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Accurate assessment of the effects of mutations on protein—protein interactions (PPls) is crucial for
understanding disease pathogenesis and the development of targeted therapies. Here, we present DSSA-
PPI, a hybrid deep learning framework that enhances the prediction of mutation-induced binding affinity
changes (AAG) by leveraging structural and sequence information through a disentangled attention
mechanism. Building upon the complementary strengths of a geometric equivariant graph neural
language model ESM-2, our framework employs a novel
representation learning strategy that integrates sequence- and structure-specific contributions, thereby
improving the precision of PPl AAG predictions. DSSA-PPI demonstrates robust performance across

network PPIFormer and a protein

diverse mutational contexts on the standard protein binding affinity SKEMPI v2 dataset and outperforms
existing methods on multiple benchmarks under identical cross-validation. In a case study of the SARS-
CoV-2 receptor-binding motif (RBM) interaction with angiotensin-converting enzyme 2 (ACE2), our
model accurately identifies top-ranking mutations that enhance binding affinity. Additionally, it guided
the optimization of a peptide inhibitor, improving its inhibitory activity against activated factor Xl (FXla) by
over 40-fold. These results highlight DSSA-PPI as a versatile and reliable tool for predicting mutation-

rsc.li/chemical-science induced perturbations in PPlIs.

1 Introduction

Protein-protein interactions (PPIs) govern a wide range of bio-
logical processes, including signal transduction,"” immune
responses,> and metabolic regulation.>® Mutations that
disrupt or modulate these interactions can lead to dysregulated
cellular functions and are implicated in numerous diseases,
including cancer,”® autoimmune disorders,»'* and neurode-
generative diseases.'"'> Understanding how amino acid substi-
tutions influence PPIs is critical for elucidating disease
mechanisms and developing targeted therapeutic strategies. In
protein engineering—particularly in antibody design and
binder development—optimizing PPIs often requires exploring
vast mutational landscapes, where combinatorial mutations
can generate thousands to millions of potential variants. While
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high-throughput experimental techniques like deep mutational
scanning (DMS) enable the large-scale profiling of PPIs," these
methods remain resource-intensive and impractical for
exhaustively assessing expansive mutational spaces. Conse-
quently, there is an urgent need for accurate and scalable
computational approaches to predict the effects of mutations
on binding affinity.

Over the years, numerous computational methods have been
developed to predict changes in protein-protein binding
affinity upon mutations.”**® Traditional physics-based
approaches, such as FoldX,* Flex ddG," meta-dynamics,'® and
molecular mechanics/generalized born surface area (MM/
GBSA),"” rely on rigorous free-energy calculations but suffer
from high computational costs due to extensive conformational
sampling requirements. In contrast, machine learning (ML)-
based methods offer a more efficient, data-driven alternative.
These approaches can be broadly categorized into sequence-
based and structure-based models, depending on their input
features.

Sequence-based models leverage evolutionary information
and physicochemical properties derived from amino acid
sequences to infer binding affinity changes. For instance,
SAAMBE-SEQ employs hand-crafted sequence features,
including position-specific scoring matrices (PSSMs) and
physicochemical descriptors, in conjunction with a gradient-

Chem. Sci.


http://crossmark.crossref.org/dialog/?doi=10.1039/d5sc08898d&domain=pdf&date_stamp=2025-12-29
http://orcid.org/0009-0009-6442-4594
http://orcid.org/0000-0002-5079-350X
http://orcid.org/0000-0002-8220-049X
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc08898d
https://pubs.rsc.org/en/journals/journal/SC

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 3:47:02 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

boosted tree (GBT) predictor.”® Similarly, ISLAND integrates
sequence-based features with kernel-based similarity measures
to enhance prediction accuracy.' However, these methods fail
to account for the structural context essential for accurately
modeling binding interactions.

Structure-based models, by contrast, utilize geometric
representations of protein complexes to encode topological and
spatial features, often achieving superior predictive perfor-
mance. These models can be broadly divided into two cate-
gories: featurization-based methods and end-to-end methods.
Featurization-based methods rely on hand-crafted or algorith-
mically derived features to encode the structural and physico-
chemical properties of protein. A prominent line of work in this
category leverages algebraic topology to simplify complex 3D
structures while preserving essential biological features, has
shown promising potential in the field of mutational effect on
protein binding affinity changes prediction. For example, Top-
NetTree employs element- and site-specific persistent homology
to extract topological invariants from protein-protein
complexes, effectively capturing their structural complexity for
mutation effect prediction.”® Among the most advanced models
in this category, MT-TopLap integrates persistent Laplacian
features with physicochemical descriptors and transformer-
based protein language model embeddings, achieving supe-
rior performance in predicting binding affinity changes.”* In
contrast, end-to-end methods directly learn structural repre-
sentations from raw input without manual feature engineering.
GeoPPI, for example, employs a graph attention network to
learn structural representations through a self-supervised side-
chain reconstruction task, followed by a GBT predictor to esti-
mate mutational effects.” MpbPPI extends this paradigm with
an equivariant graph neural network (GNN) and multi-task pre-
training to further enhance structure-aware learning.*
However, both models rely on GBT predictors, which do not
explicitly model the physical mechanisms underlying PPI
perturbations. Recent advances in geometric deep learning
have led to frameworks such as MuToN, which employs
a geometric transformer to capture local structural perturba-
tions and receptor-ligand interactions.** Despite their promise,
these methods remain constrained by their dependence on
high-quality structural inputs for mutant complexes. While
tools like AlphaFold*® and RoseTTAFold*® can predict mutant
structures, their computational cost becomes prohibitive when
applied to large mutational libraries.?”*®* Moreover, selecting the
most plausible conformations from multiple predicted struc-
tures introduces additional challenges.

To address these limitations, PPIFormer adopts a pre-
training strategy inspired by masked language modeling,
reconstructing masked structural elements to predict binding
affinity changes without requiring explicit mutant structures.>
By computing the log-odds of probability differences between
wild-type and mutant residues, PPIFormer enables predictions
based solely on a single input structure. Nevertheless, existing
approaches—whether sequence- or structure-based—have yet
to fully exploit the complementary strengths of both modalities.
For example, ProAffiMuSeq iteratively combines sequence and
structural descriptors but lacks a mechanism to model their
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interdependencies;** while ProBASS concatenates embeddings
from ESM-2 and ESM-IF1 without explicitly capturing their
interplay.**

Here, we present DSSA-PPI, a hybrid deep learning frame-
work that integrates sequence and structural information via
a cross-attention mechanism to predict mutation-induced
changes in protein-protein binding affinity. Building upon
PPIFormer, our model retains its advantage of bypassing
explicit mutant structures while enhancing predictive accuracy
through the incorporation of ESM-2-derived sequence repre-
sentations. DSSA-PPI demonstrates robust performance across
diverse mutational contexts in the SKEMPI v2 dataset and
outperforms existing methods on standard benchmarks. Strat-
ified analyses further demonstrate its reliability across muta-
tions of different physicochemical types. We further validate its
utility through a case study on SARS-CoV-2 spike protein vari-
ants binding to angiotensin-converting enzyme 2 (ACE2), where
DSSA-PPI accurately identifies affinity-enhancing mutations
and captures key mutational signatures of variants of concern
(VOCs). Furthermore, DSSA-PPI successfully guides the engi-
neering of a cyclic peptide inhibitor's binding affinity to acti-
vated factor XI (FXIa), validating its practical application.
Collectively, these results establish DSSA-PPI as a powerful and
versatile tool for predicting mutation-induced perturbations in
PPIs.

2 Results and discussion
2.1 Overview of DSSA-PPI

The global framework of DSSA-PPI is illustrated in Fig. 1A, with
detailed architectural components presented in Fig. S1. It
comprises three primary modules: a structure encoder,
a sequence encoder, and a transformer-based fusion block
equipped with disentangled attention mechanisms for both
structural and sequence information.

2.1.1 Structure and sequence encoders. The structure
encoder adopts the PPIFormer framework. Which encodes
protein complex structures using a coarse-grained residue-level
graph centered on the binding interface (Fig. 1B). Each node
represents a residue via its Co atom, with node features cate-
gorized into scalar and vectorial states. Scalar features include
amino acid identity and binding partner annotations, while
vectorial features are derived from geometric calculations using
ideal bond angles and lengths. An advanced SE(3)-equivariant
graph transformer (Equiformer®?) encodes these features
(Fig. S1A), leveraging attention mechanisms to process both
scalar and vectorial data while preserving rotational and
translational equivariance. For sequence encoding, we utilize
ESM-2, followed by a three-layer feedforward neural network as
the predictor. ESM-2 is a state-of-the-art protein language model
pre-trained vie masked language modeling. It generates
contextually rich embeddings that capture evolutionary and
functional constraints, enhancing the ability of the model to
generalize across diverse protein interactions.

2.1.2 Disentangled attention-based fusion module. To
effectively integrate structural and sequence information, DSSA-
PPI introduces a multi-head disentangled cross-attention

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 An illustrative workflow of DSSA-PPI for predicting mutation effects. (A) For a given protein complex. DSSA-PPI encodes structure and
sequence information to generate logits for each residue, which are used to calculate protein binding affinity change upon mutations. (B) The
protein complex interface was encoded with a geometric message passing mechanism. (C) The vector representations of structural and
sequence information are integrated using a disentangled multi-head cross-attention mechanism.

mechanism (Fig. 1C and S1C). Unlike standard self-attention,
this module decomposes attention weights into five compo-
nents. It captures contributions from structure, sequence, and
binding partner sequence to model cross-modality and inter-
chain interactions explicitly. The multi-head disentangled
attention block fuses structural representations from the SE(3)-
equivariant graph transformer with sequence representations
derived from ESM-2 (see Methods). By explicitly capturing the
interplay between 3D geometry and sequence context, this
approach yields a more comprehensive representation of
protein complexes, improving predictive accuracy.

2.1.3 Pre-training and fine-tuning strategy. To ensure
robust learning of PPI structural principles, we pre-trained
DSSA-PPI on a large, diverse dataset of 3D protein-protein
interfaces using a masked structure modeling (MSM) objective.
This task, analogous to masked language modeling in natural
language processing, enables the model to infer geometric and
sequential features by reconstructing masked structural
elements. The pre-trained model thus learns transferable
representations of protein interfaces, enhancing its general-
ization capability. During fine-tuning, we compute the log-odds
of logit outputs between wild-type and mutant residues to
predict AAG values. This formulation guarantees antisymmetric
predictions (ie., AAG(wt — mut) = —AAG(mut — wt)),
ensuring thermodynamic consistency in changes to binding
affinity.

2.2 Performance for protein binding affinity prediction

We conducted a comprehensive evaluation of the predictive
performance of DSSA-PPI using the SKEMPI v2 benchmark

© 2026 The Author(s). Published by the Royal Society of Chemistry

dataset, which contains 7085 experimentally measured muta-
tion effects (including both single and multiple amino acid
substitutions) across 345 distinct protein-protein interactions.
Following established conventions, we employed a leave-one-
complex-out (LOCO) cross-validation and a 10-fold cross-
validation strategy, utilizing two distinct splitting methodolo-
gies: mutation-level splitting and complex-level splitting.
Multiple evaluation metrics were employed to comprehensively
evaluate model performance, with Pearson's correlation coeffi-
cient (PCC) serving as the primary evaluation criterion.

Under the LOCO split, we limited training to 3 epochs per fold
due to the high computational cost of end-to-end training across
multiple folds. Despite this constraint, DSSA-PPI maintained
competitive performance relative to existing methods (Table S1).
For mutation-level splitting, our model achieved an overall PCC
of 0.77, a Spearman’s correlation of 0.73, and a root-mean-square
error (RMSE) of 1.52 for AAG prediction (Fig. 2A). For binary
classification of binding affinity changes, the model recorded an
area under the receiver operating characteristic curve (AUROC) of
0.85 (Fig. 2B). Notably, the model exhibited consistent perfor-
mance across folds in mutation-level cross-validation. In
contrast, larger variability was observed in complex-level evalua-
tion, suggesting that mutation-level splitting may overestimate
performance due to potential information leakage among
mutations within the same complex (Table S2).

We further evaluated the predictive performance of DSSA-
PPI across varying mutational distances. While the model
demonstrated consistent and robust performance on mutation-
level splitting, its performance declined on the more chal-
lenging complex-level splitting, which involves testing on
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Fig.2 DSSA-PPI predicts binding affinity changes of PPls upon mutations. (A—C and E) Two distinct dataset splitting strategies were employed to
evaluate the performance of DSSA-PPI: mutation-level splitting and complex-level splitting. (A) Regression plots comparing predicted and
experimental binding affinity changes (AAG) for all mutations in the SKEMPI v2.0 dataset. (B) AUROC for binary classification of binding affinity
changes, distinguishing between increases and decreases in SKEMPI v2.0. (C) Prediction performance across different mutation distances, with
Pearson Correlation Coefficient (PCC) and standard deviations reported from tenfold cross-validation. (D) A schematic illustration of the
structural regions of proteins, highlighting core (COR), support (SUP), rim (RIM), surface (SUR), and interior (INT) regions. (E) Prediction results
across different mutation locations, with PCC and standard deviations obtained from tenfold cross-validation for both splitting strategies.

unseen protein complex structures (Fig. 2C). Specifically, the
model exhibited reduced accuracy at higher mutational
distances (mutational distance > 3). Such cases often involve
extensive or highly disruptive alterations that may induce
complex changes in protein-protein interactions, including
significant conformational rearrangements. These dynamic
structural perturbations present a fundamental challenge, as
the current model implicitly assumes moderate local shifts
upon mutation and does not explicitly model large-scale
conformational changes. The impact of protein dynamics is
a well-recognized limitation in this field.***** Future extensions
incorporating global dynamic features, such as those captured
by the Gaussian Network Model (GNM)*® and the Anisotropic
Network Model (ANM),* may help improve predictive perfor-
mance in these challenging scenarios. With the rapid
advancement of deep learning frameworks capable of modeling

Chem. Sci.

conformational 38-40

protein ensembles, fully integrating
dynamic information into AAG prediction is expected to
become increasingly feasible.

Finally, we investigated the predictive ability of DSSA-PPI
across different structural regions of protein complexes. Using
the SKEMPI v2 annotations, the dataset was categorized into
core (COR), support (SUP), rim (RIM), surface (SUR), and inte-
rior (INT) regions based on mutation locations (Fig. 2D).
Notably, despite being trained exclusively on binding interface
residues, DSSA-PPI maintained consistent predictive accuracy
across all structural areas (Fig. 2E).

2.3 Ablation analysis of model components

To elucidate the contributions of key components in our model
architecture, we conducted a series of ablation experiments.

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc08898d

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 3:47:02 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Table 1 Ablation experiment on key components of DSSA-PPI and
different disentangled terms. Results are reported on mutation-level
split of the SKEMPI v2.0 dataset

PCC 1 Spearman 1 RMSE | AUROC 1
DSSA-PPI 0.77 0.73 1.52 0.85
- wj/o seq. enc. 0.74 0.68 1.72 0.80
- w/o cross-attn. 0.72 0.65 1.80 0.77
- w/o R2R* 0.75 0.70 1.65 0.80
- w/o R2S 0.76 0.71 1.59 0.83
- /0 R2Spartner 0.77 0.71 1.54 0.84
- w/o S2R 0.76 0.71 1.53 0.83
- W/0 Sparter2R 0.76 0.70 1.53 0.85

“ The term “- w/o R2R” denotes the removal of structure-to-structure
attention term, similar to other terms.

Specifically, we examined the effects of (i) removing the
sequence encoder and (ii) replacing the disentangled attention
fusion module with a simple concatenation operation. As pre-
sented in Table 1, both modifications resulted in notable
performance degradation, underscoring the importance of
these components. These results indicate that: (i) evolutionary
context captured by the sequence encoder is essential for
accurate prediction of binding affinity changes, and (ii) the di-
sentangled attention mechanism facilitates a more effective
integration of structural and sequence-based features than
naive concatenation.

To further assess the contributions of individual attention
terms in the disentangled attention module, we performed
ablations by removing one term at a time: including structure-
to-structure (R2R), structure-to-sequence (R2S), structure-to-
partner sequence (R2Sparmer), Sequence-to-structure (S2R),
partner sequence-to-structure (Sparmer2R). These ablation
results reveal that all five terms are necessary to achieve the best
overall performance. Notably, the removal of R2R and R2S
results in drops in overall performance, with the PCC
decreasing from 0.77 to 0.75 and 0.76, respectively. This
underscored the important role of structure information and
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structural representation to attend to its own sequence context.
Removing of Sparner2R have least impact, suggesting that
binding partner sequence attention to structure is relatively less
critical than other items.

Collectively, these findings validate our architectural design
and emphasize the critical role of synergistically combining
structural and sequence information, as well as the necessity of
each individual attention term, for robust and accurate
prediction of binding affinity changes.

2.4 Benchmarking against existing methods under identical
complex-level cross-validation

To establish the predictive capabilities of DSSA-PPI, we con-
ducted comprehensive benchmarking against the very recent
approaches using three widely adopted datasets: S1131, S4169,
and M1707. As a baseline comparison, we first performed
random 10-fold mutation-level cross-validation. As shown in
Table S3, all machine learning-based methods, including DSSA-
PPI, exhibited strong performance across benchmarks under
this setting.

However, recent studies have raised significant concerns
that random mutation-level splits can lead to overly optimistic
performance estimates,*"** particularly when mutations from
the same protein complex appear in both training and test sets.
Consistent with these observations, we also found that perfor-
mance metrics under mutation-level splitting were substantially
higher than those obtained under complex-level cross-
validation (Fig. 2A, B and Table S2).

To address this, we adopted a more rigorous evaluation
protocol based on complex-level splitting, following the
protocol of MpbPPI, which ensures that mutations from the
same protein complex do not appear across different folds. We
adopted predefined five-fold complex-level cross-validation
splits for S1131 and S4169 from MpbPPI. For M1707, which
lacks predefined partitions, we created analogous complex-level
splits based on PDB identifiers to ensure methodological
consistency. To ensure robust performance estimation, we
repeated five-fold cross-validation five times using independent

Table 2 Comparison of model performance on the benchmark datasets S1131, S4169 and M1707 under identical 5-fold complex-level cross-

validation

S1131 $4169 M1707
Method PCC 1 AUROC 1 PCC 1 AUROC 1 PCC 1 AUROC 1
DSSA-PPI 0.71 + 0.01% 0.77 + 0.02 0.58 + 0.01 0.70 + 0.02 0.42 + 0.02 0.72 + 0.02
PPIFormer 0.68 + 0.01¢ 0.72 + 0.02¢ 0.54 + 0.01¢ 0.60 + 0.01¢ 0.31 + 0.03¢ 0.61 + 0.02¢
ESM-2-FFN¢ 0.65 + 0.02¢ 0.72 + 0.02¢ 0.45 + 0.02¢ 0.62 + 0.02¢ 0.25 + 0.05 0.63 + 0.02¢
MT-TopLap 0.62 + 0.03¢ 0.74 + 0.01¢ 0.50 + 0.03¢ 0.64 + 0.01¢ — —
MuToN 0.70 + 0.01 0.74 + 0.01 0.57 + 0.01 0.64 + 0.01¢ — —
MpbPPI 0.48 + 0.047 0.75 + 0.02¢ 0.43 + 0.03¢ 0.67 + 0.01¢ 0.34 + 0.02¢ 0.64 + 0.02¢
ProBASS 0.65 + 0.01¢ 0.80 + 0.01 0.51 + 0.01¢ 0.68 + 0.03 0.20 + 0.04¢ 0.59 + 0.02¢
SAAMBE-SEQ 0.49 + 0.01¢ 0.70 £ 0.02¢ 0.29 + 0.01¢ 0.59 + 0.01¢ — —
FoldX 0.44 0.70 0.30 0.62 0.30 0.59

“ Data are represented as mean + SD (n = 5). ? Bold values indicate the best results. The dash sign indicates the results of the corresponding
methods are not available. © ESM-2-FFN refers to the ESM-2 model followed by a three-layer feed-forward network, which shares the same
architecture as the sequence encoder used in DSSA-PPI. ¢ Indicates statistically significant difference compared to DSSA-PPI (p < 0.05),

determined by a one-tailed unpaired t-test.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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random seeds for each dataset. The same data splits were
applied consistently across all baseline methods to ensure fair
comparisons.

Across all benchmarks, DSSA-PPI generally outperformed
baseline models on both regression (PCC, RMSE) and classifi-
cation (AUROC) tasks (Tables 2 and S4). On the S1131 dataset,
which consists of non-redundant single-point mutations local-
ized at protein-protein interfaces. DSSA-PPI achieved a PCC of
0.71 and an AUROC of 0.77. This performance exceeded that of
PPIFormer (0.68/ 0.72), MT-TopLap (0.62/0.72), ESM-2 with
a three-layer feedforward network regressor (ESM-2-FFN) (0.65/
0.74), ProBASS (0.65/0.80), and SAAMBE-SEQ (0.49/0.70). On the
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S4169 dataset, which includes a more diverse mutation land-
scape, DSSA-PPI maintained strong performance with a PCC of
0.58 and AUROC of 0.70. For the challenging M1707 dataset—
characterized by up to nine mutations across multiple chains
within a single complex—DSSA-PPI achieved a PCC of 0.42 and
AUROC of 0.72.

Compared with physics-based approaches, DSSA-PPI also
showed superior performance across S1131, S4169, and M1707
(Table S5). Under current benchmarking protocols, structure-
based methods, including physics-based tools, are typically
evaluated on single static structures because generating
conformational ensembles through molecular dynamics is
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Fig. 3 Stratified performance analysis and case studies on mutation prediction. (A) PCC and (B) AUROC scores for DSSA-PPI predictions,
stratified by the chemical class of wild-type and mutant amino acids: charged, polar, hydrophobic, and special cases. Each cell indicates the
number of mutation samples in the corresponding category. (C and D) Representative failure cases with significant absolute prediction errors.
Involving (C) a complex multichain interaction network and (D) extreme physicochemical shifts. Hydrogen bonds and rt—m stacking interactions

are depicted as yellow and black dashed lines, respectively.
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computationally demanding. This practice does not reflect the
full capabilities of physics-based methods, which generally
achieve higher accuracy when conformational sampling is
incorporated.””** In contrast, ML-based models have been
shown to exhibit greater robustness to structural variability, as
reported in several studies.**** A systematic benchmarking
framework that evaluates both physics-based and machine
learning based methods using dynamically sampled confor-
mations would provide a more balanced and rigorous
comparison. Although such an assessment is beyond the scope
of the present study, it represents an important direction for
future work.

Beyond numerical performance, we conducted an in-depth
architectural analysis to elucidate the sources of the predictive
advantage of DSSA-PPI. We benchmarked it against five repre-
sentative ML-based baseline models: PPIFormer (structure-
based), ESM-2-FFN (sequence-based), ProBASS (structure—
sequence hybrid), MT-TopLap (topology-based hybrid), and
SAAMBE-SEQ (biophysics-informed), as summarized in Table
S6.

Our comparative analysis revealed several key insights. First,
end-to-end deep learning models generally outperformed
methods based on handcrafted features, such as SAAMBE-SEQ,
across all datasets. Interestingly, PPIFormer outperformed
ESM-2-FFN in regression tasks, while ESM-2-FFN generally
showed superior performance in classification (Table 2). This
divergence may suggest that structural and sequence repre-
sentations encode distinct but complementary aspects of
protein binding. ProBASS attempts to leverage this by fusing

B Experimental binding
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multimodal embeddings from ESM-IF and ESM-2 via simple
feature concatenation. While this yielded modest improve-
ments over ESM-2-FFN on S4169 datasets (PCC of 0.51 vs. 0.45),
it failed to generalize well to more complex cases such as
M1707, where performance decreased compared to the ESM-2
backbone (PCC: 0.20 for ProBASS vs. 0.25 for ESM-2-FFN). A
similar pattern was observed with MT-TopLap, which combines
ESM-2 embeddings with handcrafted topological features.
Despite this multimodal feature fusion, MT-TopLap did not
outperform ESM-2-FFN, indicating that naive feature concate-
nation may not be sufficient to capture the complex interplay
between structure and sequence representations.

By contrast, DSSA-PPI builds upon PPIFormer and ESM-2,
but employs a disentangled structure-sequence attention
module specifically designed to model inter-modal interactions.
This architecture consistently outperforms both backbone
models across benchmark datasets. To further assess the
generality of the disentangled attention design, we evaluated
DSSA-PPI-PF, a variant where the structure encoder is initialized
with PPIFormer pre-trained weights and the pretraining is
omitted. Despite lacking co-adaptive structure-sequence pre-
training, DSSA-PPI-PF still outperformed PPIFormer and ach-
ieved performance comparable to the fully end-to-end DSSA-PPI
model (Table S7). This finding highlights the plug-and-play
robustness and effectiveness of the disentangled attention
module.

In summary, our architectural investigation indicates that
the performance gains of DSSA-PPI stem from the disentangled
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attention mechanism, which facilitates synergistic integration
of structural and sequential representations.

2.5 Stratified performance analysis based on chemical
characteristics mutation types

Having established the overall predictive superiority of DSSA-
PPI on benchmark datasets, we next sought to examine its
predictive performance in a more fine-grained manner. To this
end, we conducted a systematic error analysis stratified by
amino acid chemical properties. This analysis leveraged the
S4169 dataset, which comprises all single-point mutations from
the SKEMPI v2.0 database. Predictive performance was assessed
using PCC and AUROC, averaged over five repetitions of five-
fold cross-validation.

We first categorized mutations based on the chemical char-
acteristics of the substituted residues: charged, polar, hydro-
phobic, and special cases (Gly, Cys, Pro). As shown in Fig. 3A
and B, DSSA-PPI demonstrated consistent performance across
most categories. For regression, all groups achieved a PCC
greater than 0.4, with four categories exceeding 0.8. In the
classification setting, DSSA-PPI also performed reliably, with
AUROC scores above 0.6 across all categories. These results
suggest that DSSA-PPI captures the general physicochemical
behavior of amino acid substitutions, enabling generalization
across diverse mutation types. Due to the severe class imbalance
in the S4169 dataset, we did not perform further breakdown
analysis at the level of individual wild-type to mutant amino
acid pairs (Fig. S2).

To further investigate specific failure modes, we manually
inspected the top 10 mutations with the largest absolute
prediction errors (|AAGgyp — AAGpred|). These outlier mutations
often involved wild-type residues participating in intricate
multichain interactions or exhibiting extreme physicochemical
shifts. For instance, in PDB complex 2NZ9 (Fig. 3C), the wild-
type H1064" participates in hydrogen bonding with D102”
and G95°, and engages in m-w stacking with F36°. Upon
mutation to alanine, DSSA-PPI correctly predicted a decrease in
binding affinity but substantially underestimated the magni-
tude of AAG, likely due to the disruption of multichain coop-
erative interactions that are difficult to model and may not be
fully captured by the coarse-grained, residue-level representa-
tions employed in DSSA-PPI. Another failure case involves
a drastic substitution from tryptophan to arginine in 1MAH.
The wild-type tryptophan resides in a tightly packed hydro-
phobic pocket at the interface (Fig. 3D). Introducing a charged
arginine residue alters the local electrostatic environment and
induces desolvation penalties. DSSA-PPI failed to fully capture
this physicochemical disruption, underestimating the binding
destabilization.

These findings suggest that while DSSA-PPI demonstrates
strong overall performance, it faces challenges in specific edge
cases involving complex interaction networks. In such cases, the
perturbations introduced by certain substitutions may not be
fully captured by the coarse-grained, residue-level representa-
tions used in DSSA-PPI. Future improvements could include
incorporating explicit side-chain modeling or surface-based
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physicochemical representations to better characterize the
local interaction environment and enhance prediction accuracy
in structurally intricate contexts.

2.6 Evaluation on SARS-CoV-2 RBM mutations affecting
ACE2 binding

To further demonstrate the predictive power of our model, we
evaluated its performance on the fitness of binding affinity
changes induced by mutations in the receptor binding motif
(RBM) of the receptor binding domain (RBD) of the SARS-CoV-2
spike protein, which directly interacts with the human ACE2
receptor (Fig. 4A). We employed an ensemble model trained via
10-fold cross-validation on SKEMPI v2, with predictions aver-
aged for robustness. All comparative models were evaluated
under identical conditions to ensure fair benchmarking. As the
MT-TopLap was pretrained directly on the SARS-CoV-2 RBD/
ACE2 deep mutational scanning (DMS) dataset,>** it was
excluded from this case study to maintain an unbiased
comparison.

We conducted saturation single-point mutational analysis
on approximately 1700 RBM mutations, with predictions
completed within seconds for DSSA-PPI, demonstrating high
computational efficiency. Compared to DMS experimental
data,* DSSA-PPI consistently outperformed all baseline
methods across multiple evaluation metrics (Tables 3 and S8).
Notably, DSSA-PPI predictions captured the overall mutational
impact patterns observed in DMS data at both the site level
(Fig. 4B) and the mutation level (Fig. S3). Additionally, we
employed a hit-rate metric to assess the ability of models to
prioritize top-ranking mutations. Among the top 10 high-
affinity mutations identified by DMS experiments, DSSA-PPI

Table 3 Performance comparison of DSSA-PPI and baseline methods
on RBM of SARS-CoV-2 interacting with ACE2

Method Spearman 1 Top10Hit@1% 1  ToplOHit@5% 1
DSSA-PPI 0.31 40% 60%
PPIFormer 0.19 0% 20%
ESM-2-FFN —0.04 0% 20%
MuToN —0.01 0% 10%
MpbPPI 0.08 0% 0%
ProBASS —0.01 0% 0%
SAAMBE-SEQ —0.20 0% 0%
FoldX —0.65 0% 0%

Table 4 Comparison of experimental and DSSA-PPI-predicted rank-
ings and fitness scores for key RBM mutations in SARS-CoV-2 VOCs

Mutation N501Y E484K T478K K417N L452R Q493R
Exp. Rank (%) 0.24% 4.88% 22.03% 52.23% 4.11% 29.61%
Pred. Rank (%) 0.06% 70.56% 13.69% 52.35% 12.93%  2.29%
Exp. Score 1.07 0.09 —-0.13 —0.89 0.13 —0.28
Pred. Score 1.85 —1.24 0.13 —0.72 0.16 0.74

¢ Experimental rankings (%) represent the percentile of each mutation's
binding fitness relative to all ~1700 single-point RBM mutations in the
DMS dataset. A lower percentile indicates higher binding affinity.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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successfully identified 4 within the top 1% (18 mutations) and 6
within the top 5% (86 mutations) of its predictions. In
comparison, PPIFormer, ESM-2-FFN, and MuToN identified 2,
2, and 1 mutation(s) within the top 5%, respectively. MpbPPI,
ProBASS, SAAMBE-SEQ, and FoldX failed to rank any of these
mutations within the thresholds.

Further, we investigated hot-spot mutations in the RBM
region that are associated with early SARS-CoV-2 variants of
concern (VOCs), including N501Y, E484K, T478K, K417N,
L452R, and Q493R. We compared the ranking and predicted
binding fitness scores from DSSA-PPI with experimental data
from DMS relative to the wild-type spike protein (Table 4). In
general, DSSA-PPI ranked these hot-spot mutations in a manner
consistent with experimental data, except for E484K. Interest-
ingly, while DMS reported T478K and Q493R as mildly desta-
bilizing mutations, DSSA-PPI predicted both to be stabilizing,
aligning with their known roles in enhancing ACE2 binding in
the Delta and Omicron variants.*** These discrepancies
suggest that DSSA-PPI may capture co-evolutionary and
contextual information beyond the wild-type sequence, poten-
tially enabling the identification of future adaptive mutations.
Additionally, DSSA-PPI ranked N501Y as a top affinity-
enhancing mutation, consistent with its well-established role
in strengthening ACE2 binding. To probe the model's under-
lying reasoning, we visualized the attention scores associated
with residue N501. The attention map revealed that N501
predominantly attends to Q498 and T500 within the RBD, as

A
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well as Y42 and K353 on ACE2 (Fig. 4C). Notably, the inter-chain
attention patterns align with structural evidence: N501Y forms
a - stacking interaction with Y42 and a cation- interaction
with K353 (Fig. 4D), both of which are known to enhance ACE2
binding. These results underscore the efficiency and predictive
accuracy of DSSA-PPI, and suggest its ability to identify muta-
tions of high biological relevance.

2.7 DSSA-PPI-guided reengineering of a peptide inhibitor
against activated factor XI (FXIa)

Given the superior performance of DSSA-PPI in predicting and
ranking mutation-induced changes in binding affinity, we next
sought to assess its applicability in the design of peptide
inhibitors of serine proteases. As a model system, we re-
engineered a cyclic peptide inhibitor of murine urokinase-type
plasminogen activator (muPA), mupain-1 (CPAYSRYLDC), to
improve its affinity toward FXIa (Fig. 5A), an emerging target for
low-hemorrhagic antithrombotic therapy.*®** Mupain-1 was
originally identified through phage display as a selective
inhibitor of muPA,* but has negligible inhibitory activity
against FXIa (K; > 1000 uM),”* making it an ideal starting point
for DSSA-PPI-guided optimization.

To adapt DSSA-PPI for peptide-protease interactions, we fine-
tuned the model on the SKEMPI v2.0 dataset, which comprises
experimentally validated protein-peptide interaction data. Binding
affinity measurements of mupain-1 variants targeting plasma
kallikrein (PK)*—a serine protease homologous to FXIa—were

mupain-1-16 -

B

FXI-1-16 1

25601350

=
11714

FXI-2-161 163.5+2.2

0 50

100 1502500 3000
K (nM)

Fig. 5 Reengineering of mupain-1 against FXla guided by DSSA-PPI. (A) Structural model of the FXla—mupain-1 complex. (B) Preferred amino
acid frequencies at each position among the top 50 DSSA-PPI-predicted variants, highlighting mutation hotspots at Y7 and D9. (C) Binding
affinities (K;, nM) of the peptides toward human FXla are shown as mean + SD (n = 3). Data for mupain-1-16 are from Xu et al.**
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used as an independent validation set to select the refined model
exhibiting the highest Spearman correlation. The optimized DSSA-
PPI was subsequently employed to predict and prioritize muta-
tions that could enhance mupain-1 binding to FXIa.

A systematic single-point mutation scan revealed that
hydrophobic substitutions at D9 were most likely to improve
FXla affinity (Fig. S4). However, given the intrinsically weak
binding of the parental peptide (K; > 1000 uM), we reasoned that
single-site substitutions might not achieve sufficient enhance-
ment. We therefore performed an exhaustive two-site combi-
natorial mutation scan, in which all possible double mutants
were generated and ranked according to their predicted AAG
values. Analysis of the top 50 predicted variants (Fig. 5B)
revealed that the cyclic architecture was strictly conserved, with
cysteine residues at positions 1 and 10 retained, consistent with
their established critical role in maintaining peptide binding
affinity.’® Hydrophobic substitutions at D9 were strongly
favored, consistent with the single-point scan, while substitu-
tions of Y7 with alanine occurred at relatively high frequency.
Guided by these predictions, two candidate peptides were
designed: CPAYSRALFC (FXI-1) and CPAYSRALWC (FXI-2). To
further enhance FXIa binding, the arginine residue at position 6
was replaced with a non-natural analogue (i-3-(N-amidino-4-
piperidyl)alanine), previously shown to non-specifically
improve affinity towards multiple serine proteases.’>** Experi-
mental validation confirmed that both designed peptides
exhibited markedly enhanced FXIa binding affinity, with K;
values of 117 & 4 nM for FXI-1-16 and 63.5 + 2.2 nM for FXI-2-16
(Fig. 5C and S5), compared with 2560 & 350 nM for the parental
mupain-1-16.°* These engineered peptides therefore provide
promising starting points for further optimization toward
potent FXIa inhibitors for anticoagulant development.

Collectively, these results demonstrate the practical utility
and transferability of DSSA-PPI in guiding peptide optimization
and protein engineering, enabling rapid identification of high-
affinity variants.

3 Conclusions

In this study, we introduced DSSA-PPI, a deep learning frame-
work for predicting changes in protein-protein binding affinity
induced by amino acid mutations. DSSA-PPI overcomes the
limitations of structure-based models, which require precise
mutant structures, by achieving superior or competitive perfor-
mance using only a single wild-type structure. Through the
synergistic integration of structural and sequence information,
our model demonstrated strong predictive accuracy across
diverse benchmark datasets and outperformed existing
approaches in affinity prediction. Stratified analyses further
demonstrated its reliability across mutations of different physi-
cochemical types. The practical utility of DSSA-PPI was shown in
two case studies. First, the model accurately identified high-
affinity mutations in the SARS-CoV-2 RBM interacting with
ACE2. Second, it successfully guided the reengineering of
a peptide inhibitor targeting FXIa. These results highlight its
potential for real-world protein engineering applications.
However, like other current approaches, DSSA-PPI exhibits
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reduced predictive accuracy for highly disruptive mutations (i.e.,
mutational distance > 3) that may induce large-scale conforma-
tional changes. This limitation underscores the need for future
work to incorporate structural dynamics for improved prediction.
In summary, DSSA-PPI provides an efficient tool for protein-
protein interaction engineering, offering valuable insights for
rational protein design and therapeutic development.

4 Methods
4.1 Overview of DSSA-PPI architecture

DSSA-PPI is composed of three main components: (i) structure
encoder, (ii) sequence encoder, and (iii) disentangled attention-
based fusion module. The framework is initially pre-trained on
the PPIRef50K dataset, followed by fine-tuning for downstream
protein—protein binding affinity prediction to evaluate its
performance.

4.2 Constructing attributed graph for interface

We first used PDBFixer v1.8 for each protein-protein complex to
model the residue geometry coordinates if they are missing in
PDB structures. Then, we represented the protein complexes as
an attributed graph for their interface at the residue level.
Interface residues are identified based on the Euclidean
distance between their heavy atoms. A residue is considered
part of the interface if the distance to the nearest residue from
the binding partner is within a specific distance cutoff (10 A for
the pre-training dataset and 15 A for SKEMPI v2 datasets). The
attributed graph was defined as G = (V,E), where V is the set of
residues in the protein complex interface (each residue node is
represented by its Co. atom) and E is the set of edges between
them. For each residue node v; € V;_,, where N is the number of
residues, its feature is represented as v; = {x,-,F?,Fil},xie R3 is
the Ca coordinate of the ith residue. F?,F;' are two kinds of
feature: type-0 scalars (3D-invariant) Fe R*, and type-1 vectors
(3D-equivariant) F;'eR'*®, Feature F; contains the one-hot
encoded representations of the interface residue type (dimen-
sion of 20) and a semantic binary value indicating its location in
a binding partner. Feature F;' represents virtual beta-carbon
orientations, calculated using backbone atom positions
(Ca, N, C atoms) based on ideal bond angles and lengths.* To
capture the interactive relationships between residues, we
define E as a {0, 1} matrix, where 1 indicates an edge
between two residue nodes if the Euclidean distance between
them is less than 7 A; otherwise, it is 0.

4.3 Geometric structure encoder

Geometric properties like translational invariance and rotational
equivariance are essential in protein-related representation
learning. To incorporate these inductive biases, we build our
structure encoder on Equiformer,* a transformer-based SE(3)-
equivariant graph attention network. Equiformer enables the
model to learn geometric representations that are equivariant to
3D rotations and translations by operating on features expressed
as irreducible representations of the SE(3) group. These features

© 2026 The Author(s). Published by the Royal Society of Chemistry
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can correspond to different rotation orders: type-0 (scalars), type-
1 (vectors), and higher-order tensors.

In our framework, following the design of PPIFormer,* we
construct our geometric structure encoder using eight stacked
SE(3)-Equiformer blocks (Fig. S1A). Each block performs
message passing over the protein interface graph and updates
type-specific features via an attention mechanism that respects
SE(3) symmetry. The input to each block / is the graph G, with
node coordinates Xe RV*® and connection matrix E, along with
node feature matrices Hye RN*%*(2k+1) of different types k € {0,
1}. The layer-wise update process is defined as follows:

o = AGXE.FoFy) g
/’l()([),hl(/) :f(G(X,E,HO(lfl),Hl(/fl)))a 1=2,..8 (2)

where f denotes a single SE(3)-Equiformer block. After eight
layers of updates, the final type-0 (scalar) output representation
ho® is extracted as the structural representations. The output
dimensionality of the encoded structural features is set to 128.

4.4 Sequence encoder

To model the sequence-level information of protein-protein
complexes, we employ ESM-2, a state-of-the-art pretrained

(a) structure-to-structure  (b) structure-to-sequence

protein language model. ESM-2 is trained on over 250 million
protein sequences using a masked language modeling (MLM)
objective, enabling it to capture rich contextual and evolu-
tionary signals directly from sequence data. For each protein-
protein complex. We extract the amino acid sequences of both
binding partners. These sequences are either retrieved from
the PDB database using the complex's PDB code or directly
parsed from the input PDB structure file. Each sequence of the
protein complex is then encoded into a 1280-dimensional
vector, obtained from the 33rd layer embedding of ESM-2.
These sequence embeddings are then processed by a param-
eter-shared feed-forward network (FFN) comprising three
hidden layers, each with a hidden dimension of 256. The FFN
maps the 1280-dimensional input down to a 128-dimensional
output vector (Fig. S1B). These embeddings are subsequently
fused with the structural representations derived from the
geometric encoder for downstream binding affinity change
prediction.

4.5 Disentangled attention-based fusion module

To fully exploit a given protein complex's structural and
sequence information, we employ a structure-sequence-aware
disentangled multi-head attention mechanism (Fig. S1C). This
approach has been effectively used in several protein language

© 2026 The Author(s). Published by the Royal Society of Chemistry
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models and has benefited from integrated multimodal
information.>*¢ Specifically, let Re R¥*128 denote the structure
representation of a protein complex interface (with N residues),
and let S, S, ner€ R'*1?® be the sequence representation of the
protein and its binding partner, respectively. To model cross-
modality and cross-partner interactions between structure (r)
and sequence (s) and binding partner sequence (sp), we apply
learnable linear projections to compute queries and keys as
follows:

Q" =RW?, K"=RW}, V' =RW}
QS:Squ7 KS:SWsk (3)
O = Spartner Wi, K = Spartner Wsk

where W, WE, WY, Wi, WkeR128%(8<64) These projections
produce 8 attention heads, each with a dimensionality of 64.
The projected tensors are then reshaped into the multi-head
attention format:

r,Kr, VreRNXSXM
Qs s Sp sp ) 1 x8x 64 (4)
QK% 0P, KPeR

The cross-attention score A;e R®*%* for each residue i is
computed as the sum of five directional attention terms:

(d) sequence-to-structure  (e) partner sequence-to-structure

This design enables the structural representation to inte-
grate information not only from itself, but also from both the
intra-protein sequence and the binding partner's sequence,
allowing comprehensive modeling of intra- and inter-protein
interactions across both structural and sequence modalities.
To stabilize training, the combined attention score is normal-
ized by v/5d, where d = 64 is the head dimension. The final
hidden state for residue i is:

A
H® = FFN( LayerNorm (softmax (—l) V )) +R;, (6
(La ) ©)

This updated hidden state is passed through a fully con-
nected layer (size: 128), followed by another softmax layer,
yielding a probability distribution for the 20 amino acid types
for each residue in the protein complex (Fig. 1A).
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