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gen storage materials discovery
with AI agents
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Despite the surge of AI in energy materials research, fully autonomous workflows that connect high-

precision experimental knowledge to the discovery of credible new energy-related materials remain at

an early stage. Here, we develop the Descriptive Interpretation of Visual Expression (DIVE) multi-agent

workflow, which systematically reads and organizes experimental data from graphical elements in

scientific literature. Applied to solid-state hydrogen storage materials—a class of materials central to

future clean-energy technologies—DIVE markedly improves the accuracy and coverage of data

extraction compared to the direct extraction method, with gains of 10–15% over commercial models

and over 30% relative to open-source models. Building on a curated database of over 30 000 entries

from >4000 publications, we establish a rapid inverse-design AI workflow capable of proposing new

materials within minutes. This transferable, end-to-end paradigm illustrates how multimodal AI agents

can convert literature-embedded scientific knowledge into actionable innovation, offering a scalable

pathway for accelerated discovery across chemistry and materials science.
Introduction

Data-driven approaches are increasingly reshaping the para-
digm of materials discovery and design,1–4 with the integration
of large language models (LLMs) and automated workows
opening new frontiers for accelerated chemical innovation.5–7 A
central requirement for realizing this vision is the ability to
construct and utilize reliable, high-precision materials knowl-
edge at scale;8,9 yet much of the experimental information in the
literature remains unstructured and underexploited, limiting
the full impact of AI in advancing both fundamental science
and technological deployment. Moreover, rapidly assembling
an effective agent or workow for specic materials problems
also remains a substantial barrier.10

The recent surge in LLM applications has greatly enhanced
the prospects for automated data mining and reasoning in
materials science. Leveraging advanced LLMs, several studies
have explored automated extraction of materials data from
scientic literature using prompt engineering and conversa-
tional interfaces.11–13 Despite these advances, existing strategies
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still suffer from limitations in completeness, depth, and preci-
sion—especially when extracting key quantitative information
from graphical elements, which oen encode critical materials
properties. Current state-of-the-art multimodal models, while
powerful, oen require multiple rounds of prompt-based
querying and validation, resulting in signicant computa-
tional cost and inefficient use of token resources. There remains
a lack of systematic workows for one-shot, high-throughput
extraction and for rigorous, quantitative benchmarking
against human-curated data. Moreover, there is no widely
adopted workow for rapidly constructing collaborative, multi-
agent materials design systems based on newly mined datasets.

Recent work has increasingly adopted multi-step, multi-
modal pipelines to mine scientic literature beyond plain text
by explicitly incorporating gures, tables, and cross-modality
constraints. For example, OpenChemIE provides an
information-extraction toolkit for chemistry literature that
integrates multimodal extraction components.14 In electro-
synthesis, MERMES demonstrates an end-to-end multimodal
workow that leverages multimodal LLMs to parse reaction
diagrams and resolve cross-modality dependencies from
publications.15 In materials/reticular chemistry, Zheng et al.
show that GPT-4V can be used to categorize and mine diverse
graphical sources (e.g., isotherms and diffraction patterns) at
scale.16 More broadly, MERMaid proposes sequential modules
for gure/table segmentation and multimodal analysis to
convert PDF-embedded chemical information into machine-
actionable representations.17 Building on these advances, we
Chem. Sci.
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develop the Descriptive Interpretation of Visual Expression
(DIVE) workow, a multi-agent workow designed for high-
throughput extraction of quantitative, gure-centric materials
data (e.g., PCT/TPD/discharge curves), coupled with an
embedding-based evaluation protocol and a downstream
inverse-design agent for hydrogen storage materials discovery.
Although conceptually simple, the DIVE pipeline achieves
signicant gains over current open-source and commercial
models, as conrmed by rigorous manual validation and
scoring. Aerward, we apply DIVE to the domain of solid-state
hydrogen storage materials (HSMs)—a eld critical for the
future of sustainable, carbon-neutral energy.18 Hydrogen's high
gravimetric energy density and environmentally benign
combustion make it an ideal candidate for large-scale energy
storage;19 yet practical deployment hinges on the development
of compact, safe, and cost-effective storage technologies. Solid-
state HSMs, including interstitial hydrides, complex borohy-
drides, ionic compounds, porous frameworks, and emergent
high-entropy and superhydride phases, offer a promising path
forward. Despite decades of research, however, no compre-
hensive, structured experimental database for hydrogen storage
materials currently exists.

In this work, we systematically mine over 4000 primary
publications on solid-state HSMs, spanning the period from
1972 to 2025, using the DIVE workow and optimized prompt
engineering. Compared to leadingmultimodal and open-source
models, DIVE achieves improvements of 10% to 15% and 30%,
respectively, in accuracy and data completeness. The resulting
database comprises more than 30 000 entries, which we
leverage to construct a materials design agent (DigHyd) using
GPTs. This agent supports natural language interaction with the
HSM database and, more importantly, incorporates a machine-
learning-based verier trained on the extracted data. By inte-
grating LLM-driven reasoning and iterative validation, we
realize a streamlined materials design workow capable of
proposing novel hydrogen storage candidates that meet user-
dened criteria within minutes (SI Video 1–3). Overall, this
work delivers an efficient, scalable framework for AI-driven
materials research and offers a transferable methodology for
rapid database construction and inverse design in diverse
materials domains.

Results and discussion

Fig. 1 shows the traditional workow for extracting materials
data from the literature using LLMs (Fig. 1a), as well as the
schematic of our proposed DIVE workow (Fig. 1b). In the
conventional approach, the PDF le of a materials science
article is rst converted into text (e.g., markdown format) and
images. These are then directly fed into a multimodal LLM,
which outputs a structured database. In contrast, our DIVE
workow introduces a much more detailed process, particularly
for extracting key material properties that are oen presented in
gures. For HSMs, these include pressure–composition–
temperature (PCT) curves, temperature-programmed desorp-
tion (TPD) curves, and discharge curves. First, a lightweight
inference model scans the article's gure captions to determine
Chem. Sci.
whether these key gures are present. If so, the corresponding
gure, its caption, and the relevant surrounding text are input
into a second multimodal LLM. By carefully designing and
optimizing prompts, the LLM is instructed to extract the key
points from each curve in the gure, placing the results in the
correct positions (as shown in Fig. 1b, prompt design), the
complete prompt template used for image-based data extrac-
tion is provided in Fig. S14 and in prompt_template.py of our
DIVE codebase (https://github.com/gtex-hydrogen-storage/
DIVE). The extracted text then replaces the original gure in
the article. We name this approach as the descriptive
interpretation of visual expression, as we essentially transform
visual information into descriptive text. Finally, the modied
article, now with images represented as text, is input into
a third LLM for the nal extraction of key data (for details on
all model combinations, refer to the SI).

Equally important to the multi-agent workow is the devel-
opment of effective evaluation methods. To the best of our
knowledge, there is currently no well-established method for
evaluating the accuracy and completeness of data extraction
from articles using LLMs. To save tokens, it is common to
extract multiple entries in one call, making the JSON dictionary
list format particularly suitable for outputs. However, how to
efficiently and reasonably compare human-extracted and AI-
extracted JSONs and assign meaningful scores remains under-
explored. This is particularly challenging in materials property
extraction, where extraction quality cannot be judged simply as
true or false, because the magnitude of numerical differences
should also be considered. To address this, as shown in Fig. 1c,
we propose using an embedding model to match entries
between the human and AI-extracted JSONs. Aer matching, the
units of numerical values are standardized, and the relative
errors are calculated using mathematical functions to provide
nuanced scoring. We divide the nal score into accuracy and
completeness (each normalized to 50 points, for a total of 100).
In this way, hallucinated entries are not explicitly ltered at the
completeness stage; instead, hallucinations are penalized
during accuracy evaluation. Specically, each AI-extracted entry
is forcibly matched to the most similar ground-truth entry using
an embedding-based alignment. As a result, hallucinated or
severely inaccurate entries receive low per-item scores and are
systematically penalized in the nal accuracy metric. We use
a 10% relative-error tolerance as a pragmatic choice for gure-
derived values. This level is sufficiently strict to penalize clear
misreads, while remaining compatible with the current limita-
tions of multimodal models in precise visual digitization (e.g.,
axis tick resolution, curve overlap, and image quality). This
method allows for a more scientic and rapid evaluation of LLM
data extraction performance and can also serve as a reward
function for reinforcement learning to further ne-tune or train
LLMs. The detailed evaluation functions, as well as the code for
the DIVE workow, are available in the GitHub repository in the
Data and code availability section provided with this article. A
representative example comparing ground-truth annotations
and AI-extracted structured data is shown in SI, Table S2,
further illustrating completeness and accuracy scores. To
ensure the high reliability and scientic value of HSM data, the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic diagram and evaluationmethods of the DIVE workflow. (a) Conventional extraction pipeline based on a singlemultimodal LLM.
(b) DIVE extraction pipeline, where descriptive prompts embed key data points and generate image replacements for structured data extraction.
(c) Evaluation method for batch extraction accuracy. Both AI-extracted and manually annotated data are formatted as lists of dictionaries. A
shared embedding model is used to match values across dictionaries, from which numerical values are retrieved to calculate precision and
completeness scores.
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DigHyd Data Checking System (curvechecking.dighyd.org; refer
to the SI for details) has been developed as an efficient online
platform for manual review and correction of AI-extracted data.
The diversity of the test set can be found in Fig. S16.

Based on our developed DIVE workow and the associated
scoring algorithm for materials literature data extraction, we
systematically evaluated several state-of-the-art commercial and
open-source large language models. The score distributions for
© 2026 The Author(s). Published by the Royal Society of Chemistry
data extracted by different combinations of multimodal models
and LLMs in the DIVE workow are benchmarked against
a dataset consisting of results manually curated from 100
published articles on experimental HSM reports. Fig. 2a pres-
ents the data extraction scores for the conventional direct
extraction approach and under the DIVE workow (Fig. 2b and
c). Gemini-2.5-Flash,20 currently Google's best model in terms of
price-performance, achieved a total score of 77.89 when used for
Chem. Sci.
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Fig. 2 Performance improvement of the DIVE data extraction workflow. (a) Conventional extraction workflow using Gemini 2.5 Flash.20 (b) DIVE
workflow integrating Gemini 2.5 Flash with DeepSeek R1. (c) DIVE workflow integrating Gemini 2.5 Flash with DeepSeek Qwen3 8B. Dotted
vertical lines indicate the mean score of each corresponding score distribution. (d) Benchmark comparison across seven multimodal models,
including four proprietary models (Gemini 2.5 Flash,20 Claude 4 Sonnet, OpenAI o4 mini, and Gemini 2.0 Flash) and three open-source models
(LLaMA-4-Scout, LLaMA-4-Maverick, and Qwen2.5-VL-72B-Instruct22). Ideally, the proposed DIVE workflow achieves a 10–15% improvement in
extraction performance compared to state-of-the-art commercial models, and an over 30% improvement over leading open-source models.
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direct extraction. However, when combined in a multi-stage,
multi-agent DIVE workow (Gemini-2.5-Flash20 + DeepSeek R1
(ref. 21)), the total score increased to 87.21 (Fig. 2b), repre-
senting an improvement of nearly 12%. To further demonstrate
the effectiveness of the DIVE workow on models with even
better token efficiency, we also tested DeepSeek-Qwen3-8B.21

Despite having only 8B parameters, the model also showed
about a 10% improvement compared to Gemini-2.5-Flash in the
direct extraction scenario. In addition, we systematically
assessed the data extraction accuracy across different combi-
nations of mainstream commercial and open-source multi-
modal and text extraction models (all detailed results can be
found in the SI). As shown in Fig. 2d, for the direct extraction
workow, most commercial models achieved a total score of
around 75, whereas open-source models scored noticeably
lower. When the multi-stage, multi-agent DIVE workow is
applied—particularly with DeepSeek R1 as the post-descriptive
Chem. Sci.
embedding LLM—commercial models saw typical improve-
ments of 10–15%, and open-source models improved by 15–
30%. The highest score was achieved with the combination of
Gemini 2.5 Flash and DeepSeek R1. However, DeepSeek R1 is
a large inference model with 685B parameters, making it rela-
tively costly and slow. The same memory budget that supports
one DeepSeek-R1-class deployment can typically support
dozens of concurrent DeepSeek-Qwen3-8B instances, enabling
substantially higher throughput for large-scale processing.
Therefore, we further tested DeepSeek V3 and DeepSeek-Qwen3-
8B as post-embedding LLMs. Surprisingly, despite its much
smaller size (8B parameters), DeepSeek-Qwen3-8B achieved
a total score of 84.6, second only to the Gemini 2.5 Flash +
DeepSeek R1 combination, but with much faster inference
speed and signicantly lower computational cost.

Based on the above benchmarking, we ultimately selected
the combination of Gemini 2.5 Flash and DeepSeek-Qwen3-8B
© 2026 The Author(s). Published by the Royal Society of Chemistry
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for data extraction across 4053 publications. The screening
strategy for selecting article DOIs is described in the SI. The
processed data have been made publicly available in our Digital
Hydrogen Platform (DigHyd: https://www.dighyd.org/). Fig. 3
provides an overview of data mining results from over 4000
hydrogen storage materials publications. As shown in Fig. 3a,
aside from the years before 2010, the number of experimental
publications on hydrogen storage materials has steadily
increased, with 150–200 papers published annually since 2011
(except for 2021 and 2022, likely due to the global COVID-19
pandemic).

Fig. 3b shows the distribution of gravimetric hydrogen
densities for different types of hydrogen storage materials.
Porous carbon materials generally exhibit very low hydrogen
storage capacities at room temperature. At low temperatures
(e.g., 77 K) and moderate pressures (e.g., below 100 bar), their
hydrogen uptake is typically in the range of 0–1 wt%. One of the
main advantages of these materials lies in their extremely fast
adsorption and desorption kinetics. Therefore, in the hydrogen
storage range of 0–1 wt%, porous materials are the primary
candidates.23 The region with the highest concentration is
between 1 and 2 wt%, which mainly corresponds to interstitial
hydrides—the most widely studied class of hydrogen storage
materials. In contrast, ionic, complex, and multi-component
hydrides primarily fall in the 4–8 wt% range. By analyzing the
extracted formula elds in the DIVE-generated data dictio-
naries, we can examine the elemental distribution in hydrogen
storage materials across different gravimetric density ranges.
The most frequent elements in the 0–4 wt%, 4–8 wt%, and 8–12
wt% intervals are Ni, Mg, and Li, respectively, reecting
a general shi in hydrogen storage materials from interstitial
hydrides (represented by LaNi5,24,25 Ti–Mn alloys,26 or high-
entropy alloys27) to ionic hydrides (MgH2) and complex
hydrides (LiBH4 ( ref. 28) or Mg(BH4)2 (ref. 29)). Fig. 3c and
d show the proportion of different types of materials in the
DigHyd platform. Interstitial hydrides account for the largest
share, but we also include a small number of superhydrides.
Although superhydrides are mainly reported for super-
conducting applications,30 they are emerging as a new research
hotspot for hydrogen storage under ultra-high pressure condi-
tions. Fig. 3d further illustrates the subtypes of interstitial
hydrides.

Aer constructing the DigHyd database, direct data mining
enables the extraction of valuable insights for materials design.
Fig. 4 illustrates the top ve most frequently added elements to
typical hydrogen storage materials—LaNi5, MgH2, and LiBH4—

and the distribution of key performance metrics for materials
modied with these elements. For LaNi5, magnesium is the
most commonly used dopant. Aer Mg is added, the gravi-
metric hydrogen density of LaNi5-based materials can reach 4–6
wt% (Fig. 4b). However, the introduction of Mg also affects the
hydrogen absorption and desorption pressures. In the case of
MgH2, nickel is the most frequent additive.31 While doping
MgH2 with Ni tends to improve its hydrogen storage density
(Fig. 4e), the dehydrogenation temperature of Mg–Ni systems
can reach around 600 K. For LiBH4-based systems, the gravi-
metric hydrogen density spans the widest range (0–14 wt%).
© 2026 The Author(s). Published by the Royal Society of Chemistry
Notably, introducing carbon or nitrogen can boost the hydrogen
density of LiBH4materials to∼14 wt%, likely due to the catalytic
effects of graphene or N-doped graphene on LiBH4 (ref. 32 and
33) dehydrogenation. However, despite this high hydrogen
density potential, the dehydrogenation temperature of LiBH4

systems also tends to be relatively high, oen requiring 700–800
K for complete hydrogen release. All the visualizations shown in
Fig. 3 and 4 can be directly accessed and interacted with via our
AI agent using natural language (SI Video 4).

Despite decades of research, most HSMs still fall short of the
U.S. Department of Energy (DOE) 2030 technical targets for
onboard hydrogen storage systems: >5.5 wt% system-level
hydrogen capacity, >40 g H2 per L volumetric density, opera-
tional capability between −40 to 85 °C, and cycling durability
exceeding 1500 charge–discharge cycles.34 Current benchmark
materials exemplify these limitations. MgH2, for instance,
boasts a high theoretical gravimetric capacity (7.6 wt%) but
requires temperatures above 300 °C for hydrogen release due to
slow desorption kinetics.35 Complex hydrides such as LiBH4 and
NaAlH4 can achieve moderate hydrogen densities but oen
necessitate high temperatures, catalytic activation, or suffer
from poor reversibility.36 Porous frameworks (MOFs/COFs),
while tunable and lightweight, rely primarily on weak phys-
isorption and struggle to meet practical storage densities.37

High-entropy alloys38 and superhydrides, though scientically
intriguing, demand extreme synthesis or operating conditions
(high pressures or cryogenic temperatures),38,39 hindering their
deployment in commercial systems.

The chemical diversity and complexity of hydrogen storage
materials—ranging from AB2, AB3, and AB5 interstitial hydride40

to Mg-, Ti-, and V-based alloys, complex hydrides, and rare-
earth-enriched compounds—make the search for optimal
candidates challenging. Existing efforts to accelerate hydrogen
storage material discovery are fragmented. Conventional
computational databases primarily focus on crystalline struc-
tures and predicted thermodynamic properties, lacking inte-
gration with experimentally validated performance data. The
absence of a comprehensive, machine-readable platform41 that
integrates both experimental and theoretical information has
hindered the rational design and rapid screening of HSMs.

In this work, by integrating the database, machine learning
models trained on this database, and LLMs, it becomes
straightforward to construct materials-focused AI agents using
simple instruction and schema interface functions (for more
related details, refer to SI, Fig. S9–11). To initially assess the
reliability of the AI agent's predictions, we did not require Di-
gHyd to design entirely new materials. Instead, we focused on
cases where comparable materials already exist in the database,
allowing for direct validation (Fig. S12 and SI Video 1). Under
these conditions, the DigHyd agent proposed compositions
such as Mg2Ni0.8Co0.2, Mg2Fe0.8Co0.2, and La0.8Mg0.2Ni5.
Among these, Mg2Fe0.8Co0.2 was predicted to exhibit
a hydrogen storage capacity of 4.06 wt%. Importantly, analo-
gous alloys already reported in the database, such as Mg2FeH6

and Mg2Fe1−xCoxH6, display capacities in the range of 4.5–
5.5 wt%,42,43 thereby supporting the consistency of the
predictions.
Chem. Sci.
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Fig. 3 Overview of data mining from over 4000 hydrogen storage materials publications. (a) Annual publication trends categorized by different
types of hydrogen storage materials. (b) Distribution of 17 954 hydrogen storage capacity values, along with the elemental distribution of
materials within three ranges: 0–4%, 4–8%, and 8–10%. (c) Overall distribution of hydrogen storage material types. (d) Type distribution of
interstitial hydrides, classified into AB2, AB3, and AB5 structures.

Chem. Sci. © 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Analysis of representative hydrogen storage materials. (a) Top 5 frequently added elements to LaNi5, and the corresponding distributions
of (b) hydrogen storage density and (c) hydrogen absorption equilibrium pressure upon element addition; (d) top 5 frequently added elements to
MgH2, and the corresponding distributions of (e) hydrogen storage density and (f) hydrogen desorption temperature; (g) top 5 frequently added
elements to LiBH4, and the corresponding distributions of (h) hydrogen storage density and (i) hydrogen desorption temperature.
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Next, to verify that DigHyd can indeed design entirely new
materials (Fig. 5 and SI Video 2), we applied the same
prompting strategy but with explicit instructions to generate
compositions never previously reported. Under these condi-
tions, DigHyd demonstrated an iterative design–prediction–
optimization capability, as illustrated in Fig. 5. In this workow,
researchers can guide the AI agent to propose novel materials by
specifying the material class, potential elements, and target
properties such as gravimetric hydrogen density, pressure, and
temperature (Fig. 5a).

In the rst round, leveraging the local knowledge base as
well as the analytical, reasoning, and predictive capabilities of
© 2026 The Author(s). Published by the Royal Society of Chemistry
large language models, the DigHyd agent proposed CaMgFe2
(Fig. 5b). This candidate was then evaluated using our machine
learning model (see Methods: machine learning methods for
model details, hyperparameters, and code), which predicts
hydrogen density directly from thematerial formula. With an R2

value of 0.87, the model provides a reliable rst-pass screening
for LLM-proposed candidates (Fig. 5c). CaMgFe2 was predicted
to store 2.64 wt% hydrogen (Fig. 5d). The agent subsequently
suggested increasing the Mg content, resulting in Mg2Fe with
a predicted capacity of 4.13 wt%. However, literature reports
indicated that this compound exhibits hydrogenation/
dehydrogenation only at elevated temperatures (300–400 °C),
Chem. Sci.
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Fig. 5 Workflow of AI agent-driven discovery of new hydrogen storage materials. (a) The user specifies key requirements, including material
type, constituent elements, and performance targets. (b) The DigHyd agent proposes initial candidate compositions based on data mined from
over 4000 historical publications. (c) The candidate compositions are evaluated using a pretrained machine learning model to predict their
gravimetric hydrogen density. (d) The DigHyd agent rapidly designs, predicts, and iteratively refines candidate materials in line with researcher-
defined goals within minutes. Finally, the DigHyd agent outputs the final material design, together with the relevant reaction conditions and an
assessment of synthetic feasibility. (See SI Video 2 for the complete process and details).
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failing to meet the design targets. In response, DigHyd rened
the composition to Mg2Fe0.75Co0.25, and further to Mg2Fe0.6-
Co0.2Mn0.2. The latter was predicted to achieve 4.19 wt%
Chem. Sci.
hydrogen storage capacity, with Mn (or alternatively Al)
contributing to hydride stabilization and plateau pressure
optimization. Importantly, this nal composition has never
© 2026 The Author(s). Published by the Royal Society of Chemistry
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been reported in the current database. Taken together, these
results in Fig. 5d highlight the ability of the DigHyd agent to
rapidly design, predict, and iteratively rene candidate mate-
rials in line with researcher-dened goals within minutes. If
such AI-driven agents are directly integrated with high-
throughput experimental platforms, the efficiency of materials
discovery and development could be advanced to an unprece-
dented level.

To further increase the design difficulty, in the third case
study (Fig. S13 and SI Video 3), we constrained the element
space for material design (A=Mg or Ca, B]Ni). Leveraging the
local knowledge base together with the analytical, reasoning,
and predictive capabilities of LLM, the DigHyd agent proposed 8
candidate materials. Among these, one candidate exceeded the
initial target of 4 wt% hydrogen capacity, while three achieved
predicted performances above 3 wt%. The remaining candi-
dates showed comparatively lower hydrogen densities. Based on
these initial predictions, the DigHyd agent further optimized the
proposed compositions by suggesting minor La and Y doping to
enhance hydride phase stability and to reduce the
hydrogenation/dehydrogenation temperature and pressure.
The nal designs, Mg2Ni2.9La0.1 and Mg2NiY0.1, are derived
from the Mg2Ni system, a well-established intermetallic
compound for hydrogen storage.44 The introduction of a small
amount of La or Y by partially substituting Ni is a common
strategy to optimize hydrogen storage properties. The substi-
tution ratio (3.3% for La45 or Y46) is appropriate because it is
sufficient to signicantly inuence the microstructure and
hydrogen storage behavior without destroying the main phase
structure. The addition of La or Y can promote grain renement
and introduce defects, which facilitate hydrogen diffusion,
improve absorption/desorption kinetics, and may lower the
hydrogenation/dehydrogenation temperature. Moreover, the
larger atomic radii of La and Y compared to Ni lead to lattice
expansion, thus reducing the activation energy for hydrogen
diffusion.46 Therefore, the proposed compositions are also
rational for hydrogen storage materials, as supported by both
theoretical understanding and experimental data from the
literature. In fact, our database did not include this very recent
paper [ref. 46] at the time of writing, which investigates the Mg–
Y–Ni system. The ndings presented in this work further
demonstrate the reliability of the predictions made by our
developed agent.

Conclusions

We developed DIVE (Descriptive Interpretation of Visual
Expression), a multi-agent workow that converts gure-
embedded experimental information in scientic papers into
structured, machine-readable data. By transforming key
graphical elements (e.g., PCT, TPD, and discharge curves) into
descriptive text using schema-enforced prompts, DIVE enables
efficient batch extraction. Applied to solid-state hydrogen
storage materials, DIVE was used to mine 4053 publications
(1972–2025) and build the DigHyd database with 30 435 entries.
Across seven multimodal models, DIVE consistently outper-
forms direct extraction, with typical gains of 10–15% over
© 2026 The Author(s). Published by the Royal Society of Chemistry
commercial models and 15–30% over open-source models
under the same benchmark. Building on this resource, we
implemented the DigHyd agent, integrating natural-language
querying with a machine-learning verier to rapidly propose
and rene candidate materials under user-dened constraints.
Current limitations still include hallucinated elds, visual
reading noise, and multi-plateau interpretation errors. Future
work will focus on improving robustness to these failure modes
and extending coverage to more complex gure types and long-
range context, enabling more reliable literature-to-design
pipelines for accelerated materials discovery.
Methods
DIVE workow

The rst step of the DIVE workow involves converting PDF les
into both text and image formats. This conversion process was
accomplished using MinerU,47 which efficiently extracts both
textual content and embedded gures from scientic PDFs. All
subsequent steps in the workow were developed using the
LangGraph package, enabling modular and robust pipeline
construction for literature mining and data extraction. The
complete set of codes, including workow scripts, prompt
engineering details, and evaluation protocols, has been made
openly available in our GitHub repository (https://github.com/
gtex-hydrogen-storage/DIVE) to ensure transparency and
reproducibility. For the model used in our article (DeepSeek
Qwen3 8B), we deployed it locally with an A6000 GPU. For
other open- or closed-source models, we accessed them via
API calls to third-party platforms or official websites—for
example, service providers such as SiliconFlow (https://
www.siliconow.com/) and Groq (https://groq.com/). The exact
model version strings and inference parameters (e.g.,
temperature, maximum tokens, and retry numbers) used at
each stage are summarized in SI, Table S1. Details of the
document JSON structure and how surrounding textual
context is constructed and passed to the models are provided
in the SI (Table S3). The robustness of the DIVE workow to
multi-curve gures, overlapping curves, and low-resolution
images can be found in Fig. S17. Accuracy breakdown for step
1 (caption-based gure identication), including precision,
recall, and F1 scores, can be found in the SI (Table S6).
The digital hydrogen platform (DigHyd) database

All hydrogen storage materials data extracted via the DIVE
workow have been integrated into the digital hydrogen plat-
form and are accessible through a web interface built with
Streamlit (https://www.dighyd.org). As of August 2, 2025, the
database currently contains 4053 literature sources and 30 435
unique entries, each corresponding to a distinct material or
experimental condition. Users can interactively lter data,
visualize results, and explore specic material properties or
test conditions. We have also deployed the AI agent developed
based on DIVE on the website. In addition, the DigHyd
database is updated daily with newly published literature
related to HSMs. The platform also provides direct access to
Chem. Sci.
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the DigHyd agent and integrated machine learning regression
models for data analysis and materials prediction.

Development of the DigHyd agent

The AI agent utilized in this study was rapidly built using
OpenAI's custom GPTs and Actions functionality, allowing
seamless integration with local knowledge bases and auto-
mated analysis tools. The local knowledge base is utilized via
the OpenAI GPT “Knowledge” mechanism, which functions as
an internal retrieval-augmented generation (RAG) pipeline
rather than a separate, custom-built retriever. The agent's
prompt instructions (Fig. S9–11), schema denitions, and
action logic are also provided in the GitHub repository (https://
github.com/gtex-hydrogen-storage/DIVE) for reference and
reuse by the community. This infrastructure enables end-to-
end question answering, data analysis, and material design
based on literature-derived knowledge, supporting both inter-
active and automated workows in materials research. Users
who would like to use the DigHyd agent directly can visit https://
www.dighyd.org. Aer registration, they may contact the
corresponding authors to activate access and then launch the
DigHyd agent via the public link in the sidebar.

Machine learning methods

We developed a machine learning workow to predict material
properties from chemical composition. Aer removing samples
lacking valid target values or standard chemical formulae, each
compound was parsed into the Pymatgen48 Composition object.
A total of 5357 data points were used in this study. Features were
generated using the Matminer ElementProperty featurizer
(“magpie” preset) and element molar fractions.49 The XGBoost
regressor was used for prediction, and model performance was
evaluated by standard regression metrics. The dataset was
randomly split into training and test sets with a ratio of 80% :
20%. Model training was performed using an XGBoost
regressor. Hyperparameter optimization was conducted via
GridSearchCV (with 3-fold cross-validation, scoring by negative
mean squared error and parallel computation) to select the best
model conguration. Model performance was evaluated using
standard regression metrics. All code and scripts are available
in our GitHub repository (https://github.com/gtex-hydrogen-
storage/DIVE).
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