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ine modification symmetry in
mammalian epigenome regulation

Zeyneb Vildan Cakil, Lena Engelhard and Daniel Summerer *

5-Methylcytosine (mC) is a key regulatory element of mammalian genomes, and plays important roles in

development and disease. mC is predominantly written onto CpG dyads by DNA methyltransferases, and

can be further oxidized by ten-eleven translocation dioxygenases (TETs) to 5-hydroxymethyl-, 5-formyl-,

and 5-carboxylcytosine. This process results in different symmetric and asymmetric combinations of

cytosine forms across the two strands of CpGs, each of which represents a unique physicochemical

signature in the major groove of DNA. A comprehensive understanding of the individual functions of

oxidized mC modifications can therefore only be achieved by considering both strands of CpG dyads.

Here, we provide a brief overview of the current state of knowledge on the sequencing and mapping of

individual CpG dyad states, their influence on the intrinsic properties of DNA, and their interactions with

chromatin proteins.
1 Introduction
1.1 TET-generated cytosine modications and their
existence as symmetric and asymmetric CpG dyad marks

5-Methylcytosine (mC, Fig. 1a) is the central epigenetic mark of
mammalian DNA and acts as a key regulator of transcription,
with important roles in developmental and (patho)physiological
processes, including genomic imprinting, X-chromosome-
inactivation, and cancer development.1 mC is predominantly
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written into CpG dyads by S-adenosylmethionine (SAM)-
dependent DNA methyltransferases (DNMT),2 and is typically
associated with transcriptional silencing.3,4 mC can thereby be
written de novo by DNMTa/3b, but can also be maintained over
cell divisions by the maintenance enzyme DNMT1 that selec-
tively methylates hemi-methylated CpG dyads generated during
replication (Fig. 1a). This makes mC a rather stable, inheritable
nucleobase. However, mC can also be passively reversed to C by
DNA replication and an absence of maintenance methylation
(passive dilution, PD).3 Moreover, a-ketoglutarate- and Fe(II)-
dependent ten-eleven-translocation dioxygenases (TETs) can
trigger an active demethylation pathway by oxidizing mC to the
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Fig. 1 (a) Cytosine methylation and active demethylation in mammals.
DNMT: DNA methyltransferase, TET: ten-eleven translocation di-
oxygenase, TDG: thymine DNA glycosylase, BER: base excision repair.
Dotted arrows: passive dilution.14 (b) Proposed mechanism of TET-
catalyzed oxidation (example shown for oxidation of hmC to fC). a-KG:
a-ketoglutarate, Suc: succinate.18,19
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“oxi-mCs” 5-hydroxymethylcytosine (hmC),5,6 5-formylcytosine
(fC), and 5-carboxylcytosine (caC)7–9 (Fig. 1b). Base excision
repair (BER) can restore C via the excision of fC and caC by
thymine DNA glycosylase (TDG), and repair of the generated
abasic site (active modication – active removal).7,10 In addition
to this pathway, hemi-modied CpGs containing oxi-mCs seem
to compromise DNMT1-catalyzed maintenance methylation
Daniel Summerer
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compared to hemi-methylated CpG. Consequently, oxi-mC can
promote replication-dependent passive dilution of mC via
active modication and passive dilution (with effects increasing
with oxidation state11–15). Notably, for reviews discussing these
pathways, see ref. 16 and 17.

Cytosine modications can occur in a strand-symmetric and
-asymmetric fashion in the double-stranded genome. Whereas
non-CpG (CpH) methylation (and partially hydroxymethylation)
can occur at certain levels in a tissue-specic manner and is
inherently asymmetric,20,21 the palindromic nature of the CpG
dyad itself allows many different combinations of cytosine
modications to be presented in the DNA major groove, and
thus provides rich symmetry information. Indeed, whereas the
aforementioned maintenance methylation of hemi-methylated
dyads (“mC/C”, for the top and bottom strands, respectively)
represents an evolved mechanism to maintain them in
a symmetric mC/mC state, the oxidation of mC to hmC, fC and
caC by TETs occurs in a step-wise and non-processive
manner,22–25 and theoretically can give rise to een (mostly
asymmetric) modication combinations (Fig. 2a). Whereas
TETs exhibit substrate preferences in view of pre-existing CpG
modications in dsDNA,24 they can also act on ssDNA, a process
that would be inherently independent of modications of the
opposite strand.26 Whereas part of these dyads may not occur in
appreciable numbers in genomes owing to the low levels of fC
and particularly of caC (see below), this nevertheless creates
Fig. 2 Combinations of cytosine modifications in the two strands of
CpG dyads. (a) Chemical information displayed in the major groove of
dsDNA. Black and grey arrows denote hydrogen bond acceptors and
donors, respectively. Red arrow shows alternative interactions of
cytosine 5-substituents. (b) Schematic view of a CpG dyad with
possible combinations of cytosine nucleobases. (c) All theoretically
possible combinations from (b). Note that 15 different combinations
occur within the context of the CpG itself (marked by a dashed line),
whereas 25 combinations can occur overall when considering the
CpG's sequence context. Color code as in Fig. 1a.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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a complex landscape of combinatorial CpG marks across the
genome. In particular, dyads involving the most frequent cyto-
sine nucleobases C, mC and hmC are expected to occur at
signicant levels in stem cells and neurons,16 and unique
genomic distributions have been observed in rst pilot studies
(see below).27–29 Each individual dyad thereby presents a unique
combination of 5-substituents in the major groove, and may
uniquely affect the physicochemical properties of dsDNA, as
well as interactions with nuclear proteins. The dyads thus
represent unique signals with distinct regulatory effects that
may arise from dedicated, dyad-specic reader protein inter-
actions, or simply from a unique modulation of pathways
relying on a selective recognition of symmetric C/C or mC/mC
dyads.

A comprehensive understanding of the individual CpG
dyad's functions requires a broad knowledge of their properties
as a basis, including their direct effects on the structure and
physico-chemical properties of DNA, their genomic levels and
locations (including tissue dependence and dynamics), and
their individual interaction proles with the nuclear proteome.
We here review the most recent developments in these elds
that have helped to shed light on this question and that will
guide future studies.

2 Simultaneous sequencing of C, mC,
and hmC for mapping symmetric and
asymmetric CpG dyad states in
mammalian genomes

Understanding individual CpG dyad state functions depends on
the ability to map their genomic locations. The overall genomic
levels of oxi-mCs differ signicantly between each other, are
tissue-dependent, and can be highly dynamic (reviewed in ref.
30). For example, whereas mC is distributed rather evenly
among somatic cells, oxi-mC levels are particularly high in
embryonic stem cells (ESC) and neurons (but low in other
somatic and particularly many cancer cells), with hmC showing
the highest levels in neurons (>10–20% of the levels of mC30). In
addition, hmC can also show high stability.31 In comparison, fC
and caC show far lower levels (∼2 and another 1–2 orders of
magnitude lower than hmC in mouse ESC (mESC), respec-
tively30). These general differences will also translate into
different levels of the individual CpG dyad states, which should
be considered when judging the physiological relevance of
a particular state. A large number of methods have been intro-
duced for sequencing and mapping of oxi-mCs in general
(reviewed in ref. 32 and 33), and have enabled detailed maps
and correlations with particular regulatory regions. Briey,
hmC is typically found enriched in active enhancers and gene
bodies, and in the latter correlates with active transcription (fC
and caC are also enriched in gene bodies of actively transcribed
genes). In contrast, low levels of all oxi-mCs are typically found
in regions surrounding transcriptional start sites of active
promoters.34–38

However, most aforementioned methods provide selectivity
only for single or grouped, but not for each individual cytosine
© 2026 The Author(s). Published by the Royal Society of Chemistry
form in a given sequencing run. This limits their analytical
value to statistic assumptions rather than accurate determina-
tions of the actual CpG dyad states. Nevertheless, such maps
generally indicated that hmC is typically asymmetric.37–40

Moreover, an early single molecule imaging study identied
hmC/mC as a frequent modication in mouse cerebellum
DNA.41

Recently, the rst methods for the selective, simultaneous
detection of C, mC and hmC in one experiment run have
emerged that provide potential for rened maps with CpG dyad
state resolution. These approaches include restriction enzyme-
based techniques like DARESOME42 and Dyad-seq27 that
however are limited in coverage and resolution by their
dependence on specic restriction sites. Other approaches use
complex multistep protocols based on chemical nucleobase
conversions to achieve nucleotide resolution with whole
genome coverage. For example, the EnIGMA protocol43 and its
further developed version “SCoTCH-Seq”29,44 employ hairpin
adapters to store the original DNA sequence and its mC pattern
as complement via a primer extension and maintenance
methylation step, aer which hmC and mC are revealed by
deamination protocols based either on bisulte or on multiple
enzymatic conversions involving A3A deaminase (Fig. 3a).
Another conversion-based approach is SIMPLE-Seq45 that
employs a K2RuO4 treatment to oxidize hmC to fC followed by
a malononitrile labeling, leading to an adduct that reads as U
and is recorded in a complement strand by a primer extension
step. Then, the sample is subjected to a TET oxidation step
(converting all modied Cs into caC) and subsequent borane
reduction, ultimately converting mC in the original template
strand to DHU, which results in another C to U transition that
can be sequenced. Whether a C to U transition is a result of
hmC or mC conversion is decoded by the use of a caC-modied
primer in the rst primer extension step.45 It should be noted
that none of the aforementioned methods is designed to
sequence the less abundant fC and caC modications that will
read as C or U, as well.

Finally, in addition to restriction- and conversion-based
strategies, direct sequencing methods promise particularly
simple mapping of modied cytosines.46 Here, a very recent
study employed nanopore sequencing with duplex-paired reads
to map hmC in mouse cerebellum (Fig. 3b) 28

So far, only three studies have harnessed one of the afore-
mentioned techniques for establishing genomic maps of indi-
vidual CpG dyad states. Duplex-paired nanopore sequencing
provided highly valuable insights into the locations and overall
frequencies of all hmC CpG dyad states in the mouse cere-
bellum genome that generally exhibits high hmC levels.
Symmetric mC/mC was found to be the most abundant state
overall, accounting for 53% of all duplex base-calls, whereas
symmetric unmodied C/C dyads accounted for 23% (Fig. 3c).
Strikingly, hmC-containing dyads occurred predominantly in
the form of asymmetric hmC/mCs (72% of all hmC dyads,
accounting for 13% of all dyads), which are the rst products
that TETs generate from their initial mC/mC substrate28 (this
data roughly aligns with Dyad-Seq data for mESC DNA27). In
contrast, symmetric hmC/hmC dyads (a direct subsequent TET
Chem. Sci.
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Fig. 3 Strategies for simultaneous sequencing of C, mC and hmC
enable genomic mapping of individual CpG dyad states. (a) Scheme of
the SCoTCH-Seq approach. (b) Scheme of nanopore sequencing with
duplex-paired reads. (c) Genomic levels of individual CpG states as
reported for nanopore sequencing of mouse cerebellum DNA28 and
SCoTCH-Seq for mESC DNA.29
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product) and asymmetric hmC/C dyads (that can theoretically
arise from an existing hmC dyad by passive dilution or repair, or
from direct off-target oxidation of mC/C dyads by TETs16) were
found at much lower levels (2–3%, Fig. 3c).

Finally, SCoTCH-Seq has been used for dyad-resolved
mapping in mESC genomes, and showed related distribu-
tions: mC/mC dyads accounted for 60%, C/C for 22%, mC/C for
13% and all hmC dyads for 6% (Fig. 3c).29 Similar to what was
observed in the nanopore study, only a very small fraction of
hmC dyads were symmetric (2%), whereas 35% existed as hmC/
mC and 63% as hmC/C dyads. The orientation of asymmetric
dyad modications was thereby generally random, i.e., did not
Chem. Sci.
show strand-bias in respect to gene orientation. An overall
conclusion from these studies is that TETs indeed oxidize the
two strands of mC/mC dyads independently from each other,
corroborating previous in vitro studies that indicated a non-
processive activity.22–25 The studies also rened previous
insights into the genomic distribution of hmC. For example,
metagene proles established by SCoTCH-Seq showed an
enrichment of hmC/mC and hmC/C in the bodies of actively
transcribed genes, and a depletion at transcription start sites,
both being signicantly more pronounced for hmC/C. Similarly,
primed enhancers showed far higher hmC levels than poised or
active enhancers that both showed elevated levels only of hmC/
C in their anking regions. This indicates that dyad-resolved
maps are extremely helpful for unraveling the function of
individual CpG dyad states. With several methods now available
at least for parallel C, mC, and hmC sequencing, it is expected
that a growing number of dyad-resolved oxi-mC maps will be
reported in the near future.

A limitation in mapping dyad modications is however the
inability of current sequencing approaches to extend simulta-
neous sequencing of oxi-mCs beyond C, mC and hmC.
Achieving this maximal chemical resolution will require
signicant further efforts, but – given the unique properties of
fC and caC, and their ability to control interactions with central
chromatin proteins – would be highly valuable.47–54

Another bottleneck for broader studies is the low levels of
many dyad states, resulting in a requirement for costly whole
genome deep sequencing. Besides the generally low levels of fC
and caC modications, hmC levels are also low in somatic and
particularly cancer tissues.30,31 Given the importance of hmC as
a cancer biomarker55,56 and the still poorly understood func-
tions of fC and caC dyads, future studies would thus greatly
benet from enrichment methods that are applicable to unde-
natured dsDNA fragments, and offer general selectivity for
single cytosine modications or even for specic dyad modi-
cation combinations prior to sequencing.

Current hmC-enrichment strategies typically rely on anti-
hmC antibodies57–60 that however typically require DNA dena-
turation and thus destruction of CpG dyad information. Alter-
natively, T4-b-glucosyltransferase is widely used for enrichment
of hmC,60–62 whereas engineered MBD proteins have been
employed for the enrichment of hmC/mC dyads63 and provide
a direct and simple access to lower resolution maps.64
3 The impact of oxidized mC
modifications on the physicochemical
properties of DNA

DNA exists in double-stranded form in themammalian nucleus,
and it is complexed with histones and other chromatin
proteins. Different CpG dyad states may inuence protein
interactions in diverse ways, for example, by direct recognition
or clash with the substituents themselves, by indirect effects on
the electronic properties of the nucleobase that affect hydrogen
bonding and stacking, by changes in duplex shape readout via
altered groove geometries, or by altered duplex exibility. The 5-
© 2026 The Author(s). Published by the Royal Society of Chemistry
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substituents differ in hydrogen bonding properties, steric
demand and conformational exibility. The hydroxyl group of
hmC is found in crystal structures in a main orientation
pointing towards the 30-nucleobase, and a second conformation
undergoing a water-mediated phosphate interaction. In
contrast, the fC-formyl and caC-carboxyl groups are xed in the
plane of the cytosine nucleobase, and hydrogen bond to the N4
amino group (Fig. 4a and b).65–67 Both fC and caC substantially
alter the electronic and chemical properties of the nucleobase,
such as charge distribution, polarity, and pKa (with caC being
negatively charged).10,68

Effects of mC itself on local DNA structure have been
extensively studied. Among the main ndings are an increase of
the local curvature of DNA, as well as effects on the groove
geometries (slightly widened major versus narrower minor
groove, respectively). Similarly to mC, hmC has been shown to
result in a slight local widening of the major groove65 compared
to fC- and caC-modied DNA, with the latter exhibiting an
enlarged minor groove compared to other modied duplexes in
the same study.70 However, a thorough solution NMR study with
dsDNAs bearing a central CpG in two different sequence
contexts afforded structures for C, mC and hmC-modied
duplexes that overall showed only modest local effects of the
modications that were smaller than the differences induced by
the sequence contexts themselves.71 Similar ndings were made
for fC- and caC-modied DNA.72,73
Fig. 4 Structures of (a) CG base pairs and (b) trinucleotide duplexes
from the Dickerson–Drew dodecamer containing C, mC, hmC, fC, or
caC (PDB entries 436D, 4C63, 4I9V, 4QC7, and 4PWM,
respectively).65–67,69 Hydrogen bonds shown as dotted red lines. Note
the conformational freedom of the hmC hydroxyl group indicated by
two main orientations in the crystal.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Many aspects of the physicochemical effects of mC and oxi-
mCs have been studied as well. Inuences on the duplex
stability analyzed by thermal melting analyses are highly
sequence-dependent. For example, whereas increased TMs
observed for a number of mC-modied sequences indicate
a generally stabilizing effect,74–77 a slight destabilization has
been observed for the Dickerson–Drew dodecamer (DDD).67 In
contrast, hmC has been reported to have either a slightly
stabilizing effect (less than mC71,74,75,77), a slightly destabilizing
effect,76,78 or no effect.67 Strikingly, either a slightly destabiliz-
ing65 or no effect67 has thereby been reported for the same
sequence context (DDD with two different hmC modication
settings). Further oxidation of hmC to fC or caC leads to
sequence-dependent effects as well. Whereas fC seems to have
little impact,67,77 caC has been reported to have either a weak77

or a strongly stabilizing effect.67 In-solution NMR studies with
fC- or caC-modied duplexes afforded destabilizing effects in
both cases.72,73

Effects of the modications on base stacking have been re-
ported for mC (increased stacking79–81), whereas hmC, fC, and
caC show similar stacking patterns in crystal structures.67

Finally, molecular dynamics simulations and circularization
experiments suggest that mC and even more hmC tend to
increase DNA stiffness, though again with sequence-depen-
dence.71 Single molecule DNA looping studies with varying
numbers of modications were in agreement with a stiffening
effect of mC. In contrast, hmC and particularly fC increased the
exibility, whereas caC showed little impact.82

Taken together, oxi-mC modications – while having little
effect on the overall conformation of B-DNA in modication
patterns studied to date – do partially impact the local duplex
structure and can affect the stability and exibility of dsDNA in
a sequence-dependent manner. In light of the observed
sequence dependencies and the employment of dsDNA oligo-
nucleotides with single or only a few modication sites in the
majority of the aforementioned studies, it is still poorly
understood how dense modications – such as those observed
in CpG islands that have high physiological relevance – may
lead to more pronounced or even alternative effects. Similarly,
the aforementioned studies predominantly focused on DNA
containing hemi-modied CpGs. It is therefore not understood,
how CpG dyad states may uniquely affect DNA properties, which
calls for systematic, comparative studies.
4 Proteins reading CpG modification
symmetry

Many proteins engage with CpG dyads during their turnover in
the cell cycle, and can exhibit selectivity for specic oxi-mC dyad
states. Most importantly, this applies to DNMTs,11,12,83 TET di-
oxygenases,8,18,84 and TDG7,10,85 as factors responsible for the
writing and erasing of mC (Fig. 1). In addition, methyl-CpG-
binding domain (MBD) proteins, the canonical readers of mC/
mC dyads, mediate communication with heterochromatin-
associated factors for transcriptional silencing, and show
specic dyad state preferences (see below).3,4 Whereas MBDs
Chem. Sci.
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preferentially read symmetric mC/mC CpGs, CXXC and SET-
and RING-associated (SRA) domains can recognize the dyad in
the non- or hemimethylated state, respectively, and are con-
tained in a variety of chromatin factors. Here, the CXXC of TET3
has been shown to read caC,51 whereas the SRA domain of
UHRF2 selectively reads hmC.86

In addition, fC has been shown to form imine cross-links
with lysine/arginine residues of histones and other factors in
vitro,49,87 with potential roles for nucleosome positioning in
vivo.48 As another general factor, RNA polymerase II has been
shown to be stalled by fC and caC in vitro,53 and a specic
interaction with caC has been identied in a crystal structure
that may account for this effect.54 Importantly, beyond such
general chromatin factors, oxi-mC dyad states can also modu-
late the affinity of specic transcription factors (TFs). In the
following, we exclusively discuss canonical MBD readers and
transcription factors, because of their immediate relevance for
the two main regulatory pathways of (oxi)-mC. We will thereby
focus on comparative studies involving different oxi-mC dyad
states, since only these enable a judgement of actual CpG
symmetry functions. Concerning the interactions of other
protein factors with oxi-mCs, we refer readers to previous
reviews.88,89
Fig. 5 Read-out of CpG dyad states by MBD domains. (a) Overview of
crystal structure of the MBD domain of humanMECP2 (PDB 3c2i92) with
methyl groups shown as spheres. (b) Details of G andmC recognition by
MECP2 in the twoCpG dyad strands. Note the recognition of dyad Gs by
conserved Arg residues. Strand coloring as in (a), methyl groups shown
as spheres in color according to strand, water shown as blue spheres.
Hydrogen bonds shown as dotted black lines. MECP2 protein sequence
of shown area indicated below. (c–e) Exemplary binding profiles of
MBD domains of human MeCP2, MBD1 and MBD4 to the 15 CpG dyad
states (left93) and KD values for frequent CpG dyad states containing C,
mC or hmC (right, MBD4 from mouse).11 All data from electromobility
shift assays (EMSA). Figure adapted from Buchmuller et al.,63 in accor-
dance with its creative commons attribution 4.0 international license:
http://creativecommons.Org/licenses/by/4.0/.
4.1 MBD proteins

The prototypical and best-characterized family of reader
proteins for canonical mC/mC CpGs comprises themethyl-CpG-
binding domain (MBD) proteins.90 The members of the core
MBD family in mammals are MeCP2, MBD1, MBD2, MBD3, and
MBD4.

Among these, MeCP2, MBD1, and MBD2 exhibit high
selectivity for symmetrically methylated CpGs over unmethyl-
ated CpGs, and frequently associate with chromatin-modifying
complexes such as histone methyltransferases and ATP-
dependent remodelers, thereby linking DNA methylation to
histone modications and transcriptional repression.91

In contrast, the core family member MBD3 as well as MBD5
and MBD6 diverge in key residues and secondary structure
elements, resulting in loss of high-affinity mC recognition.91

Structural analyses of MBD–DNA complexes revealed
a conserved mode of mCpG recognition. MBD proteins share
a small, asymmetric fold that engages the mCpG through two
arginine residues hydrogen-bonding to the Hoogsteen face of
the CpG guanines (Fig. 5a shows the representative MeCP2-
mCpG complex92,94). Adjacent residues, including a conserved
aspartate and tyrosine, help stabilize these interactions, and
form part of hydrophobic pockets that accommodate the two
cytosine 5-methyl groups (Fig. 5b). Early reports suggested that
hmC is recognized by MBD3 and MeCP2 (ref. 95 and 96).
However, subsequent proteomic analyses97,98 and comprehen-
sive binding studies failed to conrm these observations. In
fact, hmC is bound with markedly reduced affinity by MBD
family proteins compared to mC.11,99,100 These ndings imply
that hmC may serve as an intrinsic modulator capable of alle-
viating mC- and MBD-dependent silencing even without active
demethylation. Consistent with this, genome-wide maps
Chem. Sci.
correlate hmC with transcriptionally active regions.62 Several
studies reported broader evaluations of the dyad state prefer-
ences of individual MBDs (Fig. 5c–e show exemplary data for
three of the ve core family MBDs). An overall nding is that all
MBDs recognize mC/mC dyads with highest affinity, but with
varying degrees of selectivity.11 Whereas MBD1, MBD2 and
MeCP2 show low nanomolar affinity for mC/mC and compa-
rably high selectivity, MBD4 and particularly MBD3 show lower
affinity and selectivity. For the former three MBDs, hmC/mC is
the most important off-target (5–18-fold lower affinity than that
for mC/mC (Fig. 5c–e11). A general tendency among dyads is that
mC contributes to high affinity, and that hmC reduces affinity
less than non-modied C. fC and caC tend to generally cause
similar affinity reductions to hmC, though for MBD1, caC cau-
ses signicant reductions (Fig. 5d). As visible in Fig. 5c–e, the
MBDs overall feature different specicity proles.93 This
combined data provides biochemical support for the hypothesis
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.Org/licenses/by/4.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc09022a


Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
9/

20
26

 3
:4

0:
17

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
that different oxi-mC dyad states may act as individual regula-
tory signals, since they may individually modulate a main
pathway of mC-dependent chromatin regulation. The advent of
dyad-resolved sequencing techniques will help in studying this
question in the cellular context.27–29

4.2 Transcription factors

Many transcription factors recognize target sequences con-
taining a CpG, and they can either be repelled or attracted by
mC.101 Oxi-mCs equip the dyad with additional information that
can be (anti)read by TFs. Examples for TFs that prefer oxi-mCs
and for which detailed biochemical and partially structural
information is available are SALL1 and 4, which both possess
a C2H2 zinc nger domain with a preference for hmC, and are
involved in the recruitment of TET dioxygenases to promote
hmC oxidation.102 Wilms tumor protein 1 (WT1), another zinc
nger TF that is found mutated in nephroblastoms, has been
shown to prefer C, mC or caC over hmC or fC.103 The presence of
hmC also increases the binding of the basic helix–loop–helix
(bHLH) TF TCF4 to E-box motif sequences.104 Finally, MAX,
another bHLH TF and dimerization partner of the master
regulator MYC (Fig. 6a), has been shown to bind its E-box target
sequence in the presence of a caC or C rather than mC, hmC or
fC. Both symmetric and hemi-modied states were character-
ized, revealing individual affinities for each dyad. A crystal
structure revealed a conserved arginine involved in recognition
of the caC-paired G residue, and a second arginine in a ∼6 A
Fig. 6 Oxi-mC (anti)reading by transcription factors. (a) Crystal
structure of the MYC/MAX heterodimer (PDB 1NKP) bound to E-box
DNA. Grey: MAX, white: MYC, blue: E-box. (b) Interaction of MYC R367
in theMYC/MAX dimer with E-box guanine 4 pairedwith C (PDB 1NKP),
models of MYC/MAX bound to mC/mC or hmC/hmC dyads, respec-
tively,107 and interaction of MAX R36 and R60 in the MAX2 dimer with
the caC/caC dyad (PDB 5EYO; *interaction with hmC has not been
observed in the E-box sequence). (c) Venn diagrams show readers for
mC, hmC, fC, and caC modifications in symmetric and hemi-modified
CpGs. (d) The readers of symmetric and hemi-modified CpGs are
observed for many TF subfamilies. Figure adapted from Song et al.,108

in accordance with its creative commons attribution 4.0 international
license: http://creativecommons.Org/licenses/by/4.0/.

© 2026 The Author(s). Published by the Royal Society of Chemistry
distance to the caC carboxyl group that may be involved in
water-mediated interactions (Fig. 6b).52

Besides studies dedicated to specic TFs, pull-down/
proteomics screens have been particularly powerful in discov-
ering TFs with general oxi-mC preferences (for overviews of
(anti)reader candidates from such studies, see ref. 97, 102, 105,
and 106). An overall observation in these experiments has been
that fC and caC attract a higher number of readers than hmC.
Importantly, the potential of proteomics in this eld is still
largely untapped, since previous studies employed probes
exclusively containing symmetric CpG states. Besides the higher
number of theoretically existing asymmetric dyad states
(Fig. 2c), symmetric states may also be underrepresented (e.g.,
in mESC, only ∼2% of hmC is symmetric, whereas 98% resides
in hmC/C and hmC/mC dyads; Fig. 3c27–29). A recent study re-
ported proteomics screens with DNA promoter probes con-
taining the symmetric and asymmetric CpG states C/C, mC/mC,
hmC/hmC, hmC/mC and hmC/C.107 Each probe version attrac-
ted a different set of readers, and a signicant overlap between
hmC/C vs. C/C and hmC/mC vs. mC/mC states hinted at the
importance of the canonical C and mC bases for affinity. TFs
with veried dyad state preferences included RFX5, MYC and
MAX. Interestingly, the two latter proteins showed a preference
for hmC in the form ofMAX2 homo- or MYC/MAX heterodimers,
and a possible hmC–Arg interaction was proposed by a model
(Fig. 6b). Nevertheless, the specic sequence in which this hmC
reading occurs is still unknown (it did not occur in the E-box
itself).107 Moreover, a previous detailed study covering
symmetric and hemi-modied CpG dyad states and the MAX2

homodimer found differential read-out of different dyad states.
Most importantly, caC was recognized within the E-box
sequence with high affinity, and a crystal structure revealed
involvement of the structurally conserved arginine (in addition
to another arginine, Fig. 6b).52

Another caveat of proteomics screens is that pull-down
probes typically cover a short, specic DNA sequence (e.g.,
a promoter fragment), and thus do not contain all possible CpG
contexts that may actually be bound by TFs. An improvement in
this regard is advanced probe designs with a high density of TF
target sequences.106 In addition, a complementary, TF-centric
approach named digital affinity proling via proximity liga-
tion (DAPPL) has been reported which allows for sampling all
possible CpG sequence contexts in a high throughput assay
involving >1000 recombinant human TFs.108 Here, TF-GST
fusion constructs are immobilized on GSH beads, and the
GST is tethered to a dsDNA oligonucleotide. Then, a library of
dsDNAs containing a central N8CGN8 sequence is incubated
with the pooled TF-GST-bead collection, allowing for a ligation
of the two dsDNAs in case of a binding event. Ligation products
contain a TF-specic and a CpG dyad state-specic barcode, and
can be amplied and pool-sequenced.

With this approach, consensus sequences and CpG state
preferences for symmetric and hemi-modied CpGs containing
mC and all oxi-mCs have been established for all involved TFs.
In general, a higher number of readers was identied for hemi-
modied as compared to symmetric CpGs (Fig. 6c), and readers
spanned all major TF subfamilies (Fig. 6d). Interestingly, some
Chem. Sci.
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CpG states could either increase or decrease the affinity of TFs
dependent on the sequence context, with examples being
PKNOX2, ETS1, or MLX. Taken together, these studies illustrate
how specic oxi-mC dyad states can modulate important TF-
DNA interactions (including their sequence preferences),
which may serve as a basis for regulatory functions in vivo. An
extension of proteomics screens to additional sequences and of
the DAPPL approach to other dyad states would enable a more
complete picture of this aspect.

5 Conclusions

Cytosine methylation is an essential regulator of mammalian
chromatin, with important functions in cell differentiation,
development and cancer. Oxi-mCs add another layer of
complexity to this regulation which extends beyond their role as
active demethylation intermediates. Each oxi-mC decorates the
DNA major groove with a sterically unique and polar (in case of
fC even electrophilic) functional group that provides unique
regulatory potential. The functions of oxi-mCs reside on their
inuence on DNA's physicochemical properties, their interac-
tions with chromatin proteins, and their genomic locations. A
wealth of information is now available about these aspects in
general. However, much less is known about the individual
properties of different CpG dyad states, owing to a lack of broad,
comparative studies. The ability to simultaneously sequence
and map C, mC, and hmC CpG states will greatly contribute to
a better understanding of their individual functions. In
contrast, the impact of different CpG states on the stability,
structure, and dynamics of the DNA duplex itself (particularly in
the context of physiologically relevant sequences, such as
densely modied CpG islands) is still poorly understood, and
will require broader studies. First interactomes of individual
CpG states are now available from proteomics and in vitro
selection studies, but these are still far from complete in view of
the sampled dyad states and sequence contexts. Most impor-
tantly, studying the actual physiological relevance of any of the
above ndings remains difficult. Whereas dyad-resolved
sequencing/mapping methods represent a major step towards
meaningful correlation studies, the mixed local occurrence of
multiple CpG states and the comparatively poor resolution of
complementary mapping methods (e.g., ChIP-Seq) complicate
the situation. Moreover, no perturbation methods are available
to selectively induce particular dyad states in vivo. Given that an
increasing number of studies indicate that different oxi-mC
CpG dyad states are not functionally equivalent, and that they
represent unique regulatory information, broader studies
(particularly in vivo) are urgently required to fully unravel their
individual functions in normal and disease states.
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