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Annulative mt-extension (APEX) reaction is a useful aromatic ring-fusion method for the synthesis of large
polycyclic aromatic hydrocarbons (PAHs) from unfunctionalized small PAHs. While APEX reactions in the
K-, M-, and bay-regions of PAHs have been developed, L-region selective APEX is yet to be achieved.
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Introduction

Annulative Tt-extension (APEX)' reaction, employed to extend
a new fused aromatic ring(s) to unfunctionalized aromatics, has
attracted attention in recent years as a powerful method for the
precise synthesis of polycyclic aromatic compounds and nano-
graphenes (Fig. 1a). The advantageous characteristics of APEX,
such as unnecessary prefunctionalized aromatics and direct
C-H bond transformations, enable late-stage modification,
successive elongation, and diversity-oriented synthesis of
nanographenes. In recent years, various research groups,
including our group, have developed APEX reactions.>” In
particular, with regard to the APEX reaction of polycyclic
aromatic hydrocarbons (PAHSs), the Diels-Alder reactions with
alkenes, alkynes, and arynes for the bay-region (concave
armchair edge) of perylene derivatives are well-known.> We have
also developed the K-region selective APEX reaction of PAHs
using a Pd catalyst,” and the M-region APEX selective APEX
using N-methyl-1,2,4-triazoline-3,5-dione (MTAD) and Fe-
catalyzed diarylation.* In addition, a limited example of
fissure-region (zig-zag edge surrounded by two neighboring peri-
carbon atoms in naphthalene) selective APEX reactions was
recently achieved by a Li(0)-mediated mechanochemical Birch
reductive arylation/cyclodehydrogenation sequence.® However,
no L-region (C1-C2 positions of naphthalene)-selective APEX (L-
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unfunctionalized naphthalene, phenanthrene, chrysene, and [4]helicene.

APEX) reaction of PAHs has been developed to date. The
development of this missing-piece L-APEX can facilitate a more
comprehensive synthesis of a wider variety of nanographenes
and will lead to a further step forward in nanographene
synthetic chemistry.®

Taking L-APEX of naphthalene (1a) to benzo[g]|chrysene as an
example, the conventional stepwise T-extension seems to be
applicable by C1-position selective bromination of 1a, Suzuki-
Miyaura coupling with (1,1’-biphenyl)-2-ylboronic acid, and
cyclodehydrogenation, so-called Scholl reaction, of 1-([1,1-
biphenyl]-2-yl)naphthalene (A) with triflic acid (TfOH) and 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone  (DDQ)  (Fig. 1b).
However, a synthetically fatal problem occurs in the final Scholl
reaction step. The Scholl reaction of A with DDQ/TfOH is
initiated by protonation, and the obtained arenium cation B
predominantly undergoes a 1,2-aryl shift to afford the thermo-
dynamically more stable cation species C Aromatic electrophilic
substitution does not give benzo[g|chrysene (L-APEX product),
but its isomer M-APEX product, benzo[f]tetraphene, is the major
product. This counterintuitive aromatic rearrangement often
occurs in the synthesis of nanographenes when Scholl reactions
are applied to sterically congested aromatics.”'® Therefore, the
development of L-APEX reactions is highly important in terms
of not only filling in missing pieces in APEX chemistry but also
providing a complementary method in synthetic chemistry for
various nanographenes.

Results and discussion

To achieve the unprecedented L-APEX reaction, we considered
that Sarlah's work on dearomative functionalization of arenes
with MTAD would be valid.™ Indeed, in 2021, he and our group
jointly demonstrated the M-APEX reaction of PAHs through (i)
regioselective dearomatization of PAHs 1 with MTAD, (ii) Fe-
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catalyzed diarylation of MTAD-adducts 2 with bis-Grignard
reagents 3, and (iii) aromatization by elimination of a bridged
urea moiety, affording M-APEX products 4’ (Fig. 1c).* On one
hand, MTAD-adducts 2 possess olefinic moieties, which are
suitable for Fe-catalyzed arylation," and on the other hand, they
possess allylic urea moieties, which are active for various allylic
substitution reactions as actively demonstrated by Sarlah and
other groups.'** As a part of our continuous investigation into
APEX chemistry, herein, we report the L-region selective APEX
reaction of PAHs by dearomative activation with MTAD, fol-
lowed by Pd-catalyzed stepwise allylic substitution and aroma-
tization (Fig. 1d). The use of di-Grignard reagents and Pd
catalysts enabled intermolecular and intramolecular allylic
substitution, affording sterically congested L-region extended
products 4

Our initial investigation toward L-APEX is intermolecular o-
allylic substitution of naphthalene-MTAD adduct 2a, which was
easily obtained by the photoinduced cycloaddition of 1a with
MTAD (Fig. 2a). In the previous Sarlah's study, a-allylic substi-
tution of 2a with phenyl Grignard reagent (PhMgBr) was ach-
ieved by catalytic amounts of Pd,(dba); (dba:
dibenzylideneacetone) and DPEphos, affording the syn-1,4-
adduct."* Inspired by this result, we applied a similar catalytic
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system using Pd,(dba)s;, phosphine ligands and biphenyl
Grignard reagent 3a. Unlike our expectation to obtain syn-1,4-
adduct 5 as a major product, anti-1,2-adduct 5’ was preferen-
tially obtained via vy-allylic substitution even using various
phosphine ligands such as XPhos and  1,4-bi-
s(diphenylphosphino)butane (dppb) (see SI for the results using
other phosphine ligands). The reaction with 3a in the presence
of Pd(dba),/XPhos gave 5’ in 53% yield, whose structure was
elucidated by X-ray diffraction (XRD) analysis of its N-methyl-
ated derivative 5'-Me (Fig. S1). Then, the bis-Grignard reagent
3b was used to anticipate changes in the reaction profile and
simultaneous cyclization. Interestingly, the use of dppb and
1,1'-bis(diphenylphosphino)ferrocene (dppf) afforded the
desired 1,4-adduct 5 in 57% and 42% yields, respectively,
through a-allylic substitution. In these reactions, the simulta-
neous cyclization to afford 7 (Fig. 2¢) did not occur. The relative
configuration and regioselectivity of 5 were also confirmed by
XRD analysis (see Fig. S3). Next, we attempted simple oxidative/
acidic cyclization of 5 or 5 in the presence of DDQ and TfOH"
or FeCl; (ref. 15) (Fig. 2b). However, both reactions gave
a mixture of L-APEX product 4a and M-APEX product 4a’, which
implies a 1,2-aryl shift>'® and undesired cyclization occur in
those cationic intermediates. Other examinations of the one-pot

© 2026 The Author(s). Published by the Royal Society of Chemistry
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annulation of 2a were performed by (i) Pd(0)-catalyzed o-allylic
substitution with 3b, (ii) Pd(u)-catalyzed intramolecular y-allylic
substitution of 6 by the remaining aryl magnesium bromide
moiety, and (iii) oxidation of the in situ generated precursor 7,
yielding 4a in 31% NMR yield (Fig. 2c). While this one-pot
procedure is attractive in terms of step economy, the reaction
mixture contained various side products; thus, the isolation of
4a was expected to be difficult. To improve the yield of final
product 4a, we further examined the reaction conditions and
found a stepwise L-APEX via the preparation and isolation of
iodoarene 8 by trapping aryl Grignard species 6 with iodine, (ii)
Pd(OAc),/PPh;-catalyzed intramolecular y-allylic substitution of
8 in a Sy2’ fashion, and (iii) oxidation by DDQ (Fig. 2d). This
protocol enabled the isolation of 8 and 4a in 56% and 77%
yields, respectively, and 43% of the overall yield from 2a was
satisfactory. Finally, a one-pot three-step L-APEX sequence from
1a to 4a was demonstrated to afford 4a in 45% isolated yield
(Fig. 2e), which is a reasonable result considering the result
shown in Fig. 2d.

Using the optimized conditions for the three-step L-APEX
from naphthalene, we examined the scope of PAHs in this
reaction (Fig. 3). In the first step (step 1), the cycloaddition of
phenanthrene (1b), benzo[c]phenanthrene (1c), and chrysene
(1d) with MTAD gave cycloadducts 2b, 2¢, and 2d selectively.

© 2026 The Author(s). Published by the Royal Society of Chemistry

Using crude MTAD-adducts without purification, o-allylic
arylation/iodination (step 2) and intramolecular +y-allylic
arylation/oxidation were successively demonstrated, affording
4a in 45%, benzo[f]picene (4b)/dibenzo[c,g]chrysene (4b’) in
10%/8%, dibenzo[a,]picene (4c)/benzo[glnaphtho[2,1-c|chrys-
ene (4¢') in 13%/14% and dibenzo[a,c]picene (4d)/benzo[g]
naphtho[1,2-c]chrysene (4d’) in 6%/8% isolated yields. In the
allylic arylation of 2b, 2c and 2d, nearly no regioselectivity was
observed, although they had two sterically different positions.
Interestingly, sterically congested helicenes 4b’, 4c¢’ and 4d’ were
also obtained.

Motivated by the presence of K- and L-regions in the L-APEX
products 4a and 4b’, we demonstrated further m-extension by
APEX reactions. Previously, we achieved M-APEX of 4a to afford
9," and K, bay-APEX of 4a to afford 10 (ref. 3e) (Fig. 4a). The
newly developed L-APEX reaction was applied to 4a to afford
tribenzo[a,c,j]picene (11) in 5% yield. In this reaction, 4a, which
can reversibly form the corresponding MTAD-4a adduct, as well
as uncyclized intermediates structurally related to 8 and its
dehalogenated analogue, were observed during purification,
leading to a decreased yield of 11. As another demonstration,
pentabenzo[a,c,fg,ij,rst]pentaphene (13) was obtained in overall
10% yield by Pd-catalyzed K-APEX of 4b’ with 2,2’-diiodo-1,1’-
biphenyl (12). As often encountered in a previous study,* these

Chem. Sci.
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In conclusion, we have developed an untapped L-APEX reaction
of unfunctionalized PAHs by dearomative activation with
MTAD, followed by Pd-catalyzed one-step or two-step annula-
tion with aryl Grignard reagents. MTAD was selectively attached

L-APEX

K 4 0 ; . -

a then DDQ, 120 °C to the terminal benzo-fusion moieties of PAHs, and the gener-
VAPEX ated allyl urea moieties were arylated by Pd-catalyzed - and vy-
(ref. 4a) K,bay-APEX allylic substitutions with bis-Grignard reagents. While the

38% (ref. 3e)

56% regioselectivity between different L-regions and the total yields

O \ ‘0 was low, this represents the first example of an L-region APEX
O ‘O reaction, and difficult-to-synthesize PAH molecules can be ob-
O O OO‘ tained by this method.
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