Gibbs-Duhem equation at con-
stant temperature can be written as du/dp = (1/p)dP/dp.*”"*® By
comparing the data shown in Fig. 6a and b with those in Fig. 7a
and c, Appendix D attempts to test the Gibbs-Duhem equation,
both for varying p (shoulder potential) and Pe (WCA potential).
However, we observe in Fig. 3 and 5 that u.g(r) varies with p and
Pe. Louis® explains the challenges of deriving different ther-
modynamic properties, such as peg and Peg, from density-
dependent effective pair potentials. Whilst we expect eqn (13)
for uesr to still be exact, due to its similarity with the method
used to find w.(7) in the first place, we noted above that this is
not the case with our calculation of Peg. In future work, the role
of many-body effects should be considered, in determining
whether the Gibbs-Duhem relationship holds for the effective
thermodynamics of ABPs. Nevertheless, u.¢(r) does not vary too
much with p or Pe (see Fig. 3 and 5), which likely explains the
resemblance between Fig. 6a and 7a, and between Fig. 6b and
7c. We note that alternative flow-based approaches for defining
chemical potentials for active systems obey the Gibbs-Duhem
equation under local density approximations.*®*”

(a)
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3.3.2 Total pressure. We compare these effective pressures
with the total pressure, P, of the active systems. Note that we
substitute kzT/e = 0.01 into eqn (16), as this was used in these
LAMMPS simulations—this only affects the ideal gas pressure
term, which we find to be small compared to the other terms, in
the presence of significant activity.

In Fig. 7b and d, we plot the total pressure and its consti-
tuents: the swimming pressure and the passive pressure (the
sum of the ideal and interaction terms). The general trend is for
the swimming and (to a lesser extent) passive pressures (and
hence the total pressure) to increase with increasing p and Pe.
Consequently, at higher p and Pe values, the total pressure is
order of magnitudes larger than the effective pressure. It is
expected from its coefficient that the swimming pressure
should increase with Pe (Fig. 7d), in addition to #; also depend-
ing on F, [eqn (10)]. The summation over the N particles
explains why the swimming pressure increases with p
(Fig. 7b). The passive pressure likely increases with density
due to particles being forced closer together (Fig. 5a), such that
more particles lie at distances with large —du(r)/dr values. For
the WCA potential, the passive pressure increases with Pe
(Fig. 7d). Correspondingly, it can be seen in Fig. 3a that the
position of the minimum in wu.g(r) shifts to smaller r values as
Pe increases. The passive pressure for the shoulder potential
simulations was similar at both Pe = 120 and Pe = 300.
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Fig. 7 Effective pressure with error bars [(a) and (c)], and total pressure, divided into its components of ‘ideal + interaction” and ‘swimming’ pressures [(b)
and (d)]; both as a function of p [shoulder potential with Pe = 120, (a) and (b)] and Pe [shoulder, WCA and LJ potentials, p = 0.3, (c) and (d)]. The key in (b)
also applies to subfigure (a), and, likewise, the key in (d) also applies to subfigure (c).
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Conclusions

We have newly demonstrated that, for ABPs, a steady state g(r)
can be inverted to obtain Pug(r). This works for different
potential types, Péclet numbers and densities tested. The ueg(r)
combines the underlying u(r) and activity. The influence of
these factors on u.gx(r) was demonstrated for a variety of
potentials, with systematic changes in potential types, Pe and
density. The inverse method converges quickly because, at low
density, ueg(r) resembles weg(r), which is used as the initial
guess. Through u.¢(7), we see the non-additive effects of activ-
ity. The purely repulsive shoulder and WCA potentials give
particularly insightful ug(r), since their w.g(r) contain attrac-
tive wells: this is a clear demonstration of the emergent
attractive behaviour of ABPs. Furthermore, the shape, such as
the depth, of these attractive wells offers a means to quantify
this emergent behaviour. Varying density, whilst keeping the
u(r) and activity parameters used in the LAMMPS simulation
constant, produces density-dependent u.(r) that offer a way to
quantify density-dependent emergent activity effects.

We therefore believe that this work presents another way to
characterise and understand the behaviour of active particle
suspensions—in particular, their structure. Whilst u.g(r) could
be viewed as a proxy for g(r), this work raises the question, is
there any more meaning to u.(r)? Here, we have used u.g(7) to
calculate pegr and Pegr, which may help to address thermodynamic
questions about active systems. Further work could explore if
Uer(r) could give any meaningful insight into the particle
dynamics, and any quantitative information on the activity
parameters, given the u(r) used in the numerical simulation. It
has been demonstrated with passive systems that the test-
particle insertion inverse method can be extended to many-
body interactions, ie., finding «"(r), where n denotes the n-body
interaction.®® This could also be explored with ABPs, finding
u's(r).>" We expect these higher-order interaction terms to be
non-zero, since we have found u.s(r) to be density-dependent.

Another route for future exploration, currently underway, is
using our inverse method with mixtures of active and passive
particles. Effective interactions between active particles in active-
passive mixtures have been previously found in the dilute limit,>*
whilst our method offers an approach applicable also beyond this
limit, and to find effective interactions between all combinations of
particle types. In addition, our method could be applied to other
classes of active matter besides ABPs, such as run-and-tumble
particles.” We expect the method to work for any active system
that obtains steady-state structures and does not have areas of high
local density. This includes systems with non-reciprocal interac-
tions. It is worth mentioning that, in real systems, active particles
may experience non-reciprocal interactions, either originating from
hydrodynamic interactions®® or differences in surface mobility
towards chemical gradients.®® Our test-particle insertion method
ignores any potential non-reciprocity in the interactions; it just
finds an effective (reciprocal) pair potential from the structure. We
still expect our method to be able to find a u.(r), and thus also a
Uese and Pegr. These might show how asymmetries in effective
interactions shift collective steady states.
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