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Artificial intelligence-powered signal analysis of
loop-mediated isothermal amplification (LAMP) for
the screening of Kaposi sarcoma at the point of
care

Darke Hull, a Juan Boza, a Jason Manning, a Xinying Chu, b

Ethel Cesarman, c Aggrey Semeere, d Jeffrey Martin e and David Erickson *bf

Unlike the polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP) lacks a

consistent thermal cycle, making quantification particularly challenging. Previously, we demonstrated that

LAMP can accurately diagnose Kaposi sarcoma (KS) from skin lesion biopsies at the point of care (receiver

operating characteristic area under the curve (AUC) = 0.967). A common approach in LAMP analysis

involves setting a minimum absorbance threshold and time cutoff for positivity, which can introduce bias.

We present a less biased, automated signal processing approach involving the fitting of a signal curve to

five, two-parameter algebraic function fits, and the training of an artificial intelligence (AI) model on those

parameters and their variances. An extreme gradient boosting (XGB) model was trained and tested on a

primary dataset consisting of 1317 LAMP curves (from 451 unique patient samples with replicates). Five-fold

k-validation on the train/test set yielded an receiver operating curve (ROC) area under the curve (AUC) of

0.952 ± 0.029. Each of the five-fold models were then validated on a separate secondary dataset of 966

LAMP curves (from 414 unique patient samples with replicates) and achieved an AUC of 0.950 ± 0.005.

While the traditional methodology (which did not implement k-validation or a test/train split) outperformed

the AI model's train/test set performance, the AI model generalized better and achieved a higher accuracy

on the validation set (0.950 ± 0.005 vs. 0.9347). It performed even better when the analysis was applied

directly to the raw signal data without additional pre-processing steps such as artifact filtering. This

suggests that the AI model is more generalizable to new data and is able to discriminate KS-present and

KS-absent samples better than traditional methods.

Introduction

Real-time loop mediated isothermal amplification (LAMP)
faces challenges in unbiased, reliable, and quantitative
clinical implementation. This is particularly important in
instances for which quantitative thresholds such as viral load
are required. This is the case for Kaposi sarcoma (KS), a
cancer identified by characteristic skin lesions and for which

the Kaposi sarcoma-associated herpesvirus (KSHV) is a
necessary but insufficient cause.1 In 2020, the majority of KS
cases (73.0%) and fatalities (86.6%) occurred in African
countries.2 In sub-Saharan Africa, the paucity of pathology
services makes traditional diagnosis by histopathologic
interpretation inaccessible. Previous work has leveraged the
viral origin of KS to provide highly specific and sensitive
screening (AUC = 0.967) based on KSHV viral load testing via
LAMP on DNA extracts from skin lesion biopsies.3 As with all
cancers, accuracy in new diagnostic methods is critical to
avoid false positives (which could lead to needless use of
chemotherapy) and false negatives (which could delay
diagnosis or lead to failure in diagnosis).

Similar to the polymerase chain reaction (PCR), LAMP is a
nucleic acid amplification method for DNA detection and
quantitation, though standardized methods for signal
processing have not been established. In real-time LAMP, the
reaction is monitored to collect the entire amplification
curve, which can then be used to determine the amplification
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time and thereby quantitate the analyte. Compared to the
polymerase chain reaction (PCR), which discretely replicates
DNA through thermocycling, LAMP works isothermally,
continuously and semi-unpredictably amplifying DNA.
Researchers leverage the PCR's cycle-dependency to
determine amplification at a particular cycle threshold (CT)
value. The parallel for LAMP curves is the time to threshold
(Tt). Positive CT and Tt values both correspond to the cycle/
time where the amplification signal, which is proportional to
the initial DNA copies, surpasses a threshold.4 There is not,
however, a standardized way of assigning Tt or its
corresponding threshold. The most basic method is choosing
a threshold which gives a desirable sensitivity/specificity
when applied to the data to find Tt. Systematic thresholds
have been employed; one LAMP study defined a positive
result as the assay color exceeding the baseline plus three
standard deviations of the baseline noise.5 Another
systematic method assigned the threshold as the average
fluorescence of the background and positive control.6 A
review on LAMP technologies, Moehling 2021, concluded that
LAMP is best suited for qualitative analysis rather than
quantitation because of its narrow quantitative range and low
linearity at lower concentrations.7 Despite this, less biased
methods of quantification have been developed for both the
PCR and LAMP. For the scope of this paper, elements which
introduce bias refer to analysis and modelling decisions
made by a researcher, which ultimately affect the final
reported accuracy of a method. While bias is inevitable,
avoidable forms of bias include choosing a threshold post-
hoc, choosing models which overfit data, and not employing
a test/train split.

Several studies have leveraged mathematical
transformations and fits to further reduce bias. One study
found the inflection point using the second derivative of the
LAMP signal and used that point as the Tt.

8 Similarly,
another study found the maximum of the second derivative
of a 7-parameter sigmoid function fit.9 Also using a sigmoid
function, another study fit the LAMP signal to a four-
parameter sigmoid function, and used the corresponding
time point to the average of the maximum and minimum
signal as the Tt.

10 Algebraic function fitting has also been
used with the PCR. One study fit an exponential function to
the exponential portion of PCR curves and used it to calculate
amplification efficiency.11 Another compared fitting logistic,
sigmoid, Gompertz, and Chapman functions to qRT-PCR
signals for quantification.12 Similarly, another study used a
logistic function, Richard's curve, on LAMP signals, defining
TTP as the intersection of the linear extrapolation of the
maximum slope and the starting signal value.13 Researchers
have leveraged artificial intelligence (AI) methods for the
quantification of LAMP curves. Convolutional neural
networks (CNNs) have been used to determine the signal of
colorimetric LAMP assays from images of test tubes.14

Recently, a paper and preprint describing a custom LAMP
platform employing YOLOv8 (an CNN-based object detection
model) was effective for the detection of antimicrobial

resistance genes in UTI-causing gram-negative bacteria.15,16

Decision tree algorithms with binary outputs (pregnant/not
pregnant) have been trained on LAMP features consisting of
the rise up times (defined as the first time the absorbance
exceeded 0.05) of three genes.17 Amplification curve analysis
has leveraged k-nearest neighbour algorithms for a novel,
data-driven multiplexing technique.18 The authors compared
their method to the melting curve analysis (MCA), which
performed slightly (3.41%) better. The authors concluded
that while MCA is more accurate, it is not suitable for point
of care (POC) scenarios where precise temperature control is
difficult. In addition to AI LAMP methods, AI has been used
in other DNA based diagnostics. AI has been applied to a
wide range of cell-free-DNA diagnostics as a way to bolster
these less invasive methods. One review of cell-free-DNA
diagnostics, including prenatal and cancer screening,
concludes that recent advances in gene sequencing and
biomarker detection present immense promise for precision
medicine.19 Interestingly, AI powered DNA detection is not
limited to medical applications. One review on forensic DNA
profiling discussed AI powered human identification
methods and suggested that this technology for applications
like the prediction of visual appearance, ancestry, and age
present an objective and permanent progression of the
field.20 While applications of AI DNA detection are
widespread, to our knowledge no other AI-based LAMP signal
analysis methods have been described in the literature.

LAMP is more demanding of robust data analysis
methodologies than the PCR because of its basis in time
rather than cycles and its tendency of non-template
amplification. To address this, several publications have
developed less biased methods of LAMP data analysis, often
employing algebraic fit-curves. Choosing which fit-curves to
include and not employing a test/train data split are ways in
which bias persists in these less biased methods. A method
is presented for an unbiased classification of KS-present
(positive) and KS-absent (negative) samples using an AI
model trained on fitted algebraic curves. The model is
compared to the method presented in the original
publication of the data.3 The dataset used to train all models
was gathered point-of-care (POC) from medical facilities in
Africa, where artifacts such as voltage drops make
quantification especially difficult.

Experimental

All experiments were performed in accordance with the
Guidelines for ethical conduct of research, and the protocol
was approved by the School of Biomedical Sciences Research
Ethics Committee at Makerere University. Written informed
consent was obtained from all participants in this study.

All code for this paper was written in python in Google
Colaboratory. Data smoothing was done with the hampel
package or a moving average. For curve fitting, cipy.optimize
was used. The xgboost package was used for the gradient
boost method. Several supporting methods for k-fold
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validation and ROC analysis were used from sklearn. Google
Gemini, Microsoft Copilot, and ChatGPT were used as coding
and syntax tools. All generative AI tools were used with
staunch skepticism and human verification.

The first dataset used herein (the test/train set) consisted
of real-time LAMP curves of an assay targeting a sequence of
KSHV DNA in skin lesion biopsies collected in Uganda.3

Following collection, skin punch biopsies were longitudinally
bisected for histopathological diagnosis and nucleic acid
testing on DNA extracted using the DNeasy blood and tissue
kit (QIAGEN 69504). Briefly, tissue samples were
enzymatically digested and DNA purification was
accomplished via spin column membranes. For the LAMP
assays, a 5 μL aliquot of DNA extract was added to the LAMP
mastermix targeting KSHV. LAMP reactions were performed
at 68 °C for 50 minutes in the TINY device which tracked
real-time fluorescence (Evagreen fluorescent dye, Biotium).22

The dataset consisted of 1317 LAMP runs, representing 451
unique patient samples with replicates. The replicate method
measured each tissue biopsy in duplicate and assigned the Tt
as the time at which a threshold was reached. For duplicates
with Tt disparities in the top 5% of samples, two more
samples were retested. Herein, for samples with more than
two replicates in the dataset, the first two replicates were
excluded. For each of the remaining replicates, the fitting
parameter values were averaged. A test/train split was then
applied on the patient level, after this replicate-removing
method was finished to mitigate data leakage downstream.

Five-fold k-validation was performed on the test/train
dataset. This is accomplished using a built in function in the
sklearn package along with custom code. k-validation entails
dividing the dataset k times (in this case 5 times) and
training k separate models, each using (k − 1)/k of the data
and testing on the remaining 1/k of the data, so that each
point is used as a testing point 1 time and a training point k
− 1 times. The testing performance of each of the k models
are then averaged. In this paper, deviation will be reported
and calculated in the same manner as standard deviation,
though it should be noted that since the distribution of the
test/train sets are linearly dependent and semi-nonrandom, it
cannot be considered a true standard deviation. The same is
true for the reporting of validation AUC, which will be
reported as the average performance of each of the models
on the validation set, with a deviation calculated in the same
manner as standard deviation.

The second dataset used herein (the validation set)
consists of the subsequent 966 LAMP runs, representing
414 unique patients.21 This dataset was not used in the
training or testing of the model, but was used to validate
each of the five models generated by the 5-fold validation.
The test/train set and validation set do not contain any
shared patient ID's to mitigate data leakage. Both the train/
test and validation sets are the TINY device's blue signal
divided by its yellow signal.

The original method assigned Tt when the smoothed
curve (moving average window = 10) increased by more

than the chosen slope threshold. Each of five,
2-parameter fitting functions were employed for the
training of the AI model. Several models were applied
to the LAMP dataset to evaluate prediction accuracy.
Parameters for maximum depth, estimators and learning
rate were varied between (1, 64) (1, 2000), and (0.01, 1),
respectively to optimize AUC. An 80%/20% train/test split
and 5-fold k-validation were employed. All signal
processing steps (e.g. smoothing, baseline normalization,
and artifact filtering) were applied systematically to all
samples to address device-related signal artifacts and did
not alter underlying biological signals.

Results and discussion

The curve was smoothed (moving average window = 10). Then,
the minimum value from each curve was subtracted from the
curve to normalize the minima to zero (Fig. 1). Qualitatively,
after this processing the KS-present-positive (red) and KS-
absent-negative (blue) samples appear better grouped, though
still with much overlap between the two groups.

Each amplification curve was fit to a 2-parameter algebraic
function: linear, quadratic, sigmoid, exponential (fit to 2.25

Fig. 1 The data cleaning method employed for curve cleaning. Fig. 1A
shows the raw test/train set curves. Fig. 1B shows the smoothed
curves (moving average window = 10), which have had the minimum
values of each curve subtracted from the curve to normalize the
minima to 0. Fig. 1C shows the validation set curves. Fig. 1D shows the
smoothed curves (moving average window = 10) which have had the
minimum values of each curve subtracted from the curve to normalize
the minima to 0. For all plots, red samples are KS-present (positive)
and blue samples are KS-absent (negative). This figure includes all
LAMP runs, including replicates.
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min), and Gompertz (SI1). Potential cutoffs were assigned as
the average of each adjacent, ordered point. Each cutoff was
evaluated and plotted, and the ROC curves and AUC values
are shown in the SI figures (SI2).

In exploratory testing, other AI methods were applied
to less success than XGB to include random forest, feed
forward neural network, and perceptron algorithms.
These exploratory models were evaluated based on
classification accuracy18 (number correct/total) and
employed a test/train split but not k-validation. The most
successful model was extreme Gradient Boost (XGB),
which was then optimized.

An extreme gradient boost model was trained on the
fitting parameters from the 2-parameter mathematical
models and the covariance of the fit generated from the
scipy.optimize package's curve_fit. The model feature
importances are disclosed in the SI (SI3). The featured
importances are dominated by the steepness of the sigmoid
fit (parameter n), suggesting that the model mainly predicts

based on how steeply sigmoidal the curve is. The optimized
model achieved a 5-fold k-validation testing score AUC of
0.952, with a fold deviation of 0.029 (Fig. 2). The ROC curve
was generated by assigning a likelihood of being positive to
each sample, then plotting each point as a different
minimum likelihood to be considered positive.

The XGB testing ROC curve falls below the originally
published model when trained on the train/test set by less
than one standard deviation of the folds at those false
positive rates. However, when both models (the original
method compared to the average of the 5-fold models) are
validated on new, unseen data, the XGB validation ROC
performs over a full standard deviation above the original
method (Fig. 3). Moreover, the original method filtered for
signal artifacts such as voltage drops, a systematic
adjustment that may introduce bias similarly to how
threshold fitting and determination does. The 5-fold XGB
model performs nearly five (4.96) standard deviations above
the validation set without artifact filtering (Fig. 3). Moreover,
the 5-fold XGB model performs better on the test set than the
original method without artifact filtering.

The gap in performance between the train/test set and
validation set of the original model suggests that the method
overfits to the original dataset. The shortcomings of the
original model include the requirement of an artifact filtering
step. This aspect introduces bias into the model that can be
mitigated by proper employment of AI methods and
demonstrably increase validated performance. The similarity
between the average AI performance of the 5 folds between
the train/test and validation sets suggests that it generalizes
better to new, unseen data. The deviation of the performance
of the folds of the AI model on the train/test set is likely due
to the nature of 5-fold validation changing a large portion of
the dataset each fold.

Fig. 2 A ROC curve for the 5-fold AI model trained on each
2-parameter algebraic fitting function and their fitting covariances of
the validation set (A) and the test/train set (B). Each fold is denoted by
a thin solid line, the average curve is denoted by a thicker brown line,
and the shaded region represents one standard deviation of the values
at a given false positive rate. False positive rate and true positive rate
values from the original publication of the test/train data*, validation
data**, and local pathology* are included for reference and labelled
ref. 3* and 21**.

Fig. 3 ROC AUC values for the 5-fold XGB AI model which did not
involve an artifact filtering step (AI, NAF), the original model with
artifact filtration (original), and the original model with no artifact
filtration step (NAF). Error bars on the AI model represent the
calculated standard deviations of the AUCs of the 5 folds. It should be
noted that since 5-fold validation set distributions are linearly
dependent, it is not a true standard deviation but similarly represents
the spread of the model performance. It should also be noted that the
y axis spans the range of 0.8 to 1.
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Conclusions

The proposed AI model presents an unbiased, highly
generalizable method for LAMP signal analysis for KS
diagnostic classification. The model folds perform 2.79
standard deviations above (94.9 vs. 93.5) the previously
published model that involves an artifact filtration step and
4.96 standard deviations above a version of the previously
published model that did not apply the artifact filtration
step. This is important as false negatives are extremely
detrimental to the patient because of low follow-up rates. The
proposed model also takes measures to reduce bias by
not determining a threshold, neither arbitrarily nor
systematically, and fully automating the process. It should be
noted, though, that the originally published method does not
employ a test/train split or a validation dataset. The AI model
was trained on 80% of the model and tested on 20% of the
data, simulating how well the system represents new, unseen
data. Through the process of k-validation, this was repeated a
total of 5 times on 5 distinct models, and the results were
averaged. Each of the 5 models were then applied to the
unseen validation dataset, which performed on average
higher than the original model on the same validation set
set. This suggests the new model may represent new, unseen
data better than the original. While the AI model is useful
diagnostically, it lacks the interpretability of the traditional
method which provides a viral load. The original model,
however, is theoretically able to screen more rapidly while
the AI model requires the full 50-minute period. Further
model optimization could reduce the required runtime, such
as training the model on curtailed curves. Unlike several
other methods, the AI method described here is mostly
unbiased. There is, however, some bias in choosing which
algebraic curves to train the AI model on. While this paper
presents a novel method of data analysis, more development
is required before it is ready for widespread use in TINY
devices for KS diagnosis. Before the model could be
implemented in the data analysis workflow for TINY devices,
most practically as post-processing, the dataset should
additionally be validated on a dataset that differs from the
test/train set more than the validation set does. The most
robust additional validation set would be at a new medical
facility location, with additional, newly trained healthcare
providers. Additional future work could include training a
similar regression model to estimate viral load in the sample,
since each sample is paired with PCR data. Such a model
could reduce the bias of determining the Tt value on a
dataset without a test/train split. The TINY is also currently
exploratorily being used with colorimetric indicators, which
may result in differing types of signal curves. Future work
may include evaluating if the methods described in this
paper extend to colorimetric LAMP indicators.

Exploration of novel methods of data analysis bolsters the
effectiveness of POC devices without additional hardware
complexity or cost, making their development critical
alongside development of physical devices. While these

results are tailored for KS and are not directly transferable to
other LAMP studies, similar methods could be employed for
curve analysis on future projects.
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