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Abstract

Redox flow batteries (RFBs), with decoupled scaling in energy and power, are an attractive
solution for grid scale energy storage. Given the low margins and extreme price sensitivity of
electricity supply, it is critically important for RFBs to reduce capital and operating costs.
Improving the operating power density and energy efficiency of the RFB is a pathway towards
lowered costs but achieving simultaneous improvements in both parameters is hampered by the
fact that they are typically inversely correlated. This study demonstrates a 50% improvement in
operating power density of an aqueous, electrode-decoupled Titanium-Cerium RFB without loss
of energy efficiency through electrode engineering driven by fundamental investigations of
charge-transfer kinetics at the Ti and Ce electrodes. Exploiting the significant difference in
reaction kinetics between the Ti and Ce actives, the interfacial area and surface functionalization

(affecting electrode-electrolyte contact angles and kinetics of charge transfer) of the electrode were
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optimized to increase operating power while reducing overall cell resistance. This resulted in
increasing operating current density of a Ti-Ce RFB from 100 mA c¢cm to 150 mA cm while
sustaining ~70% energy efficiency over 80 h and 100 cycles. Notably, this study shows the key
role played by the rate limiting electrode and the effect of electrode surface area in improving its
performance. Overall, this study offers a template to significantly improve the overall performance

of kinetically limited aqueous RFBs without catalysts or electrolyte reformulation.

Keywords: redox flow batteries, carbon paper, methanesulfonic acid, large-scale energy storage

1. Introduction

The development of large-scale, robust, and cost-effective energy storage systems, such as
rechargeable batteries is a critical component of transitioning to sustainable but intermittent energy
sources such as solar and wind.l""¥) Among them, redox flow batteries (RFBs) are a promising
candidate because of their unique advantage: the energy capacity storage and output power density
are decoupled, allowing for independent scale-up, and thus great design flexibility.5-7] Among the
different types of RFBs, all vanadium ones (VRFBs), introduced in the 1980s, have been
extensively studied and commercialized.’] The use of vanadium redox couples on both sides
(enabled by the prevalence of multiple readily soluble oxidation states of V) mitigates active
species crossover (a common failure mode and source of performance loss) and provides a unique
operational advantage.l®) However, the scaling up of VRFBs is limited by the high cost of
vanadium and relatively low standard potential (1.26 V vs. standard hydrogen electrode (SHE)),

making it difficult to meet cost targets for grid scale energy storage.['%] Thus, moving away from
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47  vanadium as the active species is a potential solution but a key barrier to moving away from the
48  VRFBiis the fact that few other elements in the periodic table exhibit vanadium ion’s characteristic
49  ofbeing soluble at more than 2 oxidation states. Alternately, techno-economic analysis (TEA) has
50 shown that increasing the operating voltage and operating current density (translating to the
51  operating power density) is critically important for reducing capital costs.['!] The capital costs have
52 been found to be a strongly non-linear function of both operating voltage and operating current
53  density, with capital costs for 6 different flow battery chemistries falling by 70%-90% when the
54  operating current density is increased from 10 mA cm? to >100 mA cm™2.[11-12] TEA indicated
55  capital cost reductions of ~50% for RFBs with elemental actives (all-V, Zn-Br) when the operating
56  voltage increased from 0.6 V to 1.2 V.[!!l Thus, increasing RFB operating current density to >100
57 mA cm and the operating voltage to >1 V is expected to dramatically reduce capital costs. The
58  levelized cost of storage (LCOS) has been shown to be strongly coupled to the capital cost and is

59  further affected by cycle duration (with some studies showing 4—10-hour cycles being the

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

60  optimum).['3] But alternatives to VRFBs considered in the studies referenced above suffer from

61  their own issues such as crossover of active species, toxicity (Br), phase change/plating-stripping

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

(cc)

62  reactions leading to dendrite formation (Zn, Pb etc.) and unwanted side reactions (evolution of
63  hydrogen or oxygen). The titanium-cerium RFB, a relatively new chemistry first reported in 2019
64  solves these chemistry problems and has been shown to meet all DOE cost targets.!!4-13]
65  Particularly, the Ti-Ce RFB employs a selective anion exchange membrane (AEM) separator that
66  significantly impedes the crossover of the redox active cations, making it an “electrode-decoupled”
67  system. In this study, starting with an already inexpensive RFB chemistry (titanium-cerium (Ti-

68 Ce)), we demonstrate RFB electrode engineering methods that can achieve significant


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5se01171j

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

Sustainable Energy & Fuels

View Article Online
DOI: 10.1039/D5SE01171J

improvements in operating power density by increasing current density with minimal associated

increase in overpotential .[14-13]

The Ti-Ce RFB is a relatively new system that has been shown to both meet DOE cost targets
and has the ability to be cycled diurnally.['*15] The Ce redox couple has been examined as a
possible active for RFBs due to two advantages: a high standard potential (1.61 V vs. SHE) and
abundant geographical availability with relatively low cost.['®17] The major challenge of deploying
Ce redox couple in RFBs is that Ce solubility is limited in sulfuric acid (H,SO,), a typical
supporting electrolyte. In H,SO,, Ce solubility has been reported to be below 0.5 M and decreases
as the concentration of H,SO, increases.l'®! As an alternative, methanesulfonic acid (MSA) has
been shown to increase Ce solubility significantly with an inverse relationship between solubilities
of Ce(III) and Ce(IV) as a function of MSA concentration.l'’) Ce redox couple utilizing MSA as
the supporting electrolyte has been used in multiple RFBs, including Zn-Ce,[?°] Pb-Ce,?!l and V-
Ce.[?2] Ti and its alloys have been widely utilized in medical treatment,[?3! aerospace,?* and
automobiles.!?’] In RFBs, Ti has been decorated onto electrodes or membranes as a catalyst to
promote the performance of VRFBs and as the redox active species in some RFB systems.[26-28] In
fact, the abundance and production rate of Ti is about 50 and 100 times that of V, respectively,
contributing to a market price that is 1/10% of V.[?8] Moreover, a standard potential of 0.19 V vs.
SHE makes the Ti redox couple a good candidate for RFBs as it is less prone to hydrogen evolution
reaction (HER) during the operation of RFBs. In recent years, Ti-based RFBs, such as Fe-Til?’]
and Mn-Til3% systems have been proposed and studied. We have combined the Ti and Ce redox
couples to develop a fully dissolved (i.e., no phase change or plating/stripping process) RFB that

leverages the inherent advantages of both couples.

Page 4 of 46


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5se01171j

Page 5 of 46 Sustainable Energy & Fuels
View Article Online
DOI: 10.1039/D5SE01171J

91 Starting with a cost effective RFB chemistry that consists of earth abundant elemental actives,
92  we focused on increasing the activity of the electrodes while decreasing their contribution to
93  overall RFB cell resistance so as to achieve higher operating current density without increasing
94  the overpotential. Given that the electroactive species in a RFB is typically dissolved in the
95 electrolyte, the electron transfer process occurs on high surface area, porous electrodes that
96 typically avoid using catalysts to keep down the cost. Carbon felt (CF) is amongst the most
97  commonly utilized electrode material in RFBs due to its high surface area, good stability in an
98 acidic environment, and high conductivity.?!l Carbon paper (CP) has also been used as an
99 electrode candidate but the combination of significantly lower porosity (compared to CF) and the
100  associated increase in pressure drop has meant that most existing studies on CP focus on VRFBs
101  where the reduction in ohmic losses enabled by the thinner CP electrode offers a significant
102 advantage.3?] Typically, carbon electrodes are pretreated before RFB operation to enhance reactant

103 transport and create surface functional groups that aid charge transfer kinetics, and heat treatment

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

104 is a convenient method that has been extensively studied.3-34 It has been recognized that

105  significant performance improvements can be achieved by varying the electrode surface area,
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106  thickness and pre-treatment protocols. For example, Agar et al. and Li et al. investigated the
107  performance-limiting side of VRFBs by applying CF with different pretreatment methods on the
108  positive and negative sides and concluded that the performance of VRFBs was limited by the
109  negative side.[>3-3¢ Wei et al. showed that the electrochemical activity for the positive and negative
110  sides of VRFBs was promoted by carbon nanofibers decorated with carbon nanotubes and Bi-
111 based compounds, respectively.3”] Similarly, Jing et al. embedded tungsten and antimony on
112 positive and negative carbon nanofibers, respectively, to achieve the highest performance of

113 VRFBs.B® Lu et al. provided evidence from a two-dimensional, transient model simulation that
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the performance of VRFBs could be further improved by applying a higher compression ratio of
positive electrodes.3%) Nevertheless, the focus of a majority of these studies has been the impact
on a particular RFB performance parameter, oftentimes to the detriment of other parameters. These
studies improve the performance by (i) reducing ohmic losses by employing thinner electrodes or
(i1) by decreasing activation polarization losses by electrode surface treatment and catalysts. It is
challenging to employ both approaches in tandem as thinner electrodes have lower total surface
area and thus reduce overall rate while surface treatment of the electrodes or use of catalysts can
reduce electrical conductivity and increase pressure drop, thereby increasing ohmic losses. Our
study shows how fundamental studies of electrode kinetics and electrode wetting can be used to
enable simultaneous decreases in activation polarization losses and ohmic polarization losses, and
this was achieved in an electrode decoupled RFB where the two electrodes exhibit very different
redox behaviors. Leveraging and extending the insights from these studies, we demonstrate a Ti-
Ce RFB with an asymmetric electrode configuration successfully operated at 150 mA cm?,
delivering an energy efficiency (EE) of 67.8% and capacity retention of 93%. We present a
roadmap for the use of fundamental electrochemical investigations (kinetics and transport studies
using cyclic voltammetry) to downselect appropriate carbon electrodes for RFBs with the aim of
maximizing cell level performance. The approach demonstrated with Ti-Ce RFBs can be equally

applied to other systems.
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Load or power

source '
—

Ce

09MTiin 3.8 M MSA Carbon felt (CF) QPEK-CAEM Carbon paper (CP) 0.9M Cein2 M MSA

Ti(IV) + e~ & Ti(lID) Ce(IV) + e~ « Ce(1II)
Ey = 0.19 Vvs.SHE Eq = 1.61 V vs.SHE

Scheme 1. Schematic illustration of Ti-Ce RFB with asymmetric electrode configuration. The
separator is a custom anion exchange membrane (AEM) whose synthesis and characterization is
detailed elsewhere.[70-71]

2. Results and Discussion

2.1 Effect of heat treatment on CP and CF

In order to confirm the potential modifications to both carbon electrodes brought by heat treatment,
scanning electron microscope (SEM) was used to examine the morphology of CP and CF before
and after heat treatment, as presented in Figure 1. CP was found to be composed of rigid and
straight fibers, and no significant difference could be observed between pristine CP and heat-
treated CP (HT CP). On the contrary, CF was made of soft and curvy fibers, and the surface of CF
fibers became rougher and more porous after heat treatment, indicating significant surface
modification and potential increase in surface area. Energy dispersive X-ray (EDX) spectra
showed that the oxygen content remained mostly unchanged between CP and HT CP while a

significant increase in surface oxygen was detected on CF post heat treatment) (See Table 1). This
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correlation between surface morphology and surface oxygen content agrees with prior results
showing that the thermal treatment oxidizes the carbon surface.l3# Results of surface investigations
using X-ray photoelectron spectroscopy (XPS) are depicted in Figure 2 (XPS survey spectra
depicted in Figure S1). The Cls data shows minimal changes in case of CP while the percentage
of C-C was found to decrease and the percentage of C=C increased in case of CF, indicating an
increase in C defect sites on the surface necessitating the formation of unsaturated C=C bonds.
This was coupled with an increase in C-OH and C=0 groups, indicating the presence of at least 3
different potential reaction sites on the surface. Oxygen functional groups were found to increase
in percentage on HT CF, while there was not much difference between the XPS results of CP and
HT CP. Interestingly, ether groups increased after thermal treatment, indicating that some of the
C defect sites were being occupied by O. The ratio between alcohol groups and carbonyl groups
inverted following thermal treatment, indicating oxidation of the alcohol groups to the
corresponding carboxyl group. Given the difference in electrochemical activity between surface
alcohol and carboxyl groups, the ratio between these groups would significantly affect the activity
of a given carbon electrode and this explains the impact of thermal treatment duration on carbon
electrode activity. The change of CF by heat treatment was consistent with previous studies that
applied CF as electrodes in VRFBs.[33 36 401 The percentages of various functional groups in
different samples as measured by XPS is listed in Table 2. It was also proposed by these studies
that the oxygen functional groups could work as catalytic sites to enhance the kinetics of vanadium
redox reactions, and similar positive effects on Ti reaction were found in our study, which will be
discussed further. The number of studies on the effects of heat treatment on CP is still limited,

possibly because CP is not used as widely as CF. One previous study pointed out that the effect of
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170  thermal treatment on CP was nuanced and controlled by several factors (e.g., microstructure and

g 171  surface chemistry).l34]
@
g 172 Table 1 Atomic ratios (%) of carbon and oxygen from EDX
2
<§(’ % Elements Pristine CP HT CP Pristine CF HT CF
g 2
2§ C 99.6+0.1  99.6+0.1  999+00  958+0.7
82
S S O 04£0.0 0.4£0.1 0.1£0.0 42+04
= 3
5 2
% g 173
S E
ct
= E 174 Table 2 Percentage of different chemical bonds from XPS
S F
50
g o Pristine CP HT CP Pristine CF HT CF
g g Total 96.8 0.2 98.5+0.1 96.7+£0.2 90.5+£0.6
2w
é é C=C 76.2 £6.8 81.6+5.0 514149 78.0+£5.9
% - Cls C-C 13.6+4.2 17.3+3.6 40.0+5.2 9.8£22
é C-OH 95+33 1.1+£0.5 8.6+25 10.1 £ 1.6
O
g C=0 0.7£0.1 0.1£0.1 0.0£0.1 2.1+£09
Total 2.8+0.1 1.5+0.0 2.6+0.1 8.6x0.5
Carbonyl 25+04 0.0£0.1 0.0£0.1 28+1.2
Ols
Alcohol 39.2+3.8 53.0+£4.38 523+£53 37.7+£3.6
Carboxyl 583124 47.0+3.1 47.7+3.4 59.5+5.2
175
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177 Figure 1. SEM/EDX of pristine CP (a, b, 1, j), HT CP (c, d, k, 1), pristine CF (e, f, m, n), and HT
178 CF (g, b, 0, p).
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Figure 2. XPS of pristine CP (a and b), HT CP (c and d), pristine CF (e and f), and HT CF (g
and h).
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2.2 Effect of Thermal Treatment on Electrode-Electrolyte Interaction

During the operation of RFBs, electrolytes flow into the cell to contact the electrode, where the
reactions take place, and high hydrophilicity is desirable to reduce mass transfer resistance.3?] The
effect of electrode thermal treatment on the interfacial contact between the Ti and Ce electrolyte
and the CF and CP electrodes was characterized through contact angle measurements using a
Goniometer. The contact angle was measured using Image]J 1.54g, Java 1.8.0 345 (64-bit) from
pictures captured from the goniometer. The side views of Ti and Ce electrolyte droplets on carbon
electrodes are displayed in Figure 3, and the contact angle values are presented in Table 3. As
seen from Figure 3, both the Ti and Ce electrolytes readily spread and were absorbed into the
porous electrode bulk in case of CF and HT CF (no apparent bubble is seen visually). The Ce
electrolyte also exhibited ready absorption and no apparent bubble formation in case of CP and
HT CP. However, the Ti electrolyte formed very obviously shaped droplets on CP, HT CP, and
CF, indicating poor wettability. Thus, both the surface functional groups themselves and the
characteristics of the electrolyte determine interfacial contact. The excellent hydrophilicity
exhibited by HT CF with both Ce and Ti electrolytes was ascribed to the oxygen functional
groups,*!1 which was confirmed by SEM/EDX and XPS. Interestingly, all four types of electrodes
exhibited good hydrophilicity with Ce electrolyte, indicating that the initial percentage of surface
oxygen functional groups was not the only factor. Nikiforidis et al. report that a hydrophilic and
inhomogeneous surface of CP was created after repetitional cyclic voltammetry (CVs) in a Ce
electrolyte.[*?! Similar oxidation of the carbon electrodes by Ce(IV) would explain the observed
wettability results. Ti is known to form polymer like chains at higher concentrations in solution, 8]

thereby affecting the viscosity and diffusion coefficients and this would explain the lack of

12
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wettability on unfunctionalized surfaces. As reported in Ahmed et al., the dynamic viscosity of Ti
electrolytes in sulfuric acid has been found to increase from I1cP to 2.4cP when the H,SO,
concentration increased from OM to 4M while keeping the Ti concentration constant at 0.5M.
When the Ti concentration was increased from 0.5M to 5M (with a constant 4M H,SO,
concentration) the dynamic viscosity increased from 2.4cP to 7.5¢cP. Given minimal variation in
viscosity when the Ti concentration is kept at 0.5M, we do not anticipate this playing a role in
pressure drop, pumping losses etc.l’?] These results indicated that HT CF is the optimal electrode
candidate for the Ti side, but the optimal surface for the Ce side could not be determined on the
basis of surface wettability. Furthermore, since both surface characterization and the hydrophilicity
test indicated minimal difference between CP and HT CP, we elected to use only CP for further

experiments.

Table 3 Contact angles of Ti & Ce electrolyte on CP & CF

Electrodes Ti Ce
Pristine CP 109.8° £ 5.6° a)
Pristine CF 113.6° £ 7.8° a)
HT CP 98.8° £ 4.0° a)
HT CF a) a)

3 found to spread and be absorbed on the surface with no discernable bubble formation.
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Figure 3. Side views of (a) Ti electrolyte droplet on pristine CP; (b) Ce electrolyte droplet on
pristine CP; (c) Ti electrolyte droplet on pristine CF; (d) Ce electrolyte droplet on pristine CF; (e)
Ti electrolyte droplet on HT CP; (f) Ce electrolyte droplet on HT CP; (g) Ti electrolyte droplet
on HT CF; (h) Ce electrolyte droplet on HT CF.

2.3 Electrochemical behavior of carbon electrodes in Ti and Ce electrolyte
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226  In order to identify the optimum electrode configuration for Ti-Ce RFBs, CVs were recorded
227  utilizing different types of carbon electrodes as the working electrode, as depicted in Figure 4. As
228  seen in Figure 4a, both Ti reduction and Ti oxidation peaks were observed only on HT CF while
229  pristine CF and CP lacked cathodic peaks, indicating poor activity for Ti reduction. Besides, the
230  anodic peak potentials of pristine CF and CP were much more positive than that of HT CF (0.995
231 Vand 0.798 V respectively vs. 0.075 V), and the corresponding peak currents were more than 20
232 times smaller than that of HT CF (5x10* A and 2x10* A respectively vs. 0.012 A), showing HT
233 CF was much more active towards Ti oxidation. This improved activity is ascribed to the surface
234 oxygen functional groups and increased surface roughness (and hence surface area) introduced by
235  heat treatment. This agrees with previous studies in VRFBs, 43! Fe-RFBs, 44! Zn-RFBs, 4] and Cu-
236  RFBs,*] where electrode heat treatment was found to improve redox kinetics. Based on this, HT
237  CF was selected as the negative electrode in Ti-Ce RFBs. In sharp contrast to its behavior with the

238  Tiredox couple, HT CF showed no redox peaks in case of the Ce electrolyte (except for a gradual

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

239  increase in current at more anodic potentials, indicating the onset of oxygen evolution) while both

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

240  anodic and cathodic peaks could be observed on pristine CF and pristine CP. However, each

(cc)

241  electrode exhibited different but equally desirable behavior: while both the anodic and cathodic
242 peak currents on pristine CF was about 20 times that of CP (0.019 A vs. 0.002 A), indicating higher
243 activity (translating to higher operating current density in the RFB), the peak separation on CP was
244 smaller than that of pristine CF (0.27 V vs. 0.73 V), indicating better reversibility and improved
245  energy efficiency at the RFB cell level.[*”] The higher peak current on pristine CF can be partially
246 attributed to the higher surface area of CF than CP. But the fact that HT CF with even higher
247  surface area exhibited negligible Ce redox activity indicated that it was not merely a surface area

248  effect and the lack of oxygen functional groups plays a positive role. The better reversibility on
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pristine CP is attributed to the stability of CP in Ce electrolyte since Ce(IV) is a strong oxidizing
agent.[*8] We hypothesized that the formation of surface oxygen functional groups upon immersion
of the pristine CF into the Ce electrolyte led to the relatively higher peak separation observed in
the CV. To test this hypothesis, CVs were compared before and after the electrodes were immersed
in Ce electrolytes overnight. As depicted in Figure 4¢ and 4d, both CF and CP degraded in terms
of electrochemical performance (lower peak current, increased peak separation). However, the
degradation of CF was more significant: the anodic peak was completely lost, and the cathodic
peak current decreased by 26.3%. The shift in peak potentials was lower in case of CP, along with
no decrease in the anodic current and a 15% decrease in the cathodic current. Thus, CP was
established to be more chemically stable to oxidation (in line with the observed lack of surface
functionalization observed following thermal oxidation) and was determined to be a better

candidate for the electrode of the Ce side, especially during long-term operation.
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Figure 4. Comparison of electrochemical response with different electrodes in Ti/Ce electrolyte
of 50 % SOC at 2.5 mV/s. CVs of HT CF, pristine CF, and pristine CP in a) Ti and b) Ce
electrolyte. CVs of ¢) pristine CF and d) pristine CP before and after being immersed into Ce
electrolyte overnight.

The CVs of CP in Ce electrolyte and HT CF in Ti electrolyte at different scan rates are shown
in Figure 5. The separation of anodic and cathodic peak potentials in Figure Sa and 5b increased
with scan rate and was much higher than 59 mV, indicating that both Ti and Ce redox reactions
were irreversible.[*’] Thus, the Nicholson-Shain (N-S) equation was used to correlate peak currents

and scan rates, which is shown below:
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ip = (2.99 X 105)n3/2a1/2AC,Dy/ *v1/2 (1)

where i, 1s the peak current, n is the electron transfer number (1), a is the electron transfer
coefficient, 4 is the surface area of the working electrode (1 cm?), Cj is the bulk concentration of
active species (0.9 M), D, is the diffusion coefficient of active species, and v is the scan rate.[49-30]
Furthermore, the Klinger-Kochi (K-K) equation was used to calculate the standard reaction rate
constant, as shown below:

Daan] (%)

koexp [%(Ep _ EO)] - 2.18[—RT

)

where k; is the standard reaction rate constant, £, is the potential value at peak current, £, is the
standard potential, which was obtained from the average of anodic and cathodic peak potential
values, R is gas constant (8.314 J mol-! K-!), F is Faraday constant (96485 C mol'), and T is

temperature. Other symbols have the same meaning as in the N-S equation.[>!]
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Figure 5. Quantitative analysis of Ti & Ce reaction parameters. CVs of a) CP in Ce electrolyte
and b) HT CF in Ti electrolyte at different scan rates. N-S plots of ¢) anodic and d) cathodic
reactions. K-K plots of e) anodic and f) cathodic reactions.
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289 Table 4. Electron transfer coefficients of Ti & Ce reactions
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(cc)

Scan rates (mV/s) Ti_a, Ti_a, Ce_a, Ce_a,
1 0.334 £0.026 0.690 £ 0.037 0.464 £ 0.040 0.755 £ 0.052
2.5 0.294 £ 0.011 0.577 £0.034 0.368 £ 0.027 0.536 £ 0.041
5 0.196 £ 0.014 0.485 £ 0.021 0.315+£0.016 0.411 £0.020
10 0.157 £ 0.009 0.361 £0.028 0.270 £ 0.020 0.353 £ 0.029
290
291 The traditional N-S plot depicts i, vs. V2, whose slope is used to calculate Dy. The electron

292 transfer coefficient, @, is usually taken to be 0.5 by convention, as shown in some previous
293  studies.[%2-33] However, it should be noted that it is only suitable to assume a value of 0.5 for
294  reversible, elementary single-electron reaction.!*”] As mentioned earlier, both Ti and Ce reactions
295  were irreversible, meaning it is unreasonable to do so. In this case, the transfer coefficient, a, was

296  quantitatively calculated by the following equation:[47]

297 o = 1.86RT (3)

F(E—E)
rEp

298  where E,; is half-peak potential, which refers to the potential when the current reaches half of i),
299  The results of a are listed in Table 4, demonstrating that the actual a values were significantly
300 deviating from 0.5 as expected based on the irreversible nature of the reactions. Notably, the a
301  values for the Tiredox couple were found to deviate more from the ideal of 0.5 compared to values
302 measured for the Ti redox couple in H,SO, across a range of supporting electrolyte
303  concentrations.[”?] This was attributed to difference in solvation brought about by using MSA as

304 the supporting electrolyte. The application of Equation (3) has been proven to be an effective and
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305 accurate way to determine the charge transfer coefficient!>*! and the observation that o values
306 calculated from Equation (3) was inversely correlated with the scan rate was in agreement with
307  that study’s conclusions. This phenomenon was understood to be a result of the potential-
308 dependent nature of transfer coefficients at high overpotentials. The Butler-Volmer model assumes
309 an exponential relationship between charge transfer rate and electrode overpotential regardless of
310  how far it is from equilibrium, which is not consistent with the modern understanding of charge
311  transfer.[3-36] Based on this, the original N-S and K-K equations were slightly modified by moving

312  a from right to left side:
1/2

313 iy/al/? = (2.99 x 105)n3/2AC, Dy “v1/? @

314 by defining

315 y=exp %TF(E,, —E")]/ozl/2 (5)

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

316  the K-K equation turns into

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

317 x=

®
s vl I ©

(cc)

318  Thus, the diffusion coefficient, Dy, and standard reaction rate constant, k,, were obtained from the
319  slope of the N-S plot (i,/a!? vs. 1/2) and the K-K plot (y vs. 1/2), respectively. The N-S and K-K
320 plots are depicted in Figure S, and the results for D, and k, are listed in Table 5. The diffusion
321  coefficients of Ti on HT CF were more than two orders higher than those of Ce on CP. The porous
322  nature of HT CF was expected to result in the measured diffusion coefficient being an effective
323  diffusion coefficient including the effect of constrained diffusion within the pores of the HT CF.

324  Thus, the fact that the effective diffusion coefficient of Ti is still higher than that of Ce on a much
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less porous CP electrode indicates that Ce is transport limited. The measured diffusion coefficients
of Ce were more also than one order of magnitude higher than values obtained from some previous
studies using dilute Ce solutions (0.01 to 0.2 M) and with sulfuric acid supporting electrolytes.l57-
381 The diffusion coefficient of active species is strongly dependent on the concentration and type
of supporting electrolyte and thus only broad comparisons of diffusion coefficient trends would be
strictly valid when comparing measurements made with electrolytes having different supporting
electrolytes. These studies also used a non-porous, planar electrode and thus the difference in
calculated diffusion coefficients also reflect the difference between the geometric and
electrochemically active surface area (ECSA) of the electrode. The geometric area and ECSA
would be very close to each other in the planar model electrodes while the differing significantly
(even by 10-100 times) in practical, porous electrodes. Since the diffusion within pores must be
considered, a film diffusion coefficient was proposed to reflect the difference from bulk diffusion
by a partition coefficient (partitioning between the bulk and the film formed on the pore walls) in
a porous electrode system.[”3] This difference existed on both sides making the results
quantitatively comparable. We strongly recommend that these fundamental electrochemical
measurements should be carried out using the actual electrode material that is intended to be used
in the RFB. This will ensure that these measurements can actually serve as useful guides for RFB
engineering. We measured the diffusion coefficients and rate constants on the same HT CF and
CP that are also used as electrodes in the Ti-Ce RFBs and thus this measurement is much more
representative of the conditions encountered in actual operation. The ECSA can be calculated from
the double-layer capacitancel>®]. The N-S equation itself has also been used calculate the ECSA,
as long as an independent measure of the diffusion coefficient is available.l9] CVs of CP and HT

CF were measured within non-Faradaic region to measure the double layer capacitance, C (Figure
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348  S2 and Table S2). With a geometrical surface area of 1 cm?, the specific capacitance, C; of HT CF
349  was measured to be ~4700x that of CP. This improved C; directly corelates to higher measured
350 reaction rates over an electrode of the same geometric area even though the rate constant is
351  unchanged. Based on the discussion above, the D, and k) numbers measured here can be defined
352  asthe “nominal” values because they accurately reflect the different effects of HT CF and CP with
353  acommon geometrical surface area. Similarly, the reaction rate constants listed in Table 5 should
354  be examined with this understanding of the effect of electrode surface area. Notably, the rate
355  constant for Ce reduction was found to be lower than that for Ti oxidation while Ce oxidation was
356  faster than Ti reduction. Thus, Ce was expected to be the rate limiting electrode during discharge
357  while Ti was expected to be rate limiting during charge. To verify it, polarization curves of
358  symmetric cells utilizing Ce or Ti electrolyte of 50% SOC were compared as depicted in Figure
359  S3. The overpotential of Ce side was higher than Ti in discharge and vice versa in charge, which

360  supported the finding that Ce was rate limiting during discharge and Ti during charge.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

361 Table 5. Mass transfer and kinetics parameters of Ti & Ce reactions

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

Parameters Ce CP._a Ce CP ¢ Ti HTCF a Ti HTCF ¢

(cc)

Diffusion coefficient D,
0.48 £ 0.04 0.58 £0.18 46.0 £ 6.2 105.1£11.2
(x10-* cm? s)

Standard reaction rate
9.1+0.5 6.5+0.1 42.7+3.5 3.8+0.5
constant ky (x104 cm s!)

362

363 2.4 Ti-Ce RFBs performance
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To verify the advantage of asymmetric electrode configuration, pristine CF and CP were used
separately as positive electrodes in Ti-Ce RFBs to test the performance, depicted in Figure 6. Only
positive electrodes were varied as the Ti electrolyte was found to not even wet the CP surface as
shown in section 2.1. Figure 6a shows the performance at a relatively low current density (50 mA
cm?) with different cycling durations. Over 10-minute cycles, the energy efficiency (EE) of CF
was significantly higher than that of CP (85.6% vs. 76.0%) as the much higher active surface area
of CF compared to than CP provided more active sites for the Ce reaction, thus promoting the
reaction rate. However, as the cycling experiment proceeded, EE of CF and CP gradually
decreased and increased respectively, and reached the same level in the 60-minute cycle stage
(81.0%). As shown in Figure S4, the polarization losses of CF were gradually increased while that
of CP remained constant. The degradation of CF during RFBs operation was consistent with the
stability test in Ce(IV) electrolytes, i.e., the structure of CF was destroyed by the highly oxidizing
nature of Ce(IV), leading to lower EE. On the contrary, it was interesting to find that since CP was
resilient to Ce(IV), and EE of CP was promoted over time pointing to possible CP activation by
Ce(IV) during the experiment to become more favorable for the Ce reaction. The difference in
RFB performance between CF and CP was more significant at high current density (150 mA cm-
2), as shown in Figure 6b: the average EE of CF was only 48.6% while that of CP was 68.1%.
Moreover, both EE and discharge capacity decreased over cycling when CF was used as the
electrode of the Ce side. It is clearly shown in Figure 6¢ that the degradation of CF during cycling
increased high frequency resistance (HFR) from 60 to 110 mOhm, while HFR of CP stayed under
30 mOhm. Higher HFR resulted in greater ohmic losses, which lowered the EE, especially when
the applied current density was high. To identify the source of the increase in HFR on the untreated

CF, characterization was performed on CP and CF at Ce side after cycling experiment. As shown
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387  in Figure S5 (and compared to the SEM images in Figure 1), the surface morphology of CP was
388  unchanged after cycling but CF showed significant surface roughening. The EDX results listed in
389  Table S3 clearly show the dramatic increase (compared to CP) in surface oxygen on CF after
390 cycling and this indicates that oxidative degradation of the untreated CF resulted in increasing
391  charge transfer resistance and decreasing performance. Thus, CP was concluded to be the better

392  choice of electrode for the Ce side, validating our choice based on CV measurements.

393  The generally accepted opinion about HFR in RFBs is that it is dominated by the ionic resistance
394  of ion exchange membrane.[%!-63] The contact resistance of other components in RFBs, especially
395  that from porous CF, has been studied in some previous studies. A more compressed CF would
396  result in a lower HFR, with possible destruction of the mechanical properties of CF and increase
397  in pressure drop. The effect of compression ratio on this tradeoff was reported for VRFBs, with
398  the optimum compression ratio lying within a wide range from 25% to 60%.164-6%1 To identify the

399  optimum compression ratio for CF on the Ti side, three different values (25%, 48%, and 53%)

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

400  were selected based on the different types of gaskets during cell assembling, and the result is shown

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

401  in Figure S6, Supporting Information. As the compression ratio was increased from 25% to 48%,

(cc)

402  the HFR decreased from 50 mOhm to 30 mOhm and correspondingly, EE increased from 63.5%
403  to 67.7%. A further increase of compression ratio became difficult as CF tended to be broken, and
404  the HFR from other components (e.g., membrane and electrolytes) remained unchanged. Our
405  previous study utilized a hydraulic-electrical analogous model to reveal that when the compression
406  was increased from 10 to 40%, the hydraulic power loss was promoted by approximately 40%.74]
407  The EE further increased to 69.2% when the compression ratio was increased to 53%, while the

408  change of HFR was negligible, indicating that we had reached the HFR optimum. Based on this,
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the compression ratio of HT CF on the Ti side should be kept at around 50% to yield the best

performance.

The long-term cycling result with this optimal configuration (CP electrode on Ce side and 50%
compressed HT CF electrode on the Ti side) over the entire SOC range is depicted in Figure 7.
Notably, this optimization effort allowed us to increase the operating current density from 100 to
150 mA c¢cm? over 100 cycles in 80 h, the average of coulombic efficiency and EE were 99.1%
and 67.8% respectively, and about 93% of the initial discharge capacity was retained at the end of
cycling. The cycling was conducted with a galvanostatic plus potentiostatic protocol, and some
irreversible side reactions (e.g., hydrogen evolution) might happen when the cell was held at a
high potential (2 V). The theoretically upper limit of charge capacity of the (n+1)th cycle was the
same as discharge capacity of the nth cycle, which was lower than the charge capacity of the nth
cycle due to the fact that the coulombic efficiency was close but never equal to 100%. Thereof,
the discharge capacity would inevitably decrease overtime. Additionally, we observed almost no
capacity fade over >200 cycles when the range of SOC over which we cycled was narrowed by
imposing a time limit on the charge and discharge cycles as shown in Figure S8. The discharge
voltage reached 1.4 V according to charge-discharge curves as depicted in Figure S7. The
performance reported here is better than most other types of RFBs utilizing Ce, e.g., Zn-Ce,!%7] Pb-
Ce,l?1 V-Ce RFBs,??l and non-aqueous Ce RFBsl®® as summarized in Table 6. The operating
current density of this work was the highest compared to previous studies, and a high current
density is typically not beneficial to energy efficiency since the ohmic polarization is increased.
Despite this, the energy efficiency of this work is still higher than most of previous studies.
Furthermore, the concentration applied in this study is also the highest among all the studies,

indicating a great advantage of promoting capacity storage and lowering capital cost. In a recent
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432

433

434

435

436

study, the Ti compound was decorated on CF to enhance the kinetics of the Ce redox reaction, and
a Fe-Ce RFB was developed based on this idea.l%) The EE from this study was 66.2% at 25 mA

cm2, which was close to that of this study at 150 mA cm. Thus, the Ti-Ce RFB presented here
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shows great potential for commercialization and scaling up.
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Table 6. Comparison of Ce RFB performance between this work and previous studies

Highest operating Highest # of
RFB Positive Negative
current density Discharge  EE (%) finished  Referencc
type electrolyte electrolyte
(mA cm?) voltage (V) cycles
0.8M 1.5M
Zn-Ce Ce(CH3S0;);in4  Zn(CH3S05),1in 1 50 1.77 59.3 57 [67]
M MSA M MSA
1.5M
1M CC(CH3SO3)3
Pb-Ce Pb(CH;3S03),in 1 10 1.67 79 800 21]
in 1 M MSA
M MSA
09M
0.9 M VOSOy in
V-Ce Ce(CH;3S0;); in 4 100 1.25 51 100 (22]
5.8 M MSA
M MSA
0.05 M [Ce(Py-
Non- 0.05 M V(acac);®
O)s][TH:N];” in
aqueous in0.5M 1 2.1 <75 50 [68]
05M
V-Ce TEABF,/ACNY
TEABF,/ACNY
0.1 M Ce(SO4),in 0.05 M FeSO4in 1
Fe-Ce 25 0.8 66.2 100 [69]
1 M H,S0, M H,SO4
09M
0.9 M TiOSOy in
Ti-Ce Ce(CH;S0;); in 4 150 1.4 67.8 100 This work
3.8 M MSA
M MSA
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440  Figure 6. Ti-Ce RFB performance. Comparison between CF and CP working as electrodes of Ce
441 side under a) galvanostatic 50 mA cm with different charge/discharge durations and b)

442 galvanostatic 150 mA c¢cm plus potentiostatic at 2/1 V for charge/discharge. ¢) HFR evolution
443 comparison between CF and CP working as electrodes of Ce side with galvanostatic 150 mA cm-
444 2 plus potentiostatic at 2/1 V for charge/discharge.

445
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450  Generalized design optimization approach for RFBs

451 During RFB operation, activation polarization, ohmic polarization, and concentration
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(cc)

452  polarization is dominating respectively as current density increases, as shown in Figure 8. The
453  overpotential induced by each type of polarization includes the contribution from both cathodic
454  and anodic sides. For example, during discharge, Ce and Ti undergo cathodic and anodic reactions,

455  respectively, and the activation polarization could be expressed as follows:

RT . RT .

456 Nact.c = e CFln(l) - mln(lO_Ce) (7)
RT . RT .

457 Nact.a = o aFln(l) - mln(lo_ﬂ') (8)

458  where i is the exchange current density. Similarly, the ohmic overpotential could be expressed as
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)

(10)

where A and G are electrode surface area and electrolyte conductance, respectively.

1.6

14

=
N

Cell voltage (V)
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Mass
transport
polarization

0 40 80 120 160 200

Current density (mA cm™2)

Figure 8. Illustration of polarization curve during RFB operation.

The polarization curve presented above is typical of RFBs and can be used as a general diagnostic

tool to identify losses and areas for improvement. Figure 9 depicts the interlinked RFB design

parameters (e.g., electrode thickness, separator thickness etc.) and its effects on RFB performance

parameters. Table 7 provides suggested modifications to the RFB design depending on the

performance limiting design parameter identified using the polarization curve.
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Figure 9. Interlinks between performance metrics and design parameters.

Table 7. Relationship matrix between RFB performance metrics and design paramters.

Affected RFB design Governing equation and control Design modifications
performance . . .
variable variable examined
parameter
Energy Electrode o _ Lelectrode 1. Varying electrode
efficiency thickness . Telectrode ™ b b Aulectrode thickness and porosity.
2. Thinner separator,
(indirectly Separator Lseparator reinforced separator.
affected thickness 2. Oseparator = RuenAo. | 3. Electrolyte additives,
HFR{separator . .
through RFB mixed supporting
cell resistance) electrolytes.
Electrolyte L
7 X _
conductivity 3electrolyte Retectrotyted
. =Z4Vy Celectrolyte(}‘
+1)
Power density Electrode 1. i=nFAkC 1. Varying electrode
surface area material and thickness.
akn 2. Electrode pretreatment
2. k= k() exXp\— RT (thermal, H3PO4
immersion, aqua regia
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2. Electrode immersion) and/or Bi
active surface electrodeposition.
modification

473

474

475 3. Conclusion

476 A Ti-Ce RFB with asymmetric electrode configuration was proposed and developed in this study
477  guided by a series of broadly applicable fundamental surface- and electrochemical characterization
478  techniques. It is shown that using the actual electrode and electrolyte employed in a RFB to also
479  measure electrochemical characteristics like diffusion coefficient and rate constant leads to better
480  agreement with cell level results and avoids the pitfalls introduced by idealized dilute electrolytes
481  and model, non-porous, planar electrodes. Evaluating and downselecting electrode candidates
482  based on surface wettability and electrochemical performance (reversibility, redox reaction rates),
483  traditional, thermally treated CF was utilized as the negative electrode while CP was selected as
484  the positive electrode as it was more resilient to the oxidizing nature of Ce(IV). This cell was
485  further optimized by adjusting the CF compression ratio to balance reduced ohmic losses and
486  increased pressure drop. This optimized RFB operated at 150 mA cm and delivered a stable
487  coulombic and energy efficiency of 99.1% and 67.8% respectively, and a capacity retention of
488  93% by the end of 100 cycles — a significant improvement across multiple metrics compared to
489  other Ce-based RFBs. The demonstrated Ti-Ce RFB presents great potential for the development
490  of economically and environmentally friendly inorganic RFBs. The approach presented herein can
491  also be generalized to improve the performance of other RFBs.

492

493 4. Experimental section
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494 Preparation of materials: Titanium oxysulfate (TiOSO,) and MSA were purchased from Sigma-
495  Aldrich; cerium carbonate (Cey(COs3);) was purchased from Treibacher Industries A. G. Ti
496  electrolyte was made by dissolving TiOSQO, into deionized water first, then the corresponding
497  amount of MSA was added; Ce electrolyte was made by mixing Ce,(COs3); and deionized water to
498  form a slurry first, then MSA was added slowly to react with Ce,(COs)s. The slurry was mixed by
499  a magnetic bar rotated at a low speed (100 rpm). After every 1 mL of MSA was added, no more
500 MSA was added until the reaction finished and no CO, bubbles were observed. CP (AvCarb MGL
501 190, Fuel Cell Store) and CF (GFA 6, SGL Group) were heat treated in a Muffle furnace at 500 °C
502  for 8 h under an air atmosphere. The optimum treatment temperature was concluded based on a
503  screening with different temperatures, as depicted in Figure S10. As the temperature increased
504  from 400 to 550 °C, the EE first increased from 47.7% to 66.9% at 500 °C and then slightly
505 decreased. The synthesis of quaternized cardo-poly(ether ketone)-based anion exchange

506  membrane functionalized with trimethylamine (QPEK-C-TMA AEM) was the same as one of our

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

507  previous studies.[70-71]

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:43 AM.

508 Electrochemical methods: Cyclic voltammetry (CV) was conducted with WaveNowXV

(cc)

509  Potentiostat Bundles (PINE Research), and a three-electrode system was set up utilizing an
510  Ag/AgCl reference electrode, platinum wire counter electrode, and CP or CF working electrode.
511  The geometrical surface area of the working electrode was 1 cm? for all tests. The scan range for
512 Tiand Cewas-0.5to 1 Vand 0.8 to 1.9 V vs. Ag/AgCl, respectively, and four different scan rates,
513 1,2.5,5,and 10 mV/s were used for further calculation from N-S and K-K equations. The Ti and
514  Ce electrolytes with 50% state of charge (SOC) were obtained by running a half-charge protocol
515  in Ti-Ce RFB and then diluted 10 times using the same concentration of MSA on each side. The

516  reason was that the current from the CV experiment would be extremely large with the original
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concentration due to the much higher reaction activity of CP and CF compared with the more
commonly used working electrode, glassy carbon, which would interfere with the identification of

peak current position and value.

Characterization methods: SEM/EDX was conducted with an Environmental Scanning Electron
Microscope (Thermofisher Quattro S ESEM) bundled with an Oxford AzTec Energy Dispersive
X-Ray Spectrometer (EDXS). The acceleration voltage was 5 kV, and the working distance was
around 10 mm. XPS was conducted with Physical Electronics 5000 VersaPhobe II Scanning ECSA
Microprobe. A broad survey spectrum was finished before the fine scanning for each element. The
contact angle picture was captured with a homemade goniometer mainly composed of a camera

and lighting background, and the contact angle was then measured by ImageJ.

RFBs test: Ti-Ce RFBs were operated with an 857 Redox Flow Cell Test System (Scribner). The
geometrical surface area of negative and positive electrodes was 25 cm? (5x5 cm). The volume of
electrolyte on each side was 100 mL and it was pumped through the cell with a flow rate of 140
mL min-'. The 50 mA cm protocol was purely galvanostatic for both charge and discharge
processes with different durations (10, 30, and 60 mins), and the battery was operated for 5 cycles
under each time length. The 150 mA cm protocol was galvanostatic plus potentiostatic to charge
and discharge the system fully. In charge, the cell was applied at a current of 150 mA cm until
the potential reached the cutoff value (2 V), then the potential was held at this level until the current
decreased to 20 mA cm. Likewise, -150 mA cm was applied at the beginning of discharge until
the potential decreased to cutoff value (1 V), followed by a potentiostatic stage at this potential
until the current increased to -20 mA c¢m 2. The protocol for polarization curve could be found in

section 2, Supporting Information.
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540  Supporting Information Available

541 XPS survey data, Charge-discharge curves, Ti-Ce RFB performance with different CF

542  compression ratio, properties of CP and CF available.
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