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Controllable Copper-Catalysed Photo-Induced Carbonylative 
Cyclization to Access Dihydroquinolinones and Oxindoles
Yan-Hua Zhao,a Le-Cheng Wang,a,b Xiao-Feng Wu*a,b

Oxindoles and dihydroquinolinones are pivotal heterocyclic scaffolds in medicinal and synthetic chemistry. Herein, we 
describe a controllable visible-light-induced, copper-catalyzed carbonylative cyclization of arylthianthrenium salts with 
alkenes, enabling the efficient synthesis of structurally diverse oxindoles and dihydroquinolinones. Notably, this 
transformation proceeds under mild conditions without the need for expensive photocatalysts, and regioselective acyl 
radical addition is achieved simply by tuning the substitution pattern of the alkene, which enables the switchable synthesis 
of carbonylated five- and six-membered heterocycles. Mechanistic studies indicate that blue-light irradiation promotes the 
copper-mediated reduction of arylthianthrenium salts, generating aryl radicals that subsequently capture CO to afford acyl 
radicals and initiate a tandem cyclization sequence. This method exhibits broad functional-group tolerance and offers a 
versatile platform for the late-stage functionalization of bioactive molecules.

Introduction
3,3-Disubstituted oxindoles and dihydroquinolinones are important 
nitrogen-containing heterocycles that are widely found in natural 
products and bioactive molecules,1-8 and their efficient synthesis 
continues to attract significant attention.9-15 Over the past decades, 
numerous transition-metal-catalyzed and metal-free oxidative 
strategies have been developed for assembling these frameworks.16-

20 Among them, the palladium-catalyzed domino-Heck reaction is 
typically one of the most efficient methods for constructing 
heterocycles. This approach employs (pseudo)halides, chloroform, 
aldehydes, and other substrates, coupling them with alkenes to form 
oxygen-containing indoles and dihydroquinolones through ring-
closure reactions.21-24 In recent years, significant progress has been 
made in radical-based cyclizations (Scheme 1a). Wallentin, Banerjee, 
and others developed visible-light-driven strategies for generating 
acyl radicals that subsequently undergo transformations with N-aryl 
acrylamides.25, 26 In 2023, the Maruoka group reported an iron-
catalyzed method in which alkyl silyl peroxides serve as precursors to 
acyl radicals, enabling cascade reactions with N-aryl acrylamides.27 
Shortly thereafter, Liu and co-workers reported a visible-light-
mediated radical cascade between N-aryl acrylamides or N-
methylacrylamide benzamides and carbon dioxide.28 However, these 
approaches still suffer from limitations such as limited substrate 
scope. Therefore, the development of a direct, efficient, sustainable, 
and controllable strategy for the construction of carbonyl-containing 
heterocyclic frameworks remains highly desirable.
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Scheme 1 Previous synthesis routes and this work.

Carbonylation chemistry offers one of the most direct and 
versatile platforms for accessing carbonyl-containing molecules.29-35 
Since Heck’s pioneering report of palladium-catalyzed carbonylation 
in 1974, carbon monoxide (CO) has become an essential C1 synthon 
for transforming simple and readily available substrates into diverse 
carbonylated derivatives.36-42 Despite its broad synthetic utility, 
achieving chemoselective and regioselective carbonylation remains 
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challenging, as conventional protocols often rely on noble-metal 
catalysts, strong Brønsted acids, and high temperatures, thereby 
limiting functional-group tolerance and substrate scope.43-49 N-
Arylacrylamides, as structurally privileged activated alkenes, offer an 
attractive platform for achieving regioselective carbonylation via 
substitution-controlled reactivity, enabling streamlined access to 
carbonylated oxindoles and dihydroquinolinones.50-56 Meanwhile, 
arylthianthrenium salts have attracted considerable interest due to 
their high reactivity and ready accessibility, which allows them to be 
readily prepared from simple arenes via C(sp²)–H thianthrenation.57-

64 In recent years, Ritter and co-workers have systematically 
investigated thianthrenium salts, revealing their broad utility in 
diverse C–H functionalization reactions.65-70 However, only a few 
examples of carbonylation reactions using thianthrenium salts have 
been reported, and there are no related reports on the selective 
controllable carbonylation associated with them.

Building on our previous investigations into the photochemical 
behavior of thianthrenium salts,68, 71-75 we demonstrated that these 
reagents undergo efficient visible-light-induced homolytic C(sp²)-S 
bond cleavage to generate aryl radicals. Leveraging this reactivity, we 
developed a controllable single electron carbonylative cyclization 
manifold. Under visible-light-promoted copper catalysis, the in situ 
formed aryl radicals readily capture CO to produce acyl radicals, 
which undergo selective addition with N-aryl acrylamides to deliver 
oxindoles and dihydroquinolinones. N-Aryl acrylamides are readily 
accessible from a variety of α, β-unsaturated carboxylic acid 
derivatives, and their tunable substitution patterns provide an ideal 
platform for controlling reaction selectivity. Remarkably, tuning the 
alkene substitution pattern alone dictates the regioselectivity of acyl-
radical addition, granting switchable access to carbonylated five- and 
six-membered heterocycles without altering reaction conditions. 
This platform thus provides a general, mild, and highly controllable 
approach to carbonylation, addressing key limitations in current 
radical carbonylation chemistry (Scheme 1b).

Results and discussion
We began our investigation using N-arylacrylamide 1a and 
arylthianthrenium salt 2a as the model substrates to evaluate the 
feasibility of the carbonylative cyclization (Table 1). Under blue-light 
irradiation at 60 °C in EtOAc, with CuCl as the catalyst, (S)-DM-BINAP 
as the ligand, and triisobutylamine as the base under 40 bar CO for 
24 h, the desired oxindole 3aa was obtained in 80% yield (78% 
isolated, entry 1). Control experiments confirmed that the reaction 
did not proceed in the absence of the copper catalyst, ligand, base, 
or light (Table 1, entries 3-5). Screening of copper salts revealed that 
Cu(acac)₂ could also promote the reaction, even with a slightly lower 
yield, while other copper catalysts gave comparable results (Table 1, 
entries 6-8). Bidentate phosphine ligands facilitated product 
formation but did not improve the yield, and the reaction outcomes 
for (R)-DM-BINAP and (S)-DM-BINAP were similar (Table 1, entries 9 
and 12). In contrast, nitrogen-based or monodentate phosphine 
ligands failed to produce detectable amounts of 3aa (Table 1, entries 
10-11). The choice of base significantly affected the reaction 
outcome, with organic bases outperforming inorganic bases (Table 1, 
entries 13-14). Solvent screening indicated that EtOAc was the 
optimal, while acetonitrile or toluene led to decreased yields (Table 
1, entries 15-16). Reducing the amount of 2aa or increasing the 
reaction concentration also lowered the yield (Table 1, entries 17-18). 
The reaction proceeded at 40 °C to give 3aa in 73% yield (Table 1, 

entry 19), and lowering the CO pressure similarly decreased the 
reaction efficiency (Table 1, entry 20). For the reaction time, the 
conversion can not be completed after 15 hours and no better yield 
can be produced if we extend the reaction time to 36 hours.

Table 1: Optimization of reaction conditions.a

N

O
+

N
O

O

1a 2a

CuCl (10 mol%)

EA (0.1 M)
400-500 nm, 24 h
60 °C, CO (40 bar)

triisobutylamine (2.0 equiv.)

TT
OTf

(S)-DM-BINAP (10 mol%)

3aa

Entry Variation from the Standard conditions Yield (%)b

1 None 80 (78)c,d

2 No catalyst n.d.
3 No ligand n.d.
4 No base trace
5 No light irradiation n.d.
6 CuBr instead of CuCl 36
7 Cu(CH3CN)4BF4 instead of CuCl 56
8 Cu(acac)2 instead of CuCl 31
9 BINAP instead of (S)-DM-BINAP 69

10 PCy3 instead of (S)-DM-BINAP n.d.
11 1,10-Phen instead of (S)-DM-BINAP n.d.
12 (R)-DM-BINAP instead of (S)-DM-BINAP 79
13 DIPEA instead of triisobutylamine 74
14 K3PO4 instead of triisobutylamine 16
15 CH3CN as solvent 25
16 Toluene as solvent 56
17 1.0 equiv. 2a 50
18 0.2 mol L‒1 EA 75
19 40 °C instead of 60 °C 73
20 20 bar CO 69

aReaction conditions: aReaction conditions: 1a (0.1 mmol), 2a (0.15 
mmol), CO (40 bar), catalyst (10 mol%), ligand (10 mol%), base (0.2 
mmol), solvent (1.0 mL), blue-light irradiation at 60 oC, 24 h. bYield 
was determined by GC using nHexadecane as the internal standard. 
cIsolated yield. d70% yield on 10 mmol scale.

With the optimal conditions established, the substrate scope of 
N-aryl acrylamides was investigated at the first stage (Scheme 2). 
Unsubstituted and electron-donating substrates, such as methyl- and 
methoxy-substituted N-aryl acrylamides, were well tolerated, 
affording the desired products in good to high yields (3aa-3ca). 
Halogen-substituted substrates (F, Cl, Br, I) were also compatible, 
providing the corresponding products in moderate to excellent yields 
(3da-3ga). Notably, substrates bearing electron-withdrawing groups, 
including acyl, trifluoromethoxy, trifluoromethyl, and cyano, 
proceeded smoothly to give oxindoles in excellent yields (3ha-3ka). 
Alkenes bearing other substituents delivered products 3la and 3ra in 
86% and 64% yields, respectively. N-Protected acrylamides with 
phenyl or ethyl groups were also compatible, yielding 3ma and 3oa 
in 84% and 77% yields. In contrast, unprotected N-aryl acrylamides 
failed to afford the desired product (3xa). The ester analogue was 
also tested, but no lactone product could be detected. 
Tetrahydroquinoline derivatives were tolerated, provided the target 
product 3na in 70% yield. ortho-Substituted substrates furnished the 
products 3pa and 3qa in moderate yields, while meta-substituted 
substrates led to regioisomeric mixtures (3va/3v´a and 3wa/3w´a). 
Furthermore, multi-substituted substrates were also well tolerated, 
afforded the corresponding products in excellent yields (3sa-3ua).
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Scheme 2. Reaction conditions: 1 (0.1 mmol), 2 (0.15 mmol), CuCl (10 mol%), (S)-DM-BINAP (10 mol%), triisobutylamine (0.2 mmol), EA (1.0 
mL), CO (40 bar), under blue-light irradiation at 60 oC, 24 h.; isolated yields.
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The substrate scope of thianthrenium salts was further 
investigated (Scheme 2). Unsubstituted and electron-rich aryl 
thianthrenium salts gave the desired products in good yields (3ab-
3ad, 3as). Aryl thianthrenium salts bearing C(sp²)-X bonds (X = F, Cl, 
Br) were also compatible, providing the corresponding products in 
moderate to excellent yields (3ae-3ag). Similarly, di- and tri-
substituted aryl thianthrenium salts (3ah-3am and 3ap-3ar, 3at-3au) 
performed well under the reaction conditions, delivering the target 
products in good yields in general. These results highlight the high 
chemoselectivity of the catalytic system and its potential for 
subsequent structural modifications. Complex scaffolds, including 
flavone-derived salts, also participated smoothly, delivering the 
corresponding product in moderate yield (3ao). Deuterated 
substrates afforded the desired oxindole 3an in 61% yield. Notably, 
thianthrenium salts bearing alkyl and alkenyl substituents reacted 
smoothly under the standard conditions, delivering the desired 
products (3av-3aw) in moderate yields. However, the styrenyl-
substituted thianthrenium salt showed no reactivity under the 
standard reaction conditions (3ax). These results indicate that the 
catalytic system features broad substrate scope and high 
chemoselectivity. Additionally, instead of thianthrenium salt, 
iodobenene was checked as well but lead to no desired product 
formed.
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N
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4 2a

CuCl (10 mol%)

EA (0.1 M)
400-500 nm, 24 h
60 °C, CO (40 bar)

triisobutylamine (2.0 eq.)
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OTf

(S)-DM-BINAP (10 mol%)
N O
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Ar

Ar

5

CCDC: 2512048

Scheme 3. Reaction conditions: 4 (0.1 mmol), 2a (0.15 mmol), CuCl 
(10 mol%), (S)-DM-BINAP (10 mol%), triisobutylamine (0.2 mmol), EA 
(1.0 mL), CO (40 bar), under blue-light irradiation at 60 oC, 24 h.; 
isolated yields.

Under the standard reaction conditions, employing alkenes with 
different substitution patterns, six-membered dihydroquinolinones 
were selectively obtained rather than five-membered oxindoles 
(Scheme 3). As shown in the scheme, a variety of carbonylated six-
membered heterocycles bearing diverse functional groups were 
synthesized in moderate to good yields (5aa-5ka). Unsubstituted and 
electron-rich substrates afforded the corresponding products in 
moderate yields (5aa-5ca). Internal alkenes bearing halogens (F, Cl, 
Br) or electron-withdrawing groups (cyano, acyl, trifluoromethyl) 

were compatible with the reaction, delivering the desired products 
in moderate yields (5da-5ia). Multi-substituted substrates also 
performed well, providing the target products in good yields (5ja-
5ka). It’s worth to mention that non-carbonylation product was the 
main by-product during this process and response for the moderate 
yields.

The atom economy of the reaction was also evaluated, and 
thianthrene was recovered in yields of up to 96% (Scheme 4a). To 
gain some insight into the reaction mechanism, several mechanistic 
experiments were conducted. Under the standard conditions, the 
addition of 2.0 equiv. of 2,2,6,6-tetramethylpiperidine-1-oxyl 
(TEMPO) completely suppressed the formation of the desired 
product. Similarly, the addition of 2.0 equiv. of 1,1-diphenylethylene 
(1,1-DPE) led to no detectable target product, while radical adducts 
6 and 7 were observed (Scheme 4b). Furthermore, light-on/off 
experiments revealed that the reaction proceeds only under visible-
light irradiation, and no conversion occurs in the dark (Scheme 4c). 
Collectively, these results indicate that the transformation does not 
follow a radical chain process, but rather proceeds via an aryl radical 
intermediate.
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Scheme 4. Control experiments and possible mechanisms.

Based on the above results and literature precedents, a 
plausible mechanism is proposed (Scheme 4d).76-80 Under blue-light 
irradiation, the CuIL complex is excited to CuIL*, which reacts with 
the aryl thianthrenium salt to generate an aryl radical and copper (II) 
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complex CuIIL. The aryl radical captures CO to form an acyl radical, 
which adds to the alkene of N-methyl-N-phenylacrylamide 1a, 
affording intermediate A. Intramolecular cyclization on the aryl ring 
then gives intermediate B, which undergoes single-electron transfer 
with CuIIL and subsequent deprotonation to yield oxindole 3. 
Similarly, when the acyl radical reacts with N-methyl-N-
phenylcinnamamide, addition to the alkene forms intermediate C, 
followed by intramolecular cyclization to intermediate D. 
Subsequent single-electron transfer with CuIIL and deprotonation 
furnishes the six-membered dihydroquinolinone 5. This mechanism 
highlights the key roles of aryl radicals, CO trapping, and Cu-
mediated single-electron transfer in enabling selective carbonylative 
cyclization.

Conclusions
In summary, we have developed a visible-light-induced, copper-

catalyzed controllable carbonylative cyclization that enables 
selective synthesis of carbonylated five- and six-membered 
heterocycles by simply tuning the substitution pattern of the starting 
alkenes. The method employs inexpensive CO as the carbonyl source, 
proceeds under mild conditions, and allows efficient one-pot access 
to 3,3-disubstituted oxindoles and dihydroquinolinones. It features 
broad substrate scope, generally good yields, excellent functional-
group tolerance, and potential for downstream derivatization, 
providing a practical, economical, and sustainable approach to 
nitrogen-containing carbonylated heterocycles.
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