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core–shell nanofibers in
magnetoelectric sensors, fuel cells, and drug-
delivery applications: a review
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and Arun Thirumurugand

Core–shell nanofibers have emerged as a versatile class of nanostructured materials due to their unique

ability to integrate multiple functionalities within a single architecture. Their coaxial geometry, which

combines core and shell domains, allows for precise control over composition, interfacial interactions,

and surface characteristics, making them highly attractive for advanced electronic and biomedical

applications. This review highlights recent advancements in the design, synthesis, and application of

core–shell nanofibers, with a focus on their roles in magnetoelectric devices and drug delivery systems.

For magnetoelectric devices, core–shell nanofibers provide efficient coupling between magnetic and

electric order parameters, enabling the development of miniaturized, flexible, high-sensitivity sensors,

energy harvesters, and transducers. Their high aspect ratio, tunable interfacial stress transfer, and

enhanced magnetoelectric coupling provide new opportunities for next-generation spintronic and

wearable technologies. In parallel, the unique core–shell morphology offers distinct advantages in drug

delivery, such as high loading efficiency, sequential or sustained release, and protection of bioactive

agents, which are crucial for wound healing, tissue engineering, and targeted therapies. Also, this review

highlights recent progress in core–shell nanofiber-based electrodes for HT-PEMFCs, DEFCs, and IT-

SOFCs, emphasizing their role in enhancing catalytic activity, stability, and ionic conductivity. These

advancements pave the way for high-efficiency and durable fuel cell technologies for next-generation,

efficient, and sustainable fuel cell systems. We further summarize the progress in electrospinning and

other fabrication techniques that enables scalable production of uniform core–shell nanofibers, along

with critical insights into structure–property relationships, challenges, and future perspectives. This

review highlights the multifunctional potential of core–shell nanofibers as a transformative platform for

next-generation devices and healthcare solutions, bridging developments in the electronic and

biomedical domains.
1. Introduction
1.1 Nanotechnology and nanobers

The fundamental principle of nanotechnology is reducing the
size of materials to nanometer dimensions, which alters their
physicochemical properties due to quantum connement,
increased surface-to-volume ratios, andmodied electronic and
interfacial behaviors. In semiconductors, size connement can
induce quantum effects that signicantly change their opto-
electronic characteristics, while magnetic materials transition
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to superparamagnetic behavior below a critical size. In catalytic
metal nanoparticles, decreasing the particle diameter to a few
nanometers can alter the crystal structure, surface topology,
and electronic properties, including shis in the Fermi level
and reduction, which can potentially inuence adsorption
behavior and catalytic activity.1–4 These nanoscale phenomena
underpin the broad utility of nanostructured systems in various
applications, including nanoelectromechanical system (NEMS)
sensors, targeted drug delivery, tissue engineering, implant
surface modication, and wound healing.5–8 One-dimensional
(1D) nanobers are ber structures characterized by diameters
in the nanometer range. Recent advancements have broadened
the denition of nanobers; according to Horne et al.,9 bers
with diameters ranging from 0 to 500 nm are nanobers. Prabu
et al.10 extended this denition, reporting that bers with
diameters between 50 and 1000 nm are also categorized as
nanobers, while their lengths can extend to several centime-
ters. 1D nanobers exhibit a high surface area-to-volume ratio,
Sustainable Energy Fuels
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tunable surface functionalities, and enhanced mechanical
properties as the polymer ber diameter decreases to submi-
cron or nanometer scales. For instance, a nanober is 2 cm long
and 400 nm in diameter, corresponding to an aspect ratio of
approximately 5000, which signicantly increases the available
surface area for interactions while maintaining a low total
volume.11,12

The nanoscale holds particular signicance for biological
systems, as the characteristic dimensions of viruses, bacteria,
biomolecules, carbon nanotubes (CNTs), and other nano-
structures fall within this range. A comparison with these
objects reveals that electrospun bers can exhibit diameters
across a relatively broad spectrum, as shown in Fig. 1(a). The
principal motivation for utilizing nanober-based systems is
that materials at the micro- and nano-scale exhibit unique
physical and chemical properties not observed in their bulk
forms. Likewise, tailoring materials at the nanoscale can dras-
tically alter thermal transport, for example, reducing lattice
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thermal conductivity in nanostructured thermoelectrics,
thereby improving their energy conversion efficiency. Electro-
spinning is a versatile technique for fabricating continuous
nanobers by applying a high-voltage electric eld to a polymer
solution, inducing jet formation. In a standard laboratory
electrospinning setup, a polymer solution or melt is fed through
a spinneret nozzle with an inner diameter of approximately 10–
100 mm (Fig. 1(b)). This nozzle also acts as an electrode, across
which a high electric eld of 50–500 kVm−1 is applied, while the
counter electrode is positioned 10–25 cm away. The bers are
usually collected on a substrate connected to the counter elec-
trode. Electrospun bers exhibit superior porosity, surface area,
and application versatility, rendering them highly suitable for
biomedical and ltration applications. CNTs excel in strength,
and hair has the largest diameter, but limited surface func-
tionality, as illustrated in Fig. 1(c). Electrospun bers provide
a balanced combination of biocompatibility, porosity, and
practical applicability. Nanobers, in particular, can achieve
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Fig. 1 (a) Comparison of the diameters of nanofibers with biological and technological objects, (b) illustration of the electrospinning setup for
preparation of nanofibers, and (c) comparison of biocompatibility, strength, porosity, surface area, diameter, and potential applications of
electrospun nanofibers with CNTs and human hairs.
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pronounced ME coupling by eliminating substrate clamping
effects commonly encountered in thin lm bilayers or nano-
pillars deposited on substrates.13–15 Furthermore, the applica-
tion of nanobers in the medical and aerospace industries has
been broadened. For example, nanobers are being explored in
the medical sector for their utility in tissue engineering scaf-
folds, wound dressing materials, drug delivery systems, and
biosensors due to their high surface area and tunable physico-
chemical properties.16,17 In the aerospace and space industries,
nanober composites contribute to the development of light-
weight, high-strength structural components and radiation
shielding, thereby further enhancing the performance and
safety of spacecra.18,19 The food industry benets from
utilizing nanobers in areas such as active packaging and
ltration, as well as for the controlled release of nutraceuticals
and preservatives.20–22 Overall, the multifunctional nature of
This journal is © The Royal Society of Chemistry 2026
nanober-based materials continues to expand their applica-
tion landscape across various domains, including medical,
space, food, environmental, and other advanced technological
elds.
1.2 Core–shell nanobers

Core–shell nanobers are one-dimensional nanostructures
characterized by an inner core material enveloped by an outer
shell, typically fabricated through coaxial electrospinning or
emulsion methods. This architecture enables the independent
tuning of core and shell compositions, allowing for multifunc-
tional properties and precise control over released proles or
surface functionalities. Core–shell nanobers are widely
recognized for their enhanced stability, tunable mechanical and
electrical properties, and efficacy in drug delivery, catalysis, and
Sustainable Energy Fuels
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sensor applications. Their structure offers protective encapsu-
lation for sensitive molecules while maintaining nanober
exibility and high surface area.23 Furthermore, with the
progression of nanober technology, core–shell nanobers
have emerged as an advanced architecture in which a core
material is encapsulated within a surrounding shell, enabling
tunable physicochemical properties and multifunctionality.
This conguration simplies fabrication compared to more
complex nanober assemblies while offering superior perfor-
mance in targeted applications. In drug delivery, core–shell
nanobers facilitate controlled release kinetics and site-specic
transport of therapeutics. As catalytic supports, their high
surface-to-volume ratio and dual-compartment design enhance
reaction efficiency and stability. The distinct core–shell inter-
face improves coupling efficiency and sensitivity in ME sensing.
Additionally, they have been employed in the food industry for
active preservation and innovative packaging, in tissue engi-
neering as biocompatible scaffolds promoting cell adhesion
and proliferation, and in water purication systems for efficient
adsorption and removal of contaminants. A schematic illus-
trating the applications of core–shell nanobers in drug
delivery, catalysis, sensors, the food industry, tissue engi-
neering, and water purication is presented in Fig. 2.
1.3 Development in core–shell nanobers

Core–shell nanobers offer distinct advantages over traditional
and bulk composites due to their high surface-to-volume ratio,
enabling enhanced functionality and efficiency. Their unique
structure allows precise control over core and shell material
properties, facilitating tailored applications such as ME
coupling and drug delivery. Unlike bulk composites, they offer
Fig. 2 Schematic representation of core–shell nanofiber applications,
engineering, and water purification.

Sustainable Energy Fuels
exibility, a lightweight design, and enhanced interfacial
interactions, which are crucial for advanced devices. Scalable
fabrication methods, such as coaxial electrospinning, surpass
traditional composites in producing uniform, multifunctional
nanostructures. These features make core–shell nanobers
ideal for next-generation biomedical, energy, and environ-
mental technologies. However, the roots of core–shell nano-
bers lie in the development of electrospinning, a technique
pioneered in the 1990s for producing micro- and nanobers
using electrostatic forces.24 Early studies by Reneker and Doshi
(1995) laid the groundwork for electrospinning, demonstrating
the ability to develop ultrane bers from polymer solutions.14

Initial electrospinning focused on monolithic (single-compo-
nent) nanobers; however, researchers soon recognized the
potential for more complex structures to enhance functionality.
Core–shell nanobers were introduced with the advent of
coaxial electrospinning, which occurred around 2002–2003.
Loscertales et al. (2002) and others demonstrated the use of
a coaxial nozzle to simultaneously spin two different materials,
forming a core–shell structure.25 This allowed for the encapsu-
lation of one material (the core) within another (the shell),
enabling the tailoring of properties.26–28 Early studies, such as
those by Zhang et al. (2004), investigated core–shell nanobers
composed of polymers like PCL and gelatin, highlighting their
potential in biomedical applications.29 By the late 2000s, coaxial
electrospinning was rened to improve control over ber
morphology, diameter, and composition. Innovations included
emulsion electrospinning and modied coaxial/triaxial
electrospinning, which enabled the use of unspinnable core
materials (e.g., drug solutions or lipids) by leveraging spinnable
shell polymers. Alternative methods, such as self-assembly and
including in drug delivery, catalysis, sensors, the food industry, tissue

This journal is © The Royal Society of Chemistry 2026
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phase-separation electrospinning, have emerged for producing
core–shell-like structures without the need for coaxial setups.30

For instance, Jiang et al. (2013) utilized vapor-induced phase
separation to create core–shell nanobers, thereby expanding
the versatility of fabrication.31 The period also saw the integra-
tion of non-polymeric materials, such as ceramics and metal
oxides, into core–shell nanobers, broadening their applica-
tions beyond biomedicine.32

Since the 2010s, core–shell nanobers have gained traction
due to their improved scalability and functionalization capa-
bilities. Techniques like coaxial centrifugal spinning address
the limitations of coaxial electrospinning, such as low produc-
tion rates and high energy consumption, thereby enabling
commercialization potential. Recent advancements include
multiaxial electrospinning for producing multi-layered bers
and needleless electrospinning for achieving higher yields,
particularly for chitosan-based nanobers.33–35 Furthermore,
coaxial electrospinning remains the cornerstone for fabricating
ME core–shell nanobers due to its ability to precisely control
the composition of both the core and shell. By 2015–2025,
researchers had optimized parameters such as solution
viscosity, ow rates, and electric eld strength to achieve
uniform ber diameters (50–500 nm) and enhance interfacial
strain transfer, which is crucial for ME coupling. ME-based
core–shell nanobers have evolved from niche research to
a versatile platform for advanced devices, driven by innovations
in coaxial, multiaxial, and needleless electrospinning, as well as
novel material combinations.

Although several reviews have discussed ME composites,
electrospun nanobers, or polymer–ceramic multifunctional
systems, these studies have primarily focused on bulk lami-
nates, thin lms, or general ber fabrication techniques,
without examining core–shell nanobers as an integrated
materials platform. Furthermore, recent advances from 2022 to
2025—including coaxial electrospinning optimization, self-
assembled core–shell structures, and newly reported ME ber
systems such as CoFe2O4–Ba0.95Ca0.05Ti0.89Sn0.11O3, Ba2Zn2-
Fe12O22–PZT, and NdFeO3–PZT—have not been consolidated in
any existing review. To the best of our knowledge, no compre-
hensive article has simultaneously examined (i) the structure–
property relationships of core–shell nanobers, (ii) their strain-
mediated ME coupling mechanisms, and (iii) their emerging
roles in fuel cells and drug-delivery technologies. This review
uniquely integrates these interdisciplinary developments,
highlighting material design principles, fabrication strategies,
and application-specic performance metrics. Likewise, recent
progress in core–shell nanober-based drug carriers—
including dual-drug systems, stimuli-responsive release, and
coaxial bers for tissue regeneration—remains fragmented in
the literature. In addition to their roles in magnetoelectric
sensing and biomedical delivery systems, core–shell nanobers
have recently emerged as promising materials for fuel cell
technologies due to their tunable nanoarchitecture, enhanced
surface area, and ability to integrate multifunctional compo-
nents within a single ber. By integrating recent ndings from
these domains and identifying key knowledge gaps, this work
This journal is © The Royal Society of Chemistry 2026
offers a timely and distinctive perspective that complements
and extends existing reviews.

2. Materials and application
2.1 Magnetoelectrics

In recent years, there has been increased scientic focus on
multiferroic materials exhibiting magnetoelectric (ME)
phenomena, which are characterized by the correlation between
the applied magnetic eld and the corresponding electric
voltage.36–41 The intrinsic coupling between electric and
magnetic orders in ME materials enables wirelessly induced
electric charge generation, facilitating the less-invasive incor-
poration of these materials into next-generation electronic
devices. Recent literature42–49 reports the notable progress in the
fundamental understanding and development of advanced ME
materials. These innovations have established ME materials as
a promising candidate for applications in microelectronics and
engineering, such as high-speed memory devices,50,51 advanced
ME antennas,52–54 and ME sensors,55–57 among others. Addi-
tionally, ME materials enable the detection of low-intensity
magnetic elds in MEMS sensor technologies for navigation
and automotive applications, operating effectively at room
temperature (RT). In contrast, highly complex SQUIDs need low-
temperature environments.58–60 Furthermore, ME materials
enable the harvesting of energy from ambient magnetic elds
for Internet of Things (IoT) applications, the realization of non-
volatile ME random-access memory (ME-RAM) for data storage
devices, and the development of highly compact, tunable
antennas for radio-frequency communication in space,
demonstrating enhanced efficiency relative to conventional
materials.61–63

In ME composites, coupling occurs through mechanical
strain that is generated in the magnetostrictive (ferromagnetic)
phase, which is transferred to the piezoelectric (ferroelectric)
phase, resulting in an electrical response.64–66 In the direct ME
effect, an in-plane magnetic eld (H) induces strain in the
magnetic component through a phenomenon known as
magnetostriction. This strain is mechanically transferred to the
ferroelectric component, generating dielectric polarization via
the piezoelectric effect, as illustrated in Fig. 3(a). In contrast, the
converse ME effect involves an out-of-plane electric eld (E) that
creates strain in the ferroelectric component through the
inverse piezoelectric effect. This strain is mechanically linked to
the magnetic element, resulting in changes in magnetization
(DM) or domain reorientation due to the piezomagnetic impact,
as shown in Fig. 3(b).

As a result, extensive research has focused on exploring the
micro- and nanoscale structures of heterogeneous materials
and their congurations, which include: (i) 0–3 type
structures,67–69 where magnetostrictive nanoparticles are
dispersed within a piezoelectric matrix as shown in Fig. 2(a); (ii)
2–2 type structures,70–74 characterized by alternating layers of
magnetostrictive and piezoelectric phases as shown in Fig. 4(b);
(iii) 1–3 type structures,75–78 consisting of piezoelectric bers or
rods embedded in a magnetostriction matrix or ber network,
as illustrated in Fig. 4(c).
Sustainable Energy Fuels
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Fig. 3 Schematic illustration of the strain-mediated ME effect in a composite system: the (a) direct ME effect and (b) converse ME effect.
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Efficient higher-order interfaces in composite hetero-
structures are critical for achieving strain transfer across phase
boundaries. This maximizes ME coupling, which governs the
interaction between magnetic and electric order parameters.
Therefore, there is signicant potential to enhance ME coupling
by tailoring surface interactions in these heterostructures to
optimize strain transfer, ultimately facilitating ME perfor-
mance.79 The phase architectures of 0–3 and 2–2 type structures
Fig. 4 Composite ME materials with different types of structure, (a) 0–3

Sustainable Energy Fuels
exhibit irregular spatial distributions of ferroelectric/ferromag-
netic phases, which impede efficient strain transfer and
consequently result in relatively weak ME coupling. In partic-
ular, 2–2 type composites, characterized by alternating layered
structures of magnetostrictive and piezoelectric phases, oen
suffer from limited interfacial contact area and possible
mechanical mismatch between layers, thereby restricting
effective mechanical coupling. These factors hinder robust
, (b) 2–2, (c) 1–3 type structures.

This journal is © The Royal Society of Chemistry 2026
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interactions between magnetic and electric order parameters,
limiting the overall ME response.

In contrast, the 1–3 type composite structure, nanobers or
core–shell nanobers, particularly those incorporating nano-
bers as the magnetostrictive phase embedded within a piezo-
electric matrix, provides a more continuous and anisotropic
pathway for strain-mediated coupling. Furthermore, core–shell
nanobers are sometimes described as hybrid or variant 1–3
type structures, and both constituent phases are continuous
along the length of the ber. They are co-located within the
same one-dimensional structure. This conguration facilitates
higher mechanical strain transfer across the interfaces, signif-
icantly enhancing the ME coupling strength compared to other
composite structures. Most importantly, the nanoscale dimen-
sions and high aspect ratio of the bers contribute to an
increased interfacial area and improved load transfer efficiency,
further enhancing the ME performance.80,81

The rst intrinsic ME effect was experimentally demon-
strated in antiferromagnetic (chromic oxide) Cr2O3 single crys-
tals in 1961 by Folen at RT.82 Over the past century, considering
both material composition and dimensionality, ME materials
have progressed from single-phase to particulate, laminated,
and, more recently, micro- and nano-scale nanobers and thin
lms. To date, more than ten distinct families of single-phase
compounds have been extensively investigated as MEmaterials,
including BiFeO3,83,84 RMnO5 (R = Eu, Gd, Er, Y),85,86 and
RMnO3 (R = Gd, Tb, Dy).87,88 Such studies have been driven by
potential applications, includingmetallic memories,89 universal
memory,90 Bennett clocking,91 and resistive switching.92

However, achieving strong intrinsic ME coupling at or above RT
remains challenging, as most single-phase multiferroics
possess relatively low Curie temperatures.93,94 In general, for
multiferroic crystals, the polarization (P) and magnetization (M)
are coupled to the electric (E) and magnetic (H) elds through
the following relations:47 Landau theory describes the ME effect
in a single-phase material through the expansion of the free
energy expression as

FðE;HÞ ¼ F0 � PS
i Ei �MS

i Hi � 1

2
303ijEiEj � 1

2
m0mijHiHj

� aijEiEj þ
bijk

2
EiHjHk þ

gijk

2
HiEjEk (1)

Here, 30 and m0 denote the dielectric permittivity and magnetic
permeability of the medium, respectively, while 3ij and mij

represent the relative dielectric permittivity and magnetic
permeability of the material. The second and third terms in eqn
(1) correspond to the temperature-dependent spontaneous
polarization (PSi ) and spontaneous magnetization (MS

i ). The
fourth and h terms describe the inuence of electric and
magnetic elds on the electrical and magnetic responses,
respectively. The sixth term, containing aij, represents the linear
ME coupling. The subsequent two terms, involving bijkand gijk,
are third-rank tensors that account for higher-order coupling
effects.

Differentiation of eqn (1) concerning electric and magnetic
elds, respectively, leads to polarization and magnetization,
which are as follows:
This journal is © The Royal Society of Chemistry 2026
Pi ¼ � vFðE;HÞ
vEi

¼ PS
i þ 303ijEj þ aijHj þ 1

2
bijkHjHk þ gijkHjEk

(2)

Mi ¼ � vFðE;HÞ
vHi

¼ MS
i þ m0mijHj þ aijEj þ 1

2
bijkEjEk þ gijkEjHk

(3)

In practice, to eliminate the inuence of material electrical
conductivity, ME effects are investigated dynamically by
applying an alternating magnetic or electric eld to the
samples. The magnitude of dynamic effects is characterized by
using ME coefficients:

aE ¼ dE

dH
ðV=Oe:cmÞ for the direct ME effect;

aB ¼ dB

dH
ðOe:cm=VÞ for converse ME effect

where dE and dB are the amplitudes of the ac electric eld and
magnetic induction in the substance, caused by a change in the
magnetic dH and electric dE elds, respectively. However, in ME
crystals, the effects are small in magnitude aE ∼ 1–20 mV (Oe−1

cm−1) and are observed in single phase materials such as
BiFeO3, Y3Fe5O12, and SrCo2Ti2Fe8O19 at low temperatures (Tz
4–20 K)95,96 or under high magnetic elds (H z 10–50 kOe) in
BaFe12O19 and Ba2Co2Fe12O22 (ref. 97 and 98) which poses
challenges for their practical applications.

In composite ME, the ME coupling is primarily strain-
mediated, occurring at the interface between the magneto-
strictive and piezoelectric phases. This coupling arises from the
interaction between magnetic and electric elds viamechanical
strain transfer across the interface. To quantitatively describe
this phenomenon, a mathematical formulation based on
continuum mechanics and electromagnetism, incorporating
key physical quantities such as strain (S), displacement (D),
electric eld (E), magnetic eld (H), permittivity (3), and
permeability (m) is used. For general composites, the tensor
notation accounts for anisotropic material properties and
complex microstructures.99–101 For the magnetostrictive and
piezoelectric phases, the constitutive relations can be expressed
as:

Si = sijTJ + dkiEk + qkiHk (4)

Dk = dkiTi + 3knEn + aknHn (5)

Bk = qkiTi + aknEn + mknHn (6)

where Si and TJ are strain and stress tensor components,
respectively; Ek, Dk, Hk, and Bk are the components of the
electric eld, electric displacement, magnetic eld, and
magnetic induction, respectively; sij, dki, and qki denote the
effective elastic compliance, and piezoelectric, and piezo-
magnetic constants, respectively, while 3kn, mkn, and akn corre-
spond to the effective permittivity, permeability, and linear ME
coupling tensor.102–104 The ME coefficient can be written by
solving eqn (4)–(6).
Sustainable Energy Fuels
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aME; ij ¼ dEi

dHi

z sij$dki$qki (7)

This formulation combines the sequential coupling pathway
in which an applied magnetic eld induces strain in the
magnetostrictive phase (qki), the strain is elastically transferred
across the interface (sij), and the piezoelectric phase converts
the strain into an electric polarization (dki). Under the
assumptions of linear constitutive behavior, ideal interfacial
strain transfer, and negligible intrinsic ME effects, this
product–property relationship quantitatively explains the
enhanced ME coefficients observed in engineered composites
relative to single-phase materials, particularly at RT.

From eqn (7), it is evident that the characteristics of ME
effects in composites can be tuned by H and E elds and by the
interfacial interaction between constituent phases. Particularly
attractive for practical applications are coaxial nanober
architectures integrating ferromagnetic and ferroelectric pha-
ses, which can be fabricated relatively easily via electrospinning.
Recent advances have yielded a range of composite materials
exhibiting high ME conversion efficiency. Furthermore, as
indicated by eqn (3), enhancing the ME effect in composites
requires the selection of ferromagnetic components with
signicant piezomagnetic coefficients; qki such as metals (Ni
and Co), and alloys such as FeCo,105–107 FeGa,108,109 Metglas,110–112

Terfenol-D (TbxDy1−xFe2),113–115 and ferrites (NiFe2O4
116–118 and

CoFe2O4 (ref. 119–121)-combined with piezoelectric materials
possessing high piezoelectric constants, dki. Examples include
ceramics like PbZr0.52Ti0.48O3 (PZT),122–124, (1 −x)Pb(Mg1/3Nb2/3)
O3-xPbTiO3 (PMN–PT),125–127 LaNiO3,128–130 BaTiO3,131,132 and
aluminum nitride (AlN) crystals,133–135 and polymers such as
polyvinylidene uoride (PVDF),136–138 which are highly prom-
ising for device applications. The aE typically ranges from ∼1–
100 mV (Oe−1 cm−1) for bulk composites, whereas for planar
structures it is about 1–50 V (Oe−1 cm−1), increasing up to 100 V
(Oe−1 cm−1) at acoustic resonance frequencies. The capability
to interconvert magnetic and electric elds enables the appli-
cation of the ME effect in multiferroic materials across diverse
areas of science and technology. The direct ME effect serves as
the foundation for devices such as sensors for detecting static
and low-frequency alternating magnetic elds with sensitivities
approaching ∼10−11 T at RT,139 solid-state inductors and
transformers tunable via electric elds,131 and energy harvesters
capable of converting alternating-current (AC) magnetic elds
into direct-current (DC) voltage,140 among others. The literature
highlights several advancedME composite sensors for detecting
magnetic elds. Dong et al.141 achieved the sensing of low-
frequency (102 Hz) AC elds down to 10−12 T using a Terfenol-D/
PMN–PT laminate. Zhai et al.142 achieved pico-tesla-level (10–12
T) detection across a broad 10−2–10^3 Hz range using a Terfe-
nol-D/PZT composite. Li et al.143 demonstrated nano-
electromechanical ME sensing using FeGaB/AlN, achieving 800
pT DC detection at 3.19 MHz. Duc et al.144 developed a (Fe80-
Co20)78Si12B10/PZT laminate sensitive to micro-tesla elds at 5
kHz, while Chu et al.145 reported PMN-PT/FeBSi composites
capable of detecting ultra-low AC elds of 10−13 T at 23.3 kHz.
Sustainable Energy Fuels
Together, these examples highlight the remarkable dynamic
range of ME sensors—from femto-tesla and pico-Tesla AC
detection to nano-tesla DC measurements. The converse ME
effect nds applications in electrically tunable resonators,
microwave lters, and electric eld-controlled data storage
devices.146–149 Several signicant demonstrations of converse
ME composites have been reported. Yinan et al.150 developed
a dual-drive DC magnetic sensor utilizing a Metglas/PZT
composite, achieving a remarkably low detection limit of 1 nT.
Chen et al.151 explored the converse ME effect in a Metglas/PMN-
PT composite structure, while Jia et al.152 investigated a PMN-
PT/Terfenol-D composite, reporting a notable electric-eld-
induced magnetization coefficient (aE) of 150 mG V−1 at RT.
2.2 Fuel cells and drug delivery

In fuel-cell architectures, core–shell nanobers serve multiple
roles simultaneously — as catalyst supports that improve cata-
lyst dispersion and stability, as gas-diffusion or microporous
layers that regulate water management and oxygen transport,
and as reinforced membrane scaffolds that maintain proton
conduction under low-humidity conditions. Several recent
studies demonstrate the heterogeneous ways core–shell or
closely related coaxial nanober designs improve electro-
chemical performance. For example, electrospun porous carbon
nanobers bearing TiO2 hollow structures or TiO2–derived
cores coated with conductive carbon shells provide a high-
surface-area, corrosion-resilient support that enhances meth-
anol oxidation and oxygen-reduction activity while resisting
particle agglomeration. Tailoring the core composition (e.g.,
metal oxide or ceramic) and the conductivity/porosity of the
carbon shell enables independent control of catalytic anchoring
and mass-transport pathways, a design freedom that is difficult
to achieve with particulate supports.153,154 Similarly, nitrogen-
doped carbon nanober composites with embedded TiO2 or
other metal-oxide cores have been shown to act as robust anode/
cathode scaffolds with improved durability and enhanced ORR/
oxidation kinetics, particularly when thermal treatment and
heteroatom-doping are used to tailor the electronic structure
and surface chemistry. Taken together, these advances suggest
that core–shell nanober designs offer a materials-by-architec-
ture route to decouple catalytic, ionic, and mass-transport
functions, a critical capability for next-generation, low-Pt or Pt-
free electrodes.155,156 For example, oxide–metal core–shell
structures (such as CoOx@Pt supported on carbon) promote
strong metal–oxide interactions that suppress Pt dissolution,
regulate the local electronic environment, and improve the
durability of oxygen-reduction catalysts—all essential for high-
performance and long-lived fuel-cell electrodes as shown in
Fig. 5(a). Such engineered interfaces enable the decoupling of
catalytic activity (dominated by the noble-metal shell) from
structural stability (provided by the metal-oxide core), allowing
for improved mass transport and enhanced long-term opera-
tional resilience.

In drug-delivery and wound-healing contexts, coaxial and
core–shell electrospun bers provide decisive advantages for
controlled release, multi-drug dosing, and local
This journal is © The Royal Society of Chemistry 2026
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Fig. 5 Schematic illustration of the core–shell nanostructure functionality in (a) fuel-cell catalysis and (b) drug-delivery systems.
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bioactivity.157–159 The enclosed core enables high loading of
fragile payloads (proteins, growth factors, or hydrophobic
anticancer drugs) with reduced burst release, while the shell can
be engineered for stimuli-responsiveness (pH, temperature, and
enzymatic degradation) or surface bioactivity (adhesion and
antimicrobial coatings). Recent comprehensive reviews and
studies demonstrate progress in both the fundamentals and
applications of core–shell bers for therapeutics: from design
rules for coaxial electrospinning and core–shell morphology
control to application-specic demonstrations such as wound
dressings with separate antimicrobial and healing-promoting
compartments. Notably, hybrid fabrication strategies that
combine self-emulsifying cores with coaxial spinning enhance
the encapsulation of poorly soluble drugs (e.g., paclitaxel) and
accelerate dissolution without compromising sustained release
properties.160

Beyond performance, recent work has also emphasized
translational considerations. For fuel cells, research explores
how electrospun networks can be integrated into electrode
laminates and how process conditions (ber diameter, shell
porosity, and post-treatment) inuence both short-term activity
and long-term stability under realistic operating cycles. In drug
delivery, the literature emphasizes the importance of stan-
dardized release testing, cytotoxicity, and biocompatibility
assays for core–shell systems, as well as strategies for scale-up,
such as needleless or multi-jet electrospinning, to enhance
throughput without compromising core–shell morphology.161

Core–shell designs also provide unique advantages in
biomedical and therapeutic applications, where controlled
release, protection of bioactive molecules, and spatially selec-
tive drug delivery are essential. Coaxial bers or nanoparticles
with drug-loaded cores and protective or stimuli-responsive
shells can transport therapeutic agents through the blood-
stream, shield them from premature degradation, and release
them in a controlled manner at the target site, as shown in
Fig. 5(b). By tuning shell composition, porosity, and degrada-
tion kinetics, these systems can achieve sustained or on-
demand release proles, improved drug localization, and
reduced systemic toxicity. Such multifunctional platforms have
been explored for anticancer therapies, antimicrobial delivery,
wound healing, and regenerative medicine, demonstrating the
This journal is © The Royal Society of Chemistry 2026
broader utility of core–shell architectures beyond purely phys-
ical or electrochemical applications.
3. Core–shell nanofibers: advantages
for magnetoelectric devices, fuel cells,
and drug delivery

Core–shell nanobers represent a cutting-edge class of 1D
nanostructures with unique morphological and functional
characteristics. The core–shell design can spatially separate
different functional materials within a single ber geometry,
leading to tunable physicochemical properties and enhanced
performance in various applications, including sensors, catal-
ysis, drug delivery, energy harvesting, and wearable electronics.
Core–shell nanobers feature a core material completely
encapsulated by a concentric shell, allowing for distinct func-
tionalities in each layer. Fabricated primarily through coaxial
electrospinning, this method utilizes dual nozzles to deliver
core and shell solutions simultaneously, thereby enabling
precise control over ber morphology.162 The core typically
serves as the primary functional component, while the shell
provides protection, biocompatibility, or controlled environ-
mental interaction. Coaxial nanobers are widely used in drug
delivery, where a core containing a drug (polycaprolactone-
clindamycin) is encapsulated by a biodegradable shell (silk
broin (SF)) for sustained release.163 In catalysis, coaxial nano-
bers with a catalytic core (e.g., metal nanoparticles) and
a porous shell enhance reaction efficiency by improving the
accessibility of active sites.164 The active pharmaceutical ingre-
dient is loaded in the core, while the shell controls the release
kinetics in a drug delivery system. Coaxial bers enable the
precise spatial separation of functional domains, making them
ideal for applications that require encapsulation, sustained
release, or stimuli-responsive behaviour.

Moradipour et al.165 fabricated core–shell nanobers based
on polycaprolactone/polyvinyl alcohol (PCL/PVA) and PCL/Col)
for biomedical applications such as drug delivery and wound
healing. A notable application of coaxial nanobers is in ME
materials, where the core and shell are designed to couple
magnetic and electric properties. ME core–shell nanobers
typically consist of a magnetic core, such as CoFe2O4 and
Sustainable Energy Fuels
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Ba2Zn2Fe12O22, and a piezoelectric or ferroelectric shell, such as
PVDF and BaTiO3. This conguration enables the nanobers to
generate electric polarization under magnetic elds or vice
versa, making them promising for applications in sensors,
actuators, and energy harvesting devices. For example, coaxial
nanobers with a BaTiO3 core and Ba2Zn2Fe12O22 shell have
been shown to exhibit strong ME coupling, suitable for exible
electronics.166 Fabricating ME nanobers involves carefully
optimizing electrospinning parameters to achieve uniform
core–shell interfaces and ensure compatibility between the
magnetic and electrical phases. For instance, coaxial nanobers
with a PLA-CoFe2O4 core and a PVDF-TrFE shell have demon-
strated signicant ME coupling, which can be utilized for
energy harvesting. Therefore, continuous research and devel-
opment of core–shell nanobers are essential to fully utilize
their multifunctional potential and tailor their structural and
interfacial properties for advanced applications. Core–shell
nanobers are designed to optimize interfacial interactions and
enable controlled transport of charge, ions, or energy across the
core–shell interface.167–170 They combine distinct core and shell
materials to achieve multifunctionality, precise surface control,
and superior performance unattainable in traditional nano-
bers or bulk composites. This architecture enables efficient
encapsulation and controlled release of sensitive agents, while
also providing enhanced mechanical strength and structural
versatility. Moreover, scalable fabrication methods, such as
coaxial or emulsion electrospinning, ensure energy-efficient
production for applications in drug delivery, fuel cells, energy
harvesting, and environmental remediation.171–173
4. Fabrication methods for core–shell
nanofibers

Core–shell nanobers are fabricated using various techniques
that allow precise control over their morphology, composition,
and functionality. These methods enable the creation of nano-
bers with tailored core and shell materials, making them
suitable for applications in biomedical engineering, energy
storage, catalysis, and ME systems. The primary fabrication
methods include coaxial electrospinning, emulsion electro-
spinning, and self-assembly or coating. Each method offers
unique advantages and challenges, with the choice of technique
depending on the desired ber properties, material compati-
bility, and application requirements.
Fig. 6 (a) Schematic of the electrospinning setup for preparation of
core–shell nanofibers. (b) Optical image of core–shell droplets on the
nozzles of an apparatus for coaxial electrospinning. (c) SEM image of
core–shell fibers of PVDF (core) and PC (shell) produced by coaxial
electrospinning. (b and c) adopted from ref. 162. Copyright© 2007
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
4.1 Coaxial electrospinning

The coaxial electrospinning technique has emerged as a highly
versatile and efficient method for fabricating core–shell nano-
bers with tunable morphology and functionality. Unlike
traditional single-uid electrospinning, coaxial electrospinning
employs a concentric spinneret (also known as a nozzle spin-
neret) composed of two coaxial needles that allow the simulta-
neous ow of two different polymer solutions: one designated
as the core material and the other as the shell material. When
subjected to a high electric eld, the combined jet undergoes
stretching (Taylor cone), elongation, and solidication,
Sustainable Energy Fuels
ultimately forming nanobers with a distinct core–shell struc-
ture as shown in the schematic in Fig. 6(a).174–176 The successful
preparation of core–shell nanobers via coaxial electrospinning
requires careful optimization of several process parameters,
including the concentration and viscosity of the polymer solu-
tions, the applied voltage, the distance between the spinneret
and the collector, and the ow rates of both the core and shell
solutions.177 Each of these factors inuences the morphology,
diameter, and uniformity of the resulting nanobers, as well as
the stability of the Taylor cone during electrospinning.178 The
digital image of the Taylor cone during coaxial electrospinning
and the SEM image of the PVDF-PC core–shell nanober are
shown in Fig. 6(b) and (c).162

4.1.1 Concentration and properties of polymer solution.
The concentration and viscosity of the polymer solutions play
a pivotal role in determining the spinnability and morphology
of the coaxial bers. For the shell solution, sufficient chain
entanglement is necessary to provide mechanical stability to the
jet and to prevent jet breakup during electrospinning.179 A
solution that is too dilute tends to form beads or droplets, while
an excessively viscous solution may hinder the electrospinning
process due to difficulties in pumping and jet elongation.
Similarly, the core solution must be optimized depending on
whether it is a solid polymer, a liquid, or an active agent
dispersed in a carrier. For instance, the core uid may be
a bioactive compound dissolved in a biocompatible polymer, as
seen in drug delivery applications. In contrast, the shell uid
provides structural support and controlled release properties.
Proper miscibility between core and shell solutions is not
essential; however, interfacial tension and ow stability must be
managed to maintain a distinct core–shell conguration. Fiber
formation requires a polymer concentration above a critical
value to ensure sufficient chain entanglement.180 Below this
threshold, beads form due to Rayleigh instability; above it,
viscosity increases sharply, enabling smooth jet formation.181

For example, in SF–based core–shell bers, SF concentrations
below 6% led to bead-like bers, whereas at 8%, the viscosity
reached ∼2308 cP. Similarly, increasing the PVA concentration
from 3% to 9% increased the viscosity from ∼92.7 cP to ∼165.1
cP. Higher polymer concentrations generally enlarge ber
This journal is © The Royal Society of Chemistry 2026
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diameters. In SF/PVA systems, increasing the SF in the shell
from 6% to 8% resulted in thicker core–shell bers. Changing
PVA in the core had a lesser effect; however, at high shell/core
concentrations, the core concentration also inuenced the
diameter.182 In PVDF bers, increasing the concentration from
25 wt% % (yielding ∼473 nm) to 30 wt% % increased the
average diameter to ∼644 nm.183 With PAN solutions, an
increasing concentration also led to an increase in ber diam-
eter and electrical conductivity.184 Higher solution conductivity
enables more vigorous jet stretching, resulting in smaller ber
diameters. For instance, embedding cellulose nanocrystals
(CNCs) into a PMMA shell signicantly increased solution
conductivity, yielding ner and more uniform PMMA-CNCs/
PAN core–shell bers.185

4.1.2 Applied voltage. The applied voltage is a critical
parameter that governs the initiation of the Taylor cone, jet
formation, and subsequent ber elongation.186 In coaxial
electrospinning, the voltage must be sufficiently high to over-
come the surface tension of both core and shell solutions
simultaneously. Typically, the required voltage ranges from 5 to
50 kV, although the exact value depends on the conductivity and
viscosity of the polymer solutions. A lower voltage may result in
intermittent jet formation or bead-like structures, while exces-
sively high voltage can cause whipping instabilities, irregular
ber diameter, or even ber breakage. Moreover, the shell
solution usually dominates the jet stability in the coaxial
conguration. Therefore, the applied voltage should be tuned to
balance the electrostatic force acting on the shell while ensuring
the smooth encapsulation of the core uid.187 High voltage is
necessary to overcome surface tension and form a stable Taylor
cone. Fiber diameter typically decreases as voltage increases
due to enhanced elongation, but jet instability may ensue above
a critical voltage. Empirically, for PCL/PVA/Thyme core–shell
bers, increasing the voltage from 8 kV to 15 kV decreased the
average diameter from ∼750 nm to ∼201 nm and promoted
stable compound Taylor cone formation.188 However, excessive
voltage disrupts the coaxial structure, causing separate jets and
loss of core–shell morphology.

4.1.3 Distance between the spinneret and collector. The
distance between the coaxial spinneret tip and the collector
strongly affects the ight time and solidication of the jet. The
typical range is 10–20 cm, though it varies with solution vola-
tility, applied voltage, and ambient conditions. Fibers may not
have sufficient time to solidify if the distance is too short,
resulting in ribbon-like or fused structures on the collector.
Conversely, excessively long distances may reduce the electric
eld strength, weakening the stretching force on the jet and
resulting in thicker, less uniform bers.189 The optimal distance
ensures that the solvent in both core and shell solutions evap-
orates adequately, maintaining distinct core–shell morphology
without collapsing or mixing the two phases. Additionally, the
type of collector (stationary plate, rotating drum, or patterned
collector) also inuences ber alignment and surface
morphology.190 The distance between the coaxial spinneret tip
and the collector, typically 10–20 cm, signicantly inuences jet
ight time and solidication in coaxial electrospinning, with
optimal distances (e.g., 15 cm for polycaprolactone in
This journal is © The Royal Society of Chemistry 2026
chloroform) ensuring complete solvent evaporation to form
stable bers, as noted by Dosunmu et al.191 and Subbiah et al.192

This range varies with solution volatility, applied voltage (10–20
kV for polyethylene oxide), and ambient conditions, such as
50% humidity, as reported by Huang et al.193 Short distances
(e.g., 5 cm) result in insufficient evaporation, leading to ribbon-
like or fused structures (2–3 mm wide for PLA). In contrast, long
distances (25 cm) reduce electric eld strength (from 0.67 kV
cm−1 to 0.4 kV cm−1), resulting in thicker, less uniform bers
(400 nm for PVDF), as reported by Reneker and Yarin et al.194

and Li and Xia et al.195 The optimal distance (12–15 cm for PCL/
gelatin) ensures solvent evaporation from both the core and
shell, maintaining distinct core–shell morphology (100 nm
core; 200 nm shell) without phase mixing.179 Additionally, the
collector type affects alignment; rotating drums at 1000 rpm
produces highly aligned bres (within 10° of the axis), whereas
stationary plates yield random bres, as shown by Teo et al.196

4.1.4 Flow rates of core and shell solutions. Flow rates are
a critical parameter in coaxial electrospinning, signicantly
inuencing jet stability and ber morphology, requiring precise
adjustment of core and shell ow rates to maintain a stable
coaxial jet, as noted by Khalf and Madihally,197 discussing core
ow rates of 0.1–0.5 mL h−1 and shell ow rates of 0.8–2 mL h−1

for PLGA/Col bers. The shell ow rate is typically higher than
that of the core to ensure robust encapsulation; for instance,
Mickova et al.198 reported that a shell ow rate of 1.5 mL h−1

with a core ow rate of 0.3 mL h−1 for PVA-core/PCL-shell
nanobers produced uniform core–shell structures with core
diameters of ∼150 nm and total ber diameters of ∼500 nm.
Excessive core ow disrupts the coaxial conguration, causing
jet breakup or core exposure, as observed by Lu et al.,199 where
increasing the core ow from 0.2 mL h−1 to 0.6 mL h−1 (shell at
1.2 mL h−1) in a PEO/PVA system led to irregular bers with
diameters up to 600 nm and partial core leakage.
4.2 Emulsion electrospinning

Emulsion electrospinning is a versatile technique used to
fabricate ultrane core–shell nanobers by electrospinning an
emulsion, typically composed of two immiscible phases, such
as oil-in-water (O/W) or water-in-oil (W/O).200,201 In this process,
the internal dispersed phase (e.g., drugs, proteins, or functional
materials) is encapsulated within the continuous polymer
solution phase. Under the inuence of a high-voltage electric
eld, the emulsion is stretched into a ne jet. As the solvent
evaporates during jet ight, the bers are deposited onto
a collector, with the dispersed droplets entrapped inside the
polymer matrix, forming a core–shell structure as shown in
Fig. 7(a).202,203 This method enables the encapsulation and
protection of sensitive biomolecules while allowing for
controlled release, making it particularly useful in drug delivery,
tissue engineering, and the development of advanced func-
tional materials.204 The preparation of core–shell nanobers by
emulsion electrospinning depends on multiple factors,
including the nature of the emulsion (type, stability, and
droplet size), polymer concentration, surfactant selection,
applied voltage, solution conductivity, tip–collector distance,
Sustainable Energy Fuels
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and ow rate.205 Each parameter plays a crucial role in ensuring
successful ber formation and achieving a well-dened core–
shell morphology. Confocal laser scanning microscopy (CLSM)
images of core-sheath structured nanobers prepared from
a W/O emulsion of PEO-FTIC as the core and PEG-PLA as the
shell nanobers are shown in Fig. 7(b).201

4.2.1 Emulsion characteristics and stability. The success of
emulsion electrospinning relies heavily on the stability of the
emulsion. Typically, a hydrophilic polymer is dissolved in the
aqueous phase, while a hydrophobic polymer is dissolved in the
organic solvent phase. Surfactants such as PVA, PEG, or Plur-
onic F-127 are oen added to reduce interfacial tension and
stabilize droplet size. Stable emulsions with small, uniformly
distributed droplets favour the formation of continuous core
channels within nanobers. If the emulsion is unstable, phase
separation may occur before spinning, leading to heteroge-
neous bers without a clear core–shell structure.206 The type of
emulsion (O/W vs. W/O) dictates the location of the core; for
example, encapsulating hydrophilic drugs requires a W/O
emulsion, whereas hydrophobic compounds are better suited
for O/W systems. Double emulsions are particularly useful for
encapsulating sensitive biomolecules such as proteins or
growth factors, as the multiple interfaces protect them from
organic solvents.207

4.2.2 Polymer concentration and viscosity. Polymer
concentration determines the spinnability of the emulsion. At
low concentrations, insufficient chain entanglement results in
bead formation or droplet spray, rather than the formation of
bers. At excessively high concentrations, viscosity increases,
making it difficult to eject a stable jet. An optimal concentration
ensures smooth jet elongation, continuous ber formation, and
proper encapsulation of the dispersed phase. In emulsion
electrospinning, shell-forming and core-forming polymers
must be optimized.201 For instance, PCL dissolved in chloro-
form/DMF mixtures is widely used as a shell polymer due to its
hydrophobicity and mechanical strength. In contrast, hydro-
philic polymers such as gelatin or PEO are oen placed in the
dispersed aqueous phase. Proper viscosity matching between
Fig. 7 (a) Schematic of preparation of core–shell nanofibers by the e
nanofibers prepared from the W/O emulsion of PEO-FTIC as the core, a
2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Sustainable Energy Fuels
the phases helps avoid droplet coalescence and irregular ber
morphologies.208

4.2.3 Surfactant and solvent selection, and evaporation
rate. Surfactants are indispensable for stabilizing emulsions.
The choice of surfactant depends on the emulsion type;
hydrophilic surfactants stabilize O/W emulsions, whereas
hydrophobic surfactants stabilize W/O emulsions. Surfactant
concentration must be carefully tuned: too little surfactant
leads to phase separation, while excessive surfactant can
migrate to the ber surface during spinning, affecting ber
smoothness and surface chemistry.209 Moreover, residual
surfactants may inuence the biocompatibility of bers in
biomedical applications. Solvent volatility critically affects
emulsion stability and ber morphology. A fast-evaporating
solvent (chloroform) promotes rapid solidication of the shell
polymer, which traps the dispersed phase inside, thus favouring
core–shell structures. If the solvent evaporates too slowly, phase
separation can occur during ight, resulting in uneven ber
formation. Oen, solvent mixtures are used to balance volatility
and polymer solubility.210,211
4.3 Self-assembly methods

Core–shell nanobers formed by self-assembly represent an
elegant bottom-up fabrication route that leverages material
properties, such as phase separation, block copolymer archi-
tecture, and intermolecular interactions, thereby avoiding the
need for complex spinneret setups. This section reviews key self-
assembly strategies, parameters inuencing morphology, and
practical implementations.

4.3.1 Phase separation via spontaneous self-assembly in
single-nozzle electrospinning. Another versatile route is the
spontaneous phase separation during electrospinning from
blended solutions. Liu et al.212 produced organic core–shell
nanobers via single-nozzle electrospinning of a PQT-12 and
PEO blend. PQT-12 migrated to the ber surface (forming the
shell) during solvent evaporation while PEO formed the core.
The shell thickness and overall ber morphology could be
tuned simply by adjusting the PQT-12/PEOmass ratio, as shown
mulsion technique and (b) CLSM images of core-sheath structured
nd PEG-PLA as shell nanofibers. (b) adopted from ref. 201. Copyright©

This journal is © The Royal Society of Chemistry 2026
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Fig. 8 (a) Chemical structure of PQT-12 and PEO and the formation of a core–shell structure by self-assembling induced phase separation,
adopted from ref. 212, (b) schematic illustration for the preparation of multifunctional core–shell nanofibers functionalized with two different
types of nanoparticles loaded in the core and in the shell from a self-assembled block copolymer template via a selective solvent approach,
adopted from ref. 213, Copyright© The Royal Society of Chemistry 2015, and (c) low temperature, multimaterial fiber drawing method used for
the iterative size reduction of a macroscopic layered rod down to core–shell nanowires, adopted from ref. 214, Copyright© Springer Nature
2014.
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in Fig. 8(a). Optimized parameters include the composition
ratio (semiconductor vs. matrix polymer), solvent evaporation
rate, polymer miscibility, and dynamics within the jet for
homogeneous core–shell nanobers.

4.3.2 Block copolymer–directed self-assembly. One
compelling method utilizes block copolymer self-assembly.
Sanwaria et al.213 demonstrated a strategy to prepare core–shell
polymer–inorganic hybrid nanobers using a PS-b-P4VP diblock
copolymer. Silver nanoparticles (with PS ligands) selectively
reside in PS domains, forming the core, while the P4VP matrix
remains as the shell. Subsequent selective solvent swelling
isolates cylindrical PS core bers, which can be functionalized
with additional nanoparticles (Au and CdS) on the P4VP shell as
shown in Fig. 8(b). Key parameters include block copolymer
composition (block lengths and volume fraction), nanoparticle
functionalization and affinity to specic blocks, and solvent
selectivity—swelling P4VP without dissolving PS to form ultra-
ne core–shell nanobers.

4.3.3 Thermal self-organization from preforms. Although
not electrospinning, a notable self-assembly approach has
emerged from the thermal drawing of layered preforms. Ther-
mally drawing a composite rod composed of core and shell
materials (an As2Se3 core wrapped with a PVDF sheath)
produced kilometre-long core–shell nanowires as shown in
This journal is © The Royal Society of Chemistry 2026
Fig. 8(c).214 Post-thermal treatment induces transformations to
structures such as nano-springs, peapods, and core–shell
nanospheres, governed by parameters including diameter,
temperature, and heat duration. Control factors include the
preform layer structure and compatibility, drawing ratios (scale
reduction), and treatment temperature and duration.
5. Core–shell nanofibers for
magnetoelectric sensors

ME materials, which couple magnetic and electric order
parameters through strain mediation, are at the forefront of
research in sensors, energy harvesters, and spintronic devices.
In conventional bulk composites or thin lms, substrate
clamping, poor interfacial bonding, and dimensional
constraints oen limit the ME coefficient. The core–shell
nanober geometry provides an exceptionally high surface area,
reduced mechanical clamping, and excellent stress transfer
across core–shell interfaces, favouring stronger ME interactions
than bulk or thin-lm counterparts. In these bers, the
magnetostrictive phase (commonly spinel ferrites, hexaferrites,
or orthoferrites) forms the core, while the piezoelectric phase
(such as PZT, BaTiO3, or lead-free perovskites) forms the shell,
or vice versa. The concentric architecture ensures that strain
Sustainable Energy Fuels
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generated in one phase under a magnetic or electric eld is
efficiently transferred to the other, enabling direct and converse
ME effects.215

The rst experimental demonstration of ME interactions in
electrospun core–shell nanobers was reported by Xie et al.
(2011), who fabricated CoFe2O4–PZT bers using coaxial
electrospinning followed by annealing at 600 °C, as shown in
the schematic in Fig. 9(a). The resulting bers had diameters of
∼200–400 nm, with a uniform concentric architecture
conrmed by the TEM micrograph in Fig. 9(b). Piezo-response
force microscopy under applied magnetic elds revealed strain-
mediated ME coupling at the single-ber level, establishing
electrospinning as a viable route to 1D ME nanostructures, as
shown in Fig. 9(c).216 Building on this, Sreenivasulu et al. (2018)
synthesized NiFe2O4–BaTiO3 core–shell bers via coaxial spin-
ning of sol–gel precursors in PVP, followed by calcination at 700
°C. The nanobers, with diameters in the 150–300 nm range,
exhibited a ME voltage coefficient of ∼0.4 mV cm−1 Oe−1 at low
frequency and demonstrated magnetodielectric effects in mat
assemblies.217

A signicant theoretical advance was made by Petrov et al.
(2018), who developed a continuum model for ME coupling in
coaxial nanobers. The theory predicted direct ME coefficients
of tens to hundreds of mV cm−1 Oe−1 and converse ME shis at
ferromagnetic resonance, depending on the core–shell diam-
eter ratio, elastic constants, and magnetostrictive/piezoelectric
coefficients of the chosen phases.218 Experimentally, Liu et al.
(2020) validated converse ME coupling in NiFe2O4–PZT bers
(diameters 200–500 nm) using NSMM as shown in Fig. 9(d),
observing an electric-eld-induced resonance shi with a CME
Fig. 9 (a) Digital photo of an actual coaxial spinneret in the electrospinnin
switching characteristics of piezo response in a CFO-PZT core–shell nan
using the variable field module (VFM), (a–c) adopted from ref. 216, Copy
PZT core–shell nanofibers, adopted from ref. 219, (e) MFM for a fiber of N
change in the remnant polarization (Pr) as a function of magnetic field (H

Sustainable Energy Fuels
coefficient of −24 Oe cm V−1.219 Shahzad et al. [2024] fabricated
a core–shell nanober of CoFe2O4–BaTiO3 nanobers for
magnetic-eld-triggered release of doxorubicin, achieving 95%
drug release in 30 minutes under a 4 mT eld, and demon-
strating ∼90% cytotoxicity against SK-MEL-28 melanoma cells
while remaining biocompatible in homolysis assays.220 Aer
that, Ge et al. (2024) reported hexaferrite–BTO core–shell bers
(average diameter ∼300 nm) as shown in Fig. 9(e), conrmed by
MFM analysis, and prepared by coaxial spinning and high-
temperature annealing, which exhibited robust ME voltage
responses by measuring the polarization under an external
magnetic eld as shown in Fig. 9(f), in aligned mats suitable for
device-level integration.221

Beyond spinel and hexaferrite systems, Yadav et al. (2022)
demonstrated ME properties in electrospun NdFeO3-PZT bers,
with diameters ∼128 nm, as conrmed by TEM analysis
(Fig. 10(a)), showing ME coupling by recording polarization
under an external magnetic eld as shown in Fig. 10(b and c) at
RT.222 Furthermore, Yadav et al. (2022) developed a hexaferrite-
PZT ME-enabled core–shell nanober as shown in a TEM
micrograph (Fig. 9(d)). They demonstrated direct ME coupling
as depicted in Fig. 10(e and f).223 A notable step toward envi-
ronmentally benign systems came from Hadouch et al. (2023),
who synthesized lead-free CFO-BCTSn bers (core and shell
∼100–250 nm) by coaxial electrospinning as shown in the
schematic in Fig. 10(g) followed by the core–shell conguration
(Fig. 10(h)), achieving a high ME voltage coefficient of ∼346 mV
cm−1 Oe−1 as depicted in Fig. 10(i).224 Later, Yadav et al. (2024)
demonstrated sensor-grade Ba2Zn2Fe12O22-PZT core–shell
nanober ME responses (650–730 V/T at ∼8.3 kHz) suitable for
g setup, (b) TEMmicrograph of CFO-PZT core–shell nanofibers, (c) the
ofiber before and after the application of an external magnetic field by
right©-The Royal Society of Chemistry 2011, (d) NSMM image of NFO-
FO shell–PZT core nanofibers, adopted from ref. 221, and (f) fractional
), adopted from ref. 221.

This journal is © The Royal Society of Chemistry 2026
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Fig. 10 (a) TEM images of the core–shell NdFeO3–PbZr0.52Ti0.48O3 nanofibers, (b) P–E loops of the core–shell NF–PZT nanofibers under various
magnetic fields, (c) variations in maximum polarization and electric coercivity with respect to the applied magnetic field, (a–c) adopted from ref.
222, Copyright© Elsevier-(2022), (d) TEMmicrograph, (e) variations in the P–E loop, (f) variations in MPmax% and MPr% with respect to magnetic
field, (d–f) adopted from ref. 223, Copyright© Elsevier-(2022), (g) coaxial electrospinning of core–shell nanofibers: setup schematics, (h)
annealed CFO-BCTSn core–shell nanofibers, and (i) dependence of the magnetoelectric coefficient of CFO-BCTSn NFs on the DC magnetic
field at RT; (g–i) adopted from ref. 224, Copyright© 2023 American Chemical Society.
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AC/DC eld detection.225 Most recently, Saha et al. (2025)
summarized these developments, emphasizing that optimiza-
tion of electrospinning parameters (solution concentration,
applied voltage 10–25 kV, ow rates 0.2–1 mL h−1, and post-
annealing at 500–700 °C) is crucial to achieve uniform diame-
ters, strong interfaces, and enhanced ME coefficients for sensor
and harvester applications.215 Despite these critical milestones,
it is clear that research on ME core–shell nanobers remains
very limited compared to bulk composites, thin lms, or 2D
heterostructures. Fewer than a dozen detailed experimental
studies have been reported, and only a handful of material
systems—primarily CFO–PZT, NFO–BTO, hexaferrite–BTO, and
rare-earth orthoferrites—have been explored. This narrow
materials base and the lack of systematic studies on factors
such as the core–shell ratio, ber alignment, interfacial strain
engineering, and device integration leave signicant scope for
further research. Exploring lead-free ferroelectrics, integrating
exible polymers with oxide cores, and developing aligned ber
arrays for magnetic sensing or spintronic devices could yield
breakthroughs in ME performance. Thus, ME core–shell
nanobers represent a highly promising but underexplored
frontier with ample opportunities for innovation. The
This journal is © The Royal Society of Chemistry 2026
compilation of ME core–shell nanober structures, including
the diameter, ME coefficients/sensitivities, and application-
specic features, is summarized in Table 1.
6. Core–shell nanofibers for fuel cell
applications

Recent progress in fuel-cell engineering has highlighted the
effectiveness of core–shell nanobers in addressing long-
standing challenges related to catalyst stability, mass-transport
limitations, and fuel crossover. Compared with traditional
carbon blacks or granular ceramic catalysts, 1D nanobers and
core–shell nanobers enable a continuous conductive frame-
work with high porosity, improved catalyst anchoring, and
enhanced electron/ion mobility. Iskandarani et al.226 demon-
strated that P(VDF-TrFE)/Pt/C/S–SiO2 nanober cathodes
maintain high performance and exceptional durability under
low-humidity PEMFC operation due to their interconnected
ber network and enhanced Pt–ionomer interfacial contact.
Complementary mechanistic insights from Kabir et al.227 and
Khandavalli et al.228 demonstrate that optimized polymer–
Sustainable Energy Fuels
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particle interactions and controlled ionomer distribution
within nanobers signicantly enhance Pt accessibility, oxygen-
reduction kinetics, and catalyst utilization, underscoring the
critical role of the ink microstructure and spinnability in
producing high-quality nanober catalyst layers. Beyond elec-
trodes, Liu et al.229 reported that electrospun nanober-rein-
forced polymer electrolyte membranes offer superior
mechanical stability, proton-transport pathways, and humidi-
cation tolerance, indicating that nanober engineering can
also enhance membrane function. In parallel, Kallina et al.230

demonstrated that humidity-robust nanober cathode layers
can be realized through the use of tailored ionomer content and
multilayer designs, thereby mitigating mass-transport resis-
tance during PEMFC operation. This section provides a brief
review and discussion of prominent research studies on fuel
cells employing 1D nanobers and core–shell nanober struc-
tures, highlighting their design strategies, functional advan-
tages, and performance enhancements in energy conversion
applications. Li et al.231 developed core–shell TiO2/C nanobers
as catalyst supports for fuel cells, where uniformly dispersed Pt
nanoparticles (∼2 nm) enhanced methanol oxidation activity
and stability. SEM and TEM micrographs of TiO2/C are shown
in Fig. 11(a and b), respectively. The system exhibited 7 times
higher current density and a 2.5 times boost under UV light,
highlighting a synergistic photo-electrocatalytic effect that is
benecial for fuel cell efficiency. Singh and Dempsey et al.232

synthesized Pt-decorated functionalized carbon nanobers
(fCNFs) for fuel cell applications, achieving uniform Pt disper-
sion inside and outside the bers as shown in Fig. 11(c). This
design improved Pt utilization, CO tolerance, and long-term
durability, outperforming commercial Pt/C catalysts and
offering a cost-effective route for high-performance fuel cells, as
shown in Fig. 11(d).

Karuppannan et al.233 presented a highly durable Pt–C core–
shell catalyst supported on carbon nanobers (CNFs) for
a proton exchange membrane fuel cell, as shown in the TEM
image in Fig. 11(e). The core–shell structure refers to individual
Pt nanoparticles, each consisting of a Pt core encapsulated by
a thin (∼1 nm) nitrogen-doped carbon shell, which are
uniformly dispersed on the CNF surface, serving as a stable and
conductive support. Using a simple Pt–aniline complex coating
followed by heat treatment, the researchers obtained 3–4 nm Pt
nanoparticles with excellent uniformity and strong protection
against aggregation or dissolution. The optimized catalyst
(heat-treated at 900 °C) exhibited superior oxygen reduction
reaction (ORR) activity and exceptional durability, maintaining
nearly constant performance for 30 000 accelerated stress test
cycles with negligible voltage loss at 0.8 A cm−2, as displayed in
Fig. 11(f). Its performance exceeded the U.S. DOE 2020 stability
targets, demonstrating strong potential for ultra-low Pt loading
and long-lasting PEM fuel cells. Senthilkumar et al.234 reported
the direct growth of hierarchical Co3O4@NiO and Co3O4@-
MnO2 core–shell nanostructures on carbon bers for bifunc-
tional catalysis in direct urea fuel cells (DUFCs). SEM and TEM
micrographs of Co3O4@NiO nanobers are shown in Fig. 12(a)
and (b), respectively. The engineered architecture enhances
both urea oxidation and oxygen reduction kinetics while
This journal is © The Royal Society of Chemistry 2026
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Fig. 11 (a) SEM image of TiO2 nanofibers and (b) TEM images of TiO2/C. Upper inset: low-magnification TEM image of several fibers; lower inset:
distribution of carbon thickness over different regions and fibers, (a and b) adopted from ref. 231, Copyright© Royal Society of Chemistry-(2012),
(c) TEM image of Pt/fCNF-1 core–shell nanofibers, and (d) cyclic voltametric responses for methanol electro-oxidation by Pt/fCNF-1 (response
after 60 min) and Pt/fCNF-2 (response after 63 min) modified electrodes (labelled) under acidic conditions (1 M methanol + 0.5 M H2SO4) at
a scan rate of 0.01 V vs. Ag/AgCl. (c and d) adopted from ref. 232, Copyright© Royal Society of Chemistry-(2013). (e) TEM images of Pt@CS/
CNF600 core–shell nanofibers. (f) Polarization curves of (a) Pt/C, before and after 30 k AST cycles. Solid and open symbols represent the cell
voltage and power density, respectively. (e and f) adopted from ref. 233, Copyright© Royal Society of Chemistry-(2019).
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reducing charge-transfer resistance. The DUFC achieved a high-
power density of 33.8 mW cm−2 using urea and 23.2 mW cm−2

with human urine, maintaining stable performance over 120
hours, as depicted in Fig. 12(c). The robust 3D structure offers
superior durability, efficient electron/ion pathways, and poten-
tial for wastewater-to-energy conversion. Lee et al.235 developed
a novel SiO2@C core–shell nanober via coaxial electrospinning
for use as a microporous layer (MPL) in PEM fuel cells. SEM and
TEM micrographs of SiO2@C core–shell nanobers are shown
in Fig. 12(d) and (e), respectively. The hydrophilic silica core
regulates water retention, while the hydrophobic conductive
carbon shell ensures efficient electron transport and prevents
ooding. The composite exhibits a higher surface area,
strength, and conductivity than pure carbon bers. When used
in PEMFCs, it enhanced power density by 66–302% under varied
humidity and temperature conditions, offering an effective
strategy for improved water management and stable fuel cell
operation, as displayed in Fig. 12(f). In solid oxide fuel cells
(SOFCs), Choi et al.236 developed La0.75Sr0.25Cr0.5Mn0.5O3@-
Sm0.2Ce0.8O1.9 (LSCM@SDC) core–shell nanober anodes via
a simple electrospinning route, achieving outstanding coking
resistance and ultra-low polarization resistance (∼0.11 U cm2 at
800 °C) under methane fuel, owing to the SDC shell that
improved oxygen-ion transport and prevented carbon buildup.

Similarly, Yang et al.237 fabricated YCo0.5Fe0.5O3–

Gd0.1Ce0.9O1.95 core–shell cathodes for intermediate-tempera-
ture SOFCs (IT-SOFCs), where the GDC shell facilitated oxygen-
ion diffusion and charge transfer, yielding a low area-specic
resistance of 0.66 U.cm2 and a peak power density of 426.5 mW
This journal is © The Royal Society of Chemistry 2026
cm−2 at 550 °C. Extending the concept to direct methanol fuel
cells (DMFCs), Lee et al.238 synthesized Pt–C core–shell catalysts
supported on carbon nanobers (Pt@CS/CNF), in which
a graphitized carbon shell selectively blocked methanol while
allowing O2 access to Pt sites. The optimised Pt@CS/CNF900
catalyst demonstrated superior methanol tolerance, oxygen
reduction reaction (ORR) activity, and stability over 30 000
cycles, outperforming commercial Pt/C catalysts. Collectively,
these studies highlight the versatility of core–shell nanober
designs as a unifying strategy for developing high-efficiency,
durable, and fuel-exible fuel cell electrodes. Delikaya et al.239

developed a porous electrospun carbon nanober network that
acts as an integrated electrode and gas diffusion layer
(GDE@GDL) for high-temperature polymer electrolyte
membrane fuel cells (HT-PEMFCs). This design enhanced
oxygen transport, reduced mass-transport resistance, and ach-
ieved a 21% higher Pt-normalised power density compared to
conventional GDL-based cells. Symillidis et al.240 fabricated
conductive PANI–based core–shell polymer nanobers sup-
porting Pd and Pd–M (Ag, Bi, Cu) catalysts for direct ethanol fuel
cells (DEFCs). The PANI shell improved conductivity, CO toler-
ance, and catalyst stability, while Pd–Ag and Pd–Bi combina-
tions showed the highest ethanol oxidation activity with lower
activation energies than monometallic Pd. Sanna et al.241

studied Ce0.9Gd0.1O1.95–core/Cu-doped La0.6Sr0.4MnO3–shell
nanober cathodes for intermediate-temperature solid oxide
fuel cells (IT-SOFCs). Electrochemical impedance spectroscopy
revealed polarisation resistances as low as 1.7 U cm2 at 650 °C,
signicantly lower than those of conventional composite
Sustainable Energy Fuels
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Fig. 12 (a) SEM and (b) TEM images of Co3O4@NiO nanofibers. (c) Polarization of the DUFCswith 50× 10−3 m urea at RT. (a–c) adopted from ref.
234, Copyright© John Wiley and Sons- (2018). (d) SEM and (e) TEM images of SiO2@C core–shell nanofibers. (f) Polarization curves (I–V curves)
and power density curves (I–P curves) of FC-V, FC-C, and FC-SiO2@C under different operating cells at 50 °C. (d–f) adopted from ref. 235,
Copyright© Springer- (2018).
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cathodes, with a stable nanober morphology aer testing.
Collectively, these results conrm that core–shell nanober
engineering enhances mass transport, electrocatalytic activity,
and long-term durability across multiple fuel cell technologies,
from HT-PEMFCs to DEFCs and SOFCs. An overview of reported
core–shell nanober systems for fuel cell applications, high-
lighting structural parameters (ber diameter, core diameter,
and shell thickness), device type, and key electrochemical
performance metrics, is provided in Table 2.

7. Core–shell nanofibers for drug
delivery applications

Controlled drug delivery has long been a challenge in biomed-
icine, where achieving precise dosage, sustained release, and
protection of fragile biomolecules is crucial. Electrospun core–
shell nanobers offer a unique solution by providing a high
surface-to-volume ratio, tunable porosity, and the ability to
encapsulate drugs within the ber core while protecting them
with a polymer shell. This architecture not only prolongs release
kinetics but also prevents premature degradation of sensitive
molecules such as proteins, peptides, and nucleic acids.
Therefore, core–shell nanobers prepared by coaxial or emul-
sion electrospinning have emerged as promising carriers for
drug delivery, tissue engineering, and wound healing.

7.1 Establishing encapsulation and release control

The concept of drug-loaded core–shell bers was rst rigorously
demonstrated by Jiang et al. (2006), who fabricated BSA-dextran
as the core and PCL (with PEG modication) as the shell via
coaxial electrospinning, as shown in Fig. 13(a). The resulting
Sustainable Energy Fuels
bers had diameters of approximately 200–500 nm, as shown in
Fig. 13(b). They demonstrated tunable release rates by modi-
fying the inner feed rates and PEG concentration in the shell,
allowing BSA to be released gradually over periods ranging from
one week to more than one month, with markedly reduced
burst release compared to blend spinning.242 Maleki et al. (2013)
fabricated a PLGA/PLA shell and a TCH core using the coaxial
electrospinning method, with a nanober diameter of ∼200–
800 nm, as conrmed by TEM analysis (Fig. 13(c)). This analysis
demonstrates that the shell thickness can be precisely
controlled to regulate the release duration.243
7.2 Biopolymers and protein stability

Aer 2016, the literature broadened: Kalwar et al. [2016] used
chitosan–PCL and Ovideo et al. [2021] used core–shell nanober
systems, which were explicitly fabricated by coaxial electro-
spinning, conrming that PCL core/chitosan shell geometries
are practicable for biomedical cargo, as illustrated in Fig. 13(d)
(ref. 244) and wound-care uses,245 respectively. Emulsion and
aqueous coaxial methods improved compatibility with bio-
logics, allowing for the loading of growth factors, enzymes, and
peptides with reduced burst release from 2017 to 2024. Recent
reviews246–248 highlight advances in electrospun systems, such as
triaxial structures, responsive shells, nanoparticle-hybrid cores,
and solvent strategies that preserve protein activity. Yet, protein
loaded core–shell bers still represent a small fraction of
studies, leaving a broad scope for quantitative bioactivity
metrics, systematic stabilization research, and translation-
oriented efforts in sterilization, scale-up, and regulatory
pathways.
This journal is © The Royal Society of Chemistry 2026
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Fig. 13 (a) Configuration of the coaxial electrospinning setup used for preparing core–shell structured fibers composed of PCL as the shell and
dextran containing BSA as the core. (b) The morphology changes in the core–shell structured fibers during BSA release after 21 days. (a and b)
adopted from ref. 242, Copyright© 2006 Wiley Periodicals, Inc., (c) TEM images of dual nanofibers (scale bar was 500 nm), core solution: [PLGA,
0.5 wt%, chloroform (8): DMF (2)] (67%) + [TCH 5.94wt%, methanol] (33%), 0.3mL h−1, shell solution: [PLGA, 2 wt%, chloroform (8): DMF (2)], 3 mL
h−1, 10 kV, 15 cm, adopted from ref. 243, Copyright© Society of Plastics Engineers-2013, (d) coaxial electrospinning of polycaprolactone-
chitosan for antibacterial activity, adopted from ref. 244, Copyright© 2016 Elsevier B.V. All rights reserved, and (e) Kartogenin-loaded coaxial
PGS/PCL aligned nanofibers for cartilage tissue engineering, adopted from ref. 250, Copyright© 2019 Elsevier B.V. All rights reserved. (f) Small-
diameter vascular graft composed of core–shell structured micro-nanofibers for neointimal hyperplasia, adopted from ref. 251, Copyright©
2024 Elsevier Ltd All rights reserved. (g) Illustration skims of core–shell nanofibers for dual simultaneous drug delivery, adopted from ref. 252.
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7.3 Tissue engineering and wound healing

Hou et al. (2017) fabricated biodegradable, bioactive core–shell
brous mats via coaxial electrospinning using a PCL shell and
PGS core system with surface-immobilized heparin, yielding
scaffolds with favorable chemical, mechanical, and biological
characteristics for broad tissue-engineering applications.249

Silva et al. [2020] reported the development of aligned core–
shell nanobers composed of a PGS (core) and a PCL (shell),
engineered to mimic the anisotropic architecture of articular
cartilage while enhancing mechanical strength as illustrated in
Fig. 13(e).250 Kartogenin, a small chondrogenic molecule, was
encapsulated within the PGS core, allowing for sustained
release over a period of up to 21 days. This controlled delivery
promoted proliferation and chondrogenic differentiation of
human mesenchymal stem/stromal cells without the need for
exogenous growth factors such as TGF-b3, highlighting the
potential of KGN-loaded coaxial nanobers as promising scaf-
folds for cartilage tissue engineering. Al Fahad et al. (2024)
developed a small-diameter vascular gra using coaxial
electrospun micro-nanobers with a PCL/gelatin shell loaded
with heparin and VEGF and a PCL core—demonstrating
Sustainable Energy Fuels
sustained release (∼79% heparin; ∼86% VEGF over 25 days), as
shown in Fig. 13(f) with excellent mechanical performance, full
endothelialization, smooth muscle regeneration, and 100%
patency in rat aorta implants.251 Kharaghani et al. (2019)
designed core–shell PVA/PAN nanobers via coaxial electro-
spinning for dual-drug delivery as depicted in Fig. 13(g),
enabling the simultaneous release of water- and organic-
solvent–soluble drugs for tailored therapeutic applications.252 Li
et al. (2021) reported a core–shell GelMA-PDLLA nanober-
hydrogel composite scaffold with enhanced porosity, water
retention, and angiogenic activity, which accelerates chronic
diabetic wound healing in vivo, as shown in Fig. 14(a).253 Guo
et al. (2022) developed a core–shell coaxial ber membrane
loaded with CTG in the core and CIP in the shell, achieving
controlled release, antibacterial performance, and improved
broblast proliferation, as well as enhanced scald wound repair
in rats,254 as illustrated in Fig. 14(b).

Abadi et al. (2025) engineered core–shell PCL–CS/PVA
nanobers via coaxial electrospinning to co-deliver PIO-NEs and
GEM over 14 days as shown in the schematic in Fig. 14(c),
achieving sustained and controlled release (∼80% of PIO;
This journal is © The Royal Society of Chemistry 2026
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Fig. 14 (a) Nanofiber/hydrogel core–shell scaffolds with a three-dimensional multilayer patterned structure for accelerating diabetic wound
healing, adapted from ref. 231. (b) Dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology adopted from ref.
254, Copyright© 2022 Elsevier B. V. All rights reserved. (c) The schematic of nanofiber preparation for localized melanoma therapy delivering
Pioglitazone nano-emulsions and a gemcitabine dual-loaded system, adopted from ref. 255, Copyright © 2025, Springer Nature. (d) Core–shell
chitosan-polycaprolactone nanofibers for controlled curcumin release, adopted from ref. 256, Copyright© 2025 Elsevier B. V. All rights are
reserved.

Table 3 Summary of core–shell nanofiber systems used in drug-delivery applications, including fiber diameters, core and shell dimensions,
therapeutic payloads, and corresponding release behaviours

Core–shell system Fiber diameter Core diameter Shell thickness Drug/payload Release behavior Ref.

PCL core – SF shell 200–450 nm 120–250 nm 50–150 nm Clindamycin Sustained release
for wound healing

163

PCL/PVA or PCL/Col core–shell 200–600 nm 120–350 nm 80–150 nm Biomedical drugs Controlled/sustained 165
BSA–dextran core –
PCL-PEG shell

200–500 nm 120–300 nm 50–200 nm BSA protein Release adjustable
(1 week – 1 month)

242

TCH core – PLGA/PLA shell 200–600 nm 150–350 nm 50–200 nm Tetracycline Sustained antibiotic release 243
CTG core – CIP shell 300–700 nm 200–450 nm 80–200 nm Ceazidime +

ciprooxacin
Controlled dual-drug release;
improved wound healing

254

PCL–CS/PVA core–shell 250–550 nm 150–300 nm 50–150 nm PIO + GEM Sustained (14 days) 255
Chitosan-PCL core–shell 250–600 nm 150–350 nm 50–200 nm Curcumin Antimicrobial; wound healing 256

Review Sustainable Energy & Fuels

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 4
:1

4:
49

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
∼77% of GEM), which signicantly inhibited proliferation and
induced apoptosis in A375 melanoma cells via P53 and PPARg
pathways.255 Furthermore, Mosallanezhad et al. (2025) devel-
oped core–shell chitosan-PCL nanobers loaded with curcumin
for controlled wound therapy. These bers demonstrated
a favorable morphology, enhanced structural and release
properties, and strong antimicrobial performance, indicating
their promise for infection-resistant wound dressings, as shown
in Fig. 14(d).256 Together, these studies emphasize the versatility
of core–shell architectures in controlled drug delivery, tissue
regeneration, and wound management. A summary of core–
shell nanober systems used in drug-delivery applications,
including ber diameters, core and shell dimensions, thera-
peutic payloads, and corresponding release behaviours, is
This journal is © The Royal Society of Chemistry 2026
provided in Table 3. Furthermore, Table 4 summarizes details
of parameters involved in the preparation of core–shell nano-
ber fabrication techniques.
8. Challenges, limitations, and future
directions of core–shell nanofibers

Despite signicant progress, the development and deployment
of core–shell nanobers in magnetoelectric sensors, fuel-cell
systems, and drug-delivery platforms still encounter several
critical challenges that prevent their transition from laboratory
research to practical use. One major issue is scalability.
Although coaxial and emulsion electrospinning are excellent for
producing uniform bers on a laboratory scale, they suffer from
Sustainable Energy Fuels
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low throughput and high sensitivity to process variations,
making it difficult to produce large-area, industrial-scale bers
with consistent core–shell structures. Ensuring reproduc-
ibility—especially uniform core diameters, shell thicknesses,
and concentricity—requires precise control over solution
viscosity, voltage, ow rates, humidity, and solvent evaporation.
These factors becomemore difficult to regulate during scale-up,
oen leading to structural inconsistencies and batch-to-batch
differences. Furthermore, many high-performance materials
involve costly precursors or require multiple steps of annealing
and calcination, which increase fabrication costs, especially for
metal oxides, perovskites, and noble-metal catalysts used in fuel
cells.

Another key concern is toxicity and environmental safety,
particularly for lead-based piezoelectric systems, such as PZT
and PMN-PT. While these materials offer strong magnetoelec-
tric coupling, their inherent lead content limits their use in
biomedical devices, wearable technology, and environmentally
regulated commercial products. Restrictions from standards
such as RoHS and REACH greatly limit their real-world appli-
cation, highlighting the need for lead-free options like BCTSn,
BaTiO3, KNN, and zinc- or barium-based hexaferrites. However,
matching the magnetoelectric performance of lead-based
systems while maintaining processability and long-term
stability remains an ongoing research challenge.

Device integration and long-term stability are also critical
issues. Arranging core–shell nanobers into ordered arrays and
incorporating them into multilayer device architectures require
advanced assembly methods that are not yet standardized. In
magnetoelectric sensors, defects at the core–shell interface,
inadequate strain transfer, or microcracking from repeated
magnetic and electric cycling can reduce coupling efficiency. In
fuel cells, durability issues such as catalyst detachment, carbon
corrosion, ionomer redistribution, or shell degradation in
humid, acidic, or high-temperature environments can
compromise performance. Drug-delivery bers must also
sustain structural integrity during storage and implantation,
prevent uncontrolled burst release, and ensure the biocompat-
ibility of both organic and inorganic elements. These challenges
emphasize the importance of robust interfacial engineering,
better encapsulation techniques, and stronger mechanical
reinforcement of core–shell structures.

Looking ahead, several opportunities can help advance core–
shell nanober technologies. New fabrication methods—like
real-time controlled coaxial electrospinning, 3D-assisted ber
patterning, and hybrid printing-electrospinning platforms—
offer promising paths for scalable and precise structural
control. Innovations in interface engineering, defect reduction,
and domain alignment can further improve coupling efficiency
and stability. For biomedical use, creating stimuli-responsive
shells that react to pH, temperature, or magnetic/electric elds
will be essential for enabling personalized or on-demand ther-
apies. For fuel cells, enhancing ionomer distribution, control-
ling shell porosity, and stabilizing catalyst–support interactions
are crucial for high performance under low-humidity condi-
tions. Using computational tools such as AI-based material
design and multiphysics simulations can speed up
This journal is © The Royal Society of Chemistry 2026
optimization and predict long-term behavior in vivo or under
operational stresses. Ultimately, collaboration across disci-
plines—materials science, chemical engineering, electronics,
and biomedicine—is vital to transforming core–shell nano-
bers from laboratory prototypes into reliable, scalable, and
commercially viable solution technologies.

9. Conclusion

Core–shell nanobers represent a transformative class of one-
dimensional architectures, whose tunable interfaces, high
aspect ratios, and multifunctional compositions enable supe-
rior performance in magnetoelectric sensing, fuel cell catalysis,
and drug delivery applications. Despite signicant progress,
several critical research gaps must be addressed before these
systems can advance toward technologically relevant devices
and scalable commercialization. First, optimizing interfacial
coupling remains a major challenge across all areas. In
magnetoelectric systems, inadequate strain transfer, interfacial
defects, and uncontrolled core–shell ratios greatly limit ME
coefficients and device sensitivity. Similarly, fuel-cell nanobers
need improved catalyst–support interactions and controlled
ionomer distribution to achieve durable and efficient electro-
chemical performance. For drug-delivery bers, ensuring long-
term shell stability and preventing burst release are key obsta-
cles. Second, there is an urgent need for reliable, lead-free
alternatives to traditional high-performance piezoelectric
materials, such as PZT and PMN-PT. Although promising
candidates—such as BCTSn, BaTiO3, KNN, and Zn- or Ba-based
hexaferrites—have been developed, their electromechanical
response and long-term reliability still fall short of lead-based
systems. Bridging this gap is crucial for enabling sustainable,
biocompatible magnetoelectric devices, particularly in
biomedical and wearable applications that require strict regu-
latory standards. Third, exible and integrated device archi-
tectures are a promising yet underdeveloped area. For
magnetoelectric sensing, integrating aligned or woven coaxial
nanobers into so substrates could support wearable or
implantable devices. In fuel cells, multilayer nanober elec-
trodes and microporous layers need to be engineered for
mechanical durability under varying humidity and temperature
conditions. For biomedical uses, seamless integration with
hydrogels, scaffolds, and tissue-mimicking platforms will be
vital for clinical translation. Lastly, commercialization chal-
lenges persist throughout the eld. Coaxial electrospinning
faces issues with low throughput and batch variability. Main-
taining uniform core–shell morphology at an industrial scale is
difficult due to sensitivities to viscosity, ow rate, voltage, and
humidity. Material costs—especially for noble metals, rare-
earth ferrites, and high-purity polymers—further limit scal-
ability. Moreover, the lack of standardized testing protocols for
ME performance, drug release kinetics, mechanical stability,
and long-term degradation complicates cross-study compari-
sons. Overall, while core–shell nanobers offer exceptional
multifunctionality and potential, realizing their broader use
depends on overcoming these challenges through interdisci-
plinary advances in interface engineering, scalable
Sustainable Energy Fuels
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manufacturing, predictive modeling, and device integration.
With ongoing innovation, core–shell nanobers are positioned
to drive the next generation of sensing, energy, and biomedical
technologies.

Author contributions

Sandeep Kumar Yadav: visualization, resources, methodology,
investigation, formal analysis, conceptualization, writing –

original dra. Vishwa Prakash Jha: theoretical analysis,
conceptualization, writing – review & editing. Durga Prasad
Pabba and Arun Thirumurugan: supervision, resources, project
administration, methodology.

Conflicts of interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.

Abbreviations
ME
Sustainable Ener
Magnetoelectric
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 Carbon nanotubes

nT
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 Aluminum nitride
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PCL
 Polycaprolactone

PVA
 Polyvinyl alcohol
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DOX
 Doxorubicin

N-CMCS
 N-carboxymethyl chitosan
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 Cellulose nanocrystals

PMMA
 poly(methyl methacrylate)

PAN
 Polyacrylonitrile

PLA
 Poly(lactic acid)

PLGA
 Poly(lactic-co-glycolic acid)

PEG
 Polyethylene glycol

PEO
 polyethylene oxide

nm
 Nanometer

mm
 Micrometer

FITC
 Fluorescein isothiocyanate

PGS
 Poly(glycerol sebacate)

GelMA
 Gelatin methacryloyl

PDLLA
 Poly(d, l-lactic acid)

CTG
 Centella total glucoside

CIP
 Ciprooxacin
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GEM
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 Poly(3,3000-didodecyl quarter thiophene)
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Near eld scanning microwave microscope
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 Magnetic force microscope
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