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Oxindoles and dihydroquinolinones are pivotal heterocyclic scaffolds in medicinal and synthetic chemistry. Herein, we
DOI: 10.1039/x0xx00000 describe a controllable visible-light-induced, copper-catalyzed carbonylative cyclization of arylthianthrenium salts with
alkenes, enabling the efficient synthesis of structurally diverse oxindoles and dihydroquinolinones. Notably, this
transformation proceeds under mild conditions without the need for expensive photocatalysts, and regioselective acyl
radical addition is achieved simply by tuning the substitution pattern of the alkene, which enables the switchable synthesis
of carbonylated five- and six-membered heterocycles. Mechanistic studies indicate that blue-light irradiation promotes the
copper-mediated reduction of arylthianthrenium salts, generating aryl radicals that subsequently capture CO to afford acyl
radicals and initiate a tandem cyclization sequence. This method exhibits broad functional-group tolerance and offers a

versatile platform for the late-stage functionalization of bioactive molecules.
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typically one of the most efficient methods for constructing
heterocycles. This approach employs (pseudo)halides, chloroform,
aldehydes, and other substrates, coupling them with alkenes to form PhCOOH
oxygen-containing indoles and dihydroquinolones through ring- R = Ph, 32% yield
closure reactions.?'"?* In recent years, significant progress has been b) This work
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& acrylamides.?> 26 |In 2023, the Maruoka group reported an iron-
catalyzed method in which alkyl silyl peroxides serve as precursors to o =H Q@ o
. . . . . R =
acyl radicals, enabling cascade reactions with N-aryl acrylamides.?’ ‘/‘k . NN e : @ @
. - . Ar” i :
Shortly thereafter, Liu and co-workers reported a visible-light- @ d i 3 ; N
mediated radical cascade between N-aryl acrylamides or N- © Mild conditions iTT= § s &
methylacrylamide benzamides and carbon dioxide.?® However, these © Economical and efficient 3 @ RN o @
. o . Broad substrat , > 50 les |t ;
approaches still suffer from limitations such as limited substrate @ Broad substrate scope, > Shexamples |} I |
. - . O Good functional group compatibility O=H @
scope. Therefore, the development of a direct, efficient, sustainable, o Ch ) )
X o eap, wide range of raw materials [e]
and controllable strategy for the construction of carbonyl-containing
heterocyclic frameworks remains highly desirable. Scheme 1 Previous synthesis routes and this work.

Carbonylation chemistry offers one of the most direct and

versatile platforms for accessing carbonyl-containing molecules.??-3%
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challenging, as conventional protocols often rely on noble-metal
catalysts, strong Brgnsted acids, and high temperatures, thereby
limiting functional-group tolerance and substrate scope.***° N-
Arylacrylamides, as structurally privileged activated alkenes, offer an
attractive platform for achieving regioselective carbonylation via
substitution-controlled reactivity, enabling streamlined access to
carbonylated oxindoles and dihydroquinolinones.>%-56 Meanwhile,
arylthianthrenium salts have attracted considerable interest due to
their high reactivity and ready accessibility, which allows them to be
readily prepared from simple arenes via C(sp?)-H thianthrenation.5”-
64 In recent years, Ritter and co-workers have systematically
investigated thianthrenium salts, revealing their broad utility in
diverse C—H functionalization reactions.®>7° However, only a few
examples of carbonylation reactions using thianthrenium salts have
been reported, and there are no related reports on the selective
controllable carbonylation associated with them.

Building on our previous investigations into the photochemical
behavior of thianthrenium salts,®® 7175 we demonstrated that these
reagents undergo efficient visible-light-induced homolytic C(sp?)-S
bond cleavage to generate aryl radicals. Leveraging this reactivity, we
developed a controllable single electron carbonylative cyclization
manifold. Under visible-light-promoted copper catalysis, the in situ
formed aryl radicals readily capture CO to produce acyl radicals,
which undergo selective addition with N-aryl acrylamides to deliver
oxindoles and dihydroquinolinones. N-Aryl acrylamides are readily
accessible from a variety of a, 6-unsaturated carboxylic acid
derivatives, and their tunable substitution patterns provide an ideal
platform for controlling reaction selectivity. Remarkably, tuning the
alkene substitution pattern alone dictates the regioselectivity of acyl-
radical addition, granting switchable access to carbonylated five- and
six-membered heterocycles without altering reaction conditions.
This platform thus provides a general, mild, and highly controllable
approach to carbonylation, addressing key limitations in current
radical carbonylation chemistry (Scheme 1b).

Results and discussion

We began our investigation using N-arylacrylamide 1a and
arylthianthrenium salt 2a as the model substrates to evaluate the
feasibility of the carbonylative cyclization (Table 1). Under blue-light
irradiation at 60 °C in EtOAc, with CuCl as the catalyst, (S)-DM-BINAP
as the ligand, and triisobutylamine as the base under 40 bar CO for
24 h, the desired oxindole 3aa was obtained in 80% yield (78%
isolated, entry 1). Control experiments confirmed that the reaction
did not proceed in the absence of the copper catalyst, ligand, base,
or light (Table 1, entries 3-5). Screening of copper salts revealed that
Cu(acac); could also promote the reaction, even with a slightly lower
yield, while other copper catalysts gave comparable results (Table 1,
entries 6-8). Bidentate phosphine ligands facilitated product
formation but did not improve the yield, and the reaction outcomes
for (R)-DM-BINAP and (S)-DM-BINAP were similar (Table 1, entries 9
and 12). In contrast, nitrogen-based or monodentate phosphine
ligands failed to produce detectable amounts of 3aa (Table 1, entries
10-11). The choice of base significantly affected the reaction
outcome, with organic bases outperforming inorganic bases (Table 1,
entries 13-14). Solvent screening indicated that EtOAc was the
optimal, while acetonitrile or toluene led to decreased yields (Table
1, entries 15-16). Reducing the amount of 2aa or increasing the

reaction concentration also lowered the yield (Table 1, entries 17-18).

The reaction proceeded at 40 °C to give 3aa in 73% yield (Table 1,

2| J. Name., 2012, 00, 1-3

entry 19), and lowering the CO pressure similarly decreased, the
reaction efficiency (Table 1, entry 20). ForDthelpgdcianstimes e
conversion can not be completed after 15 hours and no better yield
can be produced if we extend the reaction time to 36 hours.

Table 1: Optimization of reaction conditions.?

| CuCl (10 mol%) .
NTW/K . (S)-DM-BINAP (10 mol%)
©/ o triisobutylamine (2.0 equiv.) Vi
EA (0.1 M) d
1a

400-500 nm, 24 h

2a 60 °C, CO (40 bar) 3aa
Entry  Variation from the Standard conditions  Yield (%)?

1 None 80 (78)+d
2 No catalyst n.d.
3 No ligand n.d.
4 No base trace
5 No light irradiation n.d.
6 CuBr instead of CuCl 36
7 Cu(CH3CN)4BF4 instead of CuCl 56
8 Cu(acac); instead of CuCl 31
9 BINAP instead of (S)-DM-BINAP 69
10 PCys instead of (S)-DM-BINAP n.d.
11 1,10-Phen instead of (S)-DM-BINAP n.d.
12 (R)-DM-BINAP instead of (S)-DM-BINAP 79
13 DIPEA instead of triisobutylamine 74
14 K3POg4 instead of triisobutylamine 16
15 CHs3CN as solvent 25
16 Toluene as solvent 56
17 1.0 equiv. 2a 50
18 0.2 mol L1 EA 75
19 40 °C instead of 60 °C 73
20 20 bar CO 69

9Reaction conditions: 2Reaction conditions: 1a (0.1 mmol), 2a (0.15
mmol), CO (40 bar), catalyst (10 mol%), ligand (10 mol%), base (0.2
mmol), solvent (1.0 mL), blue-light irradiation at 60 °C, 24 h. *Yield
was determined by GC using "Hexadecane as the internal standard.
‘lsolated yield. 970% yield on 10 mmol scale.

With the optimal conditions established, the substrate scope of
N-aryl acrylamides was investigated at the first stage (Scheme 2).
Unsubstituted and electron-donating substrates, such as methyl- and
methoxy-substituted N-aryl acrylamides, were well tolerated,
affording the desired products in good to high yields (3aa-3ca).
Halogen-substituted substrates (F, Cl, Br, 1) were also compatible,
providing the corresponding products in moderate to excellent yields
(3da-3ga). Notably, substrates bearing electron-withdrawing groups,
including acyl, trifluoromethoxy, trifluoromethyl, and cyano,
proceeded smoothly to give oxindoles in excellent yields (3ha-3ka).
Alkenes bearing other substituents delivered products 3la and 3rain
86% and 64% vyields, respectively. N-Protected acrylamides with
phenyl or ethyl groups were also compatible, yielding 3ma and 3oa
in 84% and 77% yields. In contrast, unprotected N-aryl acrylamides
failed to afford the desired product (3xa). The ester analogue was
also tested, but no lactone product could be detected.
Tetrahydroquinoline derivatives were tolerated, provided the target
product 3nain 70% yield. ortho-Substituted substrates furnished the
products 3pa and 3qga in moderate yields, while meta-substituted
substrates led to regioisomeric mixtures (3va/3v’a and 3wa/3w’a).
Furthermore, multi-substituted substrates were also well tolerated,
afforded the corresponding products in excellent yields (3sa-3ua).

This journal is © The Royal Society of Chemistry 20xx
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Scope of N-aryl acrylamides
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D ‘ 3xa, n.d. CCDC: 2505672

3wa+3w'a,71%(1.7:1
i ) Scope of thianthrenium salts

3ab, 77% 3ac, 60% 3ad, 65% 3ae,82% 3af,58% 3ag,49%
\ o) \ o) \
\ \ \
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OO O OO Onyrw
(e} o
MeO Br o o o
3at,48% 3au,38% 3av, 47% 3aw, 46% 3ax, n.d.

Scheme 2. Reaction conditions: 1 (0.1 mmol), 2 (0.15 mmol), CuCl (10 mol%), (S)-DM-BINAP (10 mol%), triisobutylamine (0.2 mmol), EA (1.0
mL), CO (40 bar), under blue-light irradiation at 60 °C, 24 h.; isolated yields.
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The substrate scope of thianthrenium salts was further
investigated (Scheme 2). Unsubstituted and electron-rich aryl
thianthrenium salts gave the desired products in good yields (3ab-
3ad, 3as). Aryl thianthrenium salts bearing C(sp?)-X bonds (X = F, Cl,
Br) were also compatible, providing the corresponding products in
moderate to excellent yields (3ae-3ag). Similarly, di- and tri-
substituted aryl thianthrenium salts (3ah-3am and 3ap-3ar, 3at-3au)
performed well under the reaction conditions, delivering the target
products in good yields in general. These results highlight the high
chemoselectivity of the catalytic system and its potential for
subsequent structural modifications. Complex scaffolds, including
flavone-derived salts, also participated smoothly, delivering the
corresponding product in moderate vyield (3ao). Deuterated
substrates afforded the desired oxindole 3an in 61% yield. Notably,
thianthrenium salts bearing alkyl and alkenyl substituents reacted
smoothly under the standard conditions, delivering the desired
products (3av-3aw) in moderate yields. However, the styrenyl-
substituted thianthrenium salt showed no reactivity under the
standard reaction conditions (3ax). These results indicate that the
catalytic system features broad substrate scope and high
chemoselectivity. Additionally, instead of thianthrenium salt,
iodobenene was checked as well but lead to no desired product
formed.

\
N~ Ph
+

O

CuCl (10 mol%) Lo
(S)-DM-BINAP (10 mol%)
triisobutylamine (2.0 eq.)

EA (0.1 M)

400-500 nm, 24 h Ph O

2a 60 °C, CO (40 bar) 5

| |
N._O N._O

[

Ph O Ph O
5aa, 46% 5ba, 48%

| | |
N._O N._O N._O
Me \ Ncm\ Fm\
Ph O Ph O Ph O
5ca, 44% 5da, 51% 5ea, 45%

| | |
N._O N._O N._O
cl Brm\ Fgcm‘
Ph O Ph O Ph O
5fa, 51% 5ga 56% 5ha, 49%

| |
N._O F N._O
Ac [ m m\
Ph O OMe Ph F Ph O
Sia, 55% 5ja, 58% 5ka, 63%

Scheme 3. Reaction conditions: 4 (0.1 mmol), 2a (0.15 mmol), CuCl
(10 mol%), (S)-DM-BINAP (10 mol%), triisobutylamine (0.2 mmol), EA
(1.0 mL), CO (40 bar), under blue-light irradiation at 60 °C, 24 h.;
isolated yields.

Under the standard reaction conditions, employing alkenes with
different substitution patterns, six-membered dihydroquinolinones
were selectively obtained rather than five-membered oxindoles
(Scheme 3). As shown in the scheme, a variety of carbonylated six-
membered heterocycles bearing diverse functional groups were
synthesized in moderate to good yields (5aa-5ka). Unsubstituted and
electron-rich substrates afforded the corresponding products in
moderate yields (5aa-5ca). Internal alkenes bearing halogens (F, Cl,
Br) or electron-withdrawing groups (cyano, acyl, trifluoromethyl)

4| J. Name., 2012, 00, 1-3

were compatible with the reaction, delivering the desired products
in moderate yields (5da-5ia). Multi-substitutéd 16tbstrates 43ls0
performed well, providing the target products in good yields (5ja-
5ka). It’s worth to mention that non-carbonylation product was the
main by-product during this process and response for the moderate
yields.

The atom economy of the reaction was also evaluated, and
thianthrene was recovered in yields of up to 96% (Scheme 4a). To
gain some insight into the reaction mechanism, several mechanistic
experiments were conducted. Under the standard conditions, the
addition of 2.0 equiv. of 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) completely suppressed the formation of the desired
product. Similarly, the addition of 2.0 equiv. of 1,1-diphenylethylene
(1,1-DPE) led to no detectable target product, while radical adducts
6 and 7 were observed (Scheme 4b). Furthermore, light-on/off
experiments revealed that the reaction proceeds only under visible-
light irradiation, and no conversion occurs in the dark (Scheme 4c).
Collectively, these results indicate that the transformation does not
follow a radical chain process, but rather proceeds via an aryl radical
intermediate.

—— a) TT Recycling

\ O
: \H/K standard conditions

TT, 96% recovery

, (0.1 mmol) 2a (1.5 eq) 78%

b) Experiment with radical inhibitor

| \ o]
N T(K standard conditions N
Y ’ TEMPO @O equ)

o) TEMPO (2.0 equiv) Vé
[¢]
1a 2a 3aa, nd
| \ O
N T{& standard conditions N
+ _ =
©/ o) 1, 1-DPE (2.0 equiv) Vi
(0]
1a 2a 3aa, n.d.

c) light-on/off experiments

o : Ph_~ Ph\(/
/ pe! 2

6, detected by GC-MS

7, 38% (Isolated yield)

Reaction time (h)

d) Possible mechanisms

. CLX
vl

cu'L
>{L-W

A

e

cull”
~—hy— CuL

&

Scheme 4. Control experiments and possible mechanisms.

O

cu'L

wos

Based on the above results and literature precedents, a
plausible mechanism is proposed (Scheme 4d).76-8° Under blue-light
irradiation, the Cu'L complex is excited to Cu'L*, which reacts with
the aryl thianthrenium salt to generate an aryl radical and copper (lI)

This journal is © The Royal Society of Chemistry 20xx
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complex Cu'L. The aryl radical captures CO to form an acyl radical,
which adds to the alkene of N-methyl-N-phenylacrylamide 1a,
affording intermediate A. Intramolecular cyclization on the aryl ring
then gives intermediate B, which undergoes single-electron transfer
with Cu'L and subsequent deprotonation to yield oxindole 3.
Similarly, when the acyl radical reacts with N-methyl-N-
phenylcinnamamide, addition to the alkene forms intermediate C,
followed by intramolecular cyclization to intermediate D.
Subsequent single-electron transfer with Cu''L and deprotonation
furnishes the six-membered dihydroquinolinone 5. This mechanism
highlights the key roles of aryl radicals, CO trapping, and Cu-
mediated single-electron transfer in enabling selective carbonylative
cyclization.

Conclusions

In summary, we have developed a visible-light-induced, copper-
catalyzed controllable carbonylative cyclization that enables
selective synthesis of carbonylated five- and six-membered
heterocycles by simply tuning the substitution pattern of the starting
alkenes. The method employs inexpensive CO as the carbonyl source,
proceeds under mild conditions, and allows efficient one-pot access
to 3,3-disubstituted oxindoles and dihydroquinolinones. It features
broad substrate scope, generally good yields, excellent functional-
group tolerance, and potential for downstream derivatization,
providing a practical, economical, and sustainable approach to
nitrogen-containing carbonylated heterocycles.
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