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Expanding the chemical space of ionic liquids using con-
ditional variational autoencoders†

Gaopeng Ren,a Austin Mroz,a,b Frederik Philippi,a Tom Welton,a and Kim E. Jelfsa∗

Ionic liquids (ILs) are salts set apart by their low melting points and can act as highly tuneable
solvents with broad application potential, for example as catalysts, in batteries, and for drug delivery.
The potential chemical space of ILs is vast, with only a very small region having been explored to
date. Machine learning offers a promising approach to advance into this vast space of unexplored ILs;
however, existing IL databases contain limited ion diversity, constraining the performance of genera-
tive models. To address this, we introduce conditional variational autoencoders (CVAEs) and a novel
ion scoring method as a conditioning factor. The ion score prioritises ions with a higher likelihood of
forming low-melting-point ILs. Our CVAEs effectively generate novel and diverse cations and anions.
Furthermore, we constructed a melting point prediction model to identify cation-anion pairs that
are likely to yield ILs with low melting points. Visualisation of the generated ILs alongside existing
ones reveals that our approach effectively expands the chemical space of ILs with novel structures.
Molecular dynamics simulations further validate that 13/15 of the generated ILs possess desirable
low melting points (<373 K). The associated code is available at github.com/fate1997/ILGen-ion.

1 Introduction
Ionic liquids (ILs) are compounds composed of cations and an-
ions. The main difference between ILs and conventional salts
(cation-anion pairs, e.g. sodium chloride) is their low melting
points, typically below 373 K. Due to the complex interactions
between the ions, ILs exhibit a range of unique physicochemi-
cal properties, making them valuable in diverse fields,1 including
separation processes,2–4 chemical reactions,5–7 and energy sys-
tems.8–10 Given their nature as cation-anion combinations, ILs
possess an expansive chemical space of different cations and an-
ions,11 enabling high tunability for specific applications.

Despite the immense potential chemical space of ILs12, the ex-
isting chemical space of experimentally validated ILs remains re-
markably small, on the order of thousands.13 This significant dis-
parity highlights a vast unexplored territory of ILs. Given the
impossibility of experimentally validating such a large number
of compounds, computer-aided molecular discovery offers an al-
ternative method for expanding the existing IL chemical space.14

Traditional approaches, including density functional theory (DFT)
and molecular dynamics (MD), provide valuable insights into
the atomistic behaviour of ILs and their structure-property rela-
tionships. However, these methods are computationally expen-
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sive, limiting their scalability for high-throughput screening.15,16

Thermodynamic models such as PC-SAFT and COSMO-RS17–20

have been widely used for IL property prediction, yet their gener-
alisation to novel and exotic structures remains limited.21

In recent years, machine learning (ML) has emerged as a
promising avenue for virtual screening. ML has been extensively
applied to predict IL properties, including melting point,22 vis-
cosity,23 and CO2 solubility.24 ML models offer rapid and accu-
rate predictions, making them highly suitable for virtual screen-
ing. In the virtual screening process, it is important to construct
a large initial database. One straightforward approach to gener-
ating new ion structures involves manually defining a fragment
library and then combinatorially combining these fragments. Ion
structures can be divided into two parts: the charged compo-
nents, e.g., imidazolium for cations and carboxylate for anions,
and the substituents used to functionalise the charged compo-
nent, e.g., methyl and halogens. While this method can generate
a substantial number of ion structures from pre-defined building
groups,2,10,25,26 the resulting structures are often highly similar
to the original systems, leading to limited expansion of the diver-
sity of IL chemical space. Moreover, many existing melting point
prediction models are trained exclusively on IL datasets, which
are heavily biased toward low melting points, thereby limiting
their effectiveness in screening applications.

Deep generative models are an alternative method to enlarge
and diversify molecular chemical space, and they have been
widely used in drug discovery27 and materials design.28 These
models generate new samples based on training data. Thus, their
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performance heavily depends on the quality and quantity of the
data in the available database. However, IL databases often suf-
fer from data scarcity, impacting both unlabelled and labelled
datasets. This restricts the chemical space of generated ILs and
complicates the development of property-guided generative mod-
els. To alleviate the data scarcity problem, Liu et al.24,29 pro-
posed optimisation-based methods to guide generated examples
towards higher validity and desired properties. However, due to
the limited number of unique cation and anion structures, their
generated examples highly resemble the existing ones. Transfer
learning provides another strategy to mitigate the data scarcity
problem by leveraging knowledge from different but related do-
mains. This typically involves a two-step process: training a large
model on a broad database, then fine-tuning it on a smaller, re-
lated database. Beckner et al. 30 applied transfer learning to ex-
pand the IL chemical space by pre-training variational autoen-
coders (VAEs) on the GDB-17 database (general organic com-
pounds) and then fine-tuning them on an IL database. They
demonstrated that transfer learning is an effective approach to
creating a generative neural network model of scarce datasets.
However, they also found that the majority of the generated ex-
amples are neutral due to the large number of neutral compounds
in the pre-training database (GDB-17). More recently, Chen et
al.31 compiled a large, ion database from PubChem32 and pro-
posed a pre-trained model for IL property prediction. They fur-
ther pre-trained a VAE on this database and then fine-tuned it on
a labelled IL database.33 Their results show that transfer learning
can effectively alleviate the data scarcity problem in IL databases.
However, this work does not take the melting point into consid-
eration, and so the generated examples are not guaranteed to
be low-melting-point ILs. In our previous work34, we applied
a link prediction algorithm to address the data scarcity problem
and considered melting points explicitly. However, this workflow
did not incorporate more ion structures other than the existing IL
ions, which limited its ability to generate structurally diverse and
novel ions.

Here, we aim to expand the chemical space of ILs with a spe-
cific focus on low-melting-point ILs. This requires designing ions
with structures dissimilar to those of existing ILs and identifying
low-melting-point ILs using a general melting point prediction
model. Such an expansion is important not only for computa-
tional discovery but also for experimentalists, as it increases the
likelihood of identifying novel ILs with unconventional structures
and properties, thereby enabling new structure-property analy-
ses and theoretical insights. To achieve this, we first collected
large ion databases from PubChem, yielding approximately 0.9
million cations and 0.4 million anions. These PubChem ions cover
the existing chemical space of IL ions; however, the vast dispar-
ity in quantity between PubChem ions (millions) and IL-specific
ions (thousands) significantly reduces sample efficiency in iden-
tifying high-quality ions that readily form low-melting-point ILs.
To address this and leverage prior knowledge from existing IL
databases, we introduce ion scores. These aim to softly classify
whether an ion is likely derived from general ions or those repre-
sented in existing ILs. We then trained conditional VAEs (CVAEs)
on the general ions using these predicted ion scores as a condi-

tioning factor. After training, we used the ion score as a condi-
tion to generate ions that were likely to form low-melting-point
ILs. Subsequently, we trained a melting point prediction model
on a general melting point database and applied it to identify
low-melting-point cation-anion pairs with less bias on underesti-
mation of melting points. Finally, the chemical space visualisation
confirmed the effectiveness of our workflow, demonstrating that
the generated ILs are clearly distinct from existing ILs. Moreover,
MD simulations validate that 13 out of 15 sampled ILs exhibit low
melting points (< 373 K).

2 Methods

2.1 Data collection
Detailed information as to the origins of the datasets used is given
further below, but here we summarise the key features of the
datasets and provide, in bold text, the short-name that will be
used to refer to them:

• PubChem ion databases: Contains cations and anions ex-
tracted from PubChem.

• Collected IL database: A compilation of ILs gathered from
several sources.

• General melting point database (General MPT): A compre-
hensive dataset of melting points, covering a wide range
of cation-anion pairs from low-melting-point ILs to high-
melting non-IL systems.

• IL melting point database (IL MPT): A melting point
database for ILs, collected by Venkatraman et al. 35 .

These datasets were used to train various ML models aimed at
generating novel, diverse, and valid ILs. All collected data, along
with the full implementation of the methods described in this pa-
per, are available at github.com/fate1997/ILGen-ion.

We collected IL ions and PubChem ions to train the conditional
generation models. To visualise the chemical space of ions from
both PubChem and the IL dataset, we applied the Uniform Man-
ifold Approximation and Projection (UMAP) algorithm36 using
extended-connectivity fingerprints (ECFPs)37 as input features.
Owing to the size of the PubChem ion datasets, a random sample
of 50,000 cations and 50,000 anions was selected for plotting.
As shown in Fig. 1a, the sampled PubChem ions span a broader
chemical space than the ions in the IL dataset, demonstrating
their potential to enrich the diversity of generated ILs. The spe-
cific composition and dataset generation methods and criteria for
the IL dataset and the PubChem ion dataset are described in the
following sections, Section 2.1.1 and 2.1.2, respectively.

2.1.1 IL dataset

In this work, we constructed a comprehensive IL dataset by col-
lecting and combining IL structures from the literature38–44 and
the NIST ILThermo database.13 Duplicate entries were removed,
and molecules were filtered based on the following criteria: (1)
failure to be parsed by RDKit, (2) presence of more than two ions,
and (3) inclusion of uncommon elements. Elements considered
common were H, B, C, N, O, F, P, Cl, Br, I, Li, Na, Al, Si, K, and
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Fe; all others were treated as uncommon and excluded. Focus-
ing on these common elements can help ensure uniformity and
molecular synthesisability within the database. The final dataset
comprises 7,507 unique ILs, including 3,223 distinct cations and
509 distinct anions. It encompasses a broad range of IL families,
such as imidazolium, ammonium, pyrrolidinium, sulfonium, and
others. Common anions in the dataset include tetrafluoroborate
([BF4]

−), chloride (Cl−), and Bis(trifluoromethylsulfonyl)imide
([NTf2]

−), among others. The structures and distributions of
these ion groups can be found in Supplementary Information Sec-
tion S1.

Fig. 1 Data visualisation of ions and melting points. (a) UMAP projec-
tions of ions from PubChem and ILs. (b) Melting point distributions of
the general MPT database (blue) and the IL MPT database (red).

2.1.2 PubChem ions

To generate ILs with diverse ions, a large dataset of cations and
anions was collected from PubChem.45 To ensure a greater like-
lihood that synthetically feasible ions are generated, we set some
initial selection criteria: anions needed to possess a formal charge
greater than -7 and cations a formal charge less than +7; further,
only ions with a molecular weight below 500 Da were included.
This yielded approximately 1.3 million cations and 0.7 million an-
ions. A subsequent filtering step, adapted from the protocol used
for the ZINC dataset,46 was then applied. Specifically, molecules
were removed if they had calculated LogP values greater than 6
or less than -4, more than 6 hydrogen-bond donors, more than 11
hydrogen-bond acceptors, or more than 15 rotatable bonds, in or-
der to exclude overly complex ions. Additional filters eliminated

molecules that (1) could not be parsed by RDKit, (2) contained
uncommon elements, (3) consisted of multiple components, or
(4) contained unpaired electrons. These criteria were designed
to ensure that the resulting ions were chemically reasonable. Af-
ter filtering, the final dataset consisted of 903,585 cations and
401,474 anions.

2.1.3 General MPT database

The melting points of ILs can be difficult to determine accurately
because glass transitions are common and are particularly sensi-
tive to small amounts of impurities47,48. Consequently, the col-
lected IL melting point (MPT) databases have faced data quality
issues35. To address this, we collected melting point data from
diverse sources to improve the robustness of our database and ex-
cluded entries exhibiting large discrepancies among sources. We
compiled a dataset of 5,848 melting point values for cation-anion
pairs, here referred to as the general MPT database. Melting
point data were first collected from diverse chemical databases,
including the Bradley dataset,49 CRC Handbook,50 Wikidata,51

CAS Common Chemistry,52 the NIST WebBook,53 and the Cam-
bridge Structural Database (CSD).54 All databases except CSD
were accessed using the Chemicals Python package.55 As these
databases primarily provide CAS Registry Numbers, we converted
the CAS numbers to Simplified Molecular Input Line Entry Sys-
tem (SMILES) strings and discarded entries with unparseable CAS
numbers. Compounds not comprising exactly one cation and one
anion were also removed. In addition, an IL melting point dataset
(2206 entries) from Venkatraman et al. 35 was incorporated into
the general MPT dataset.

To handle duplicate entries with inconsistent melting points,
we applied a filtering rule: if the melting point values differed
by more than 10 K, all duplicates were excluded; otherwise, the
mean value was used. The melting point distributions for the
general MPT and IL MPT datasets are shown in Fig. 1b. The IL
MPT dataset comprises a greater number of compounds featuring
lower melting points relative to the general MPT dataset, indicat-
ing, as expected, that ILs typically possess lower melting points
than general cation-anion pairs. In this study, we aim to use
the melting point prediction model to identify low-melting-point
ILs from general cation-anion pairs. Therefore, relying solely on
the IL-specific dataset would risk training a model that underesti-
mates melting points. The general MPT dataset, being larger and
more diverse (Figure S3), provides a more suitable foundation for
training a robust predictive model.

2.2 Ion scorer
A straightforward approach to training an ion generation model
would be to collect a broad set of general ions and input them di-
rectly into a generative model. However, this strategy overlooks
valuable prior knowledge embedded in known ILs — specifically,
that certain ions are more likely to form ILs. To fully leverage this
information in the conditional generation model, we developed
separate ion scorers for cations and anions. These scorers are
designed to assign higher scores to compounds resembling ions
found in existing ILs, and lower scores to dissimilar ones. These
ion scores can help guide generative models toward a more IL-
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Fig. 2 Ion generation. (a). Workflow for training the ion scorers. Ions from the PubChem and the IL databases were labelled as 0 and 1, respectively.
RDKit descriptors were computed using the RDKit package and reduced via an L1-penalised logistic regression model. Label smoothing was then
applied to mitigate overfitting, and a final logistic regression model was trained using the selected descriptors. (b). The conditional generation workflow
and model for ion design. Ion scores predicted by the ion scorers were discretised using a threshold of 0.5. These binary labels were concatenated
with both the tokenised input sequences and their corresponding latent representations. The trained GRU decoder, conditioned on label 1, was used
to generate ions with high predicted ion scores. A post-filtering step was subsequently applied to remove structurally invalid or chemically implausible
ions.

like chemical space. The overall workflow is illustrated in Fig. 2a.
We began by assigning binary labels to ions: ions extracted from
ILs were labelled as 1, and PubChem ions were labelled as 0. To
address the significant imbalance between the number of Pub-
Chem (millions) and IL ions (thousands), we randomly sampled
an equal number of PubChem ions to match the IL ions, ensuring
a balanced dataset that supports building more robust and reli-
able models. This approach relies on the reasonable assumption
that IL ions represent only a small subset of all possible ions, and
that a randomly selected PubChem ion is unlikely to be a viable IL
ion. For molecular representation, we used RDKit to compute 1D
and 2D descriptors, including molecular weight, counts of func-
tional groups, and other chemical features; some of the repre-
sented descriptors are shown in Supplementary Information Sec-
tion S3. To simplify the model, we performed feature reduction
using logistic regression, retaining the 25 most important descrip-
tors. Since the assigned labels may not be perfectly accurate, we
employed the label smoothing technique56 to prevent the mod-
els from over-fitting. Label smoothing modifies the hard labels by

introducing a small amount of noise, defined as:

yls = (1−α)∗ y+α/K, (1)

where K is the number of label classes (2 for binary classification),
α is a hyperparameter that determines the amount of smooth-
ing, y and yls are one-hot labels before and after label smoothing.
Here, we set α to 0.2 based on ablation studies (Supplementary
Information Section S4). Following label smoothing, the dataset
was split into training and test sets in an 80:20 ratio. We imple-
mented logistic regression models with L1 regularisation using
the scikit-learn Python library.57 Finally, the trained ion scorers
assign a score (0-1) to ions. We set a threshold of 0.5; ions with
scores above 0.5 are classified as IL ions, while those below are
classified as non-IL ions (which have a low probability of forming
ILs).
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2.3 Ion generation

After training the ion scorers for both cations and anions, we ap-
plied them to all PubChem ions to assign ion scores. Each score
was then discretised to 0 or 1 using a threshold of 0.5. Based on
these scores, we constructed two CVAEs—one for cation genera-
tion and one for anion generation, Fig. 2b. A VAE is a generative
model composed of an encoder and a decoder. The encoder maps
input data into a latent space, while the decoder reconstructs the
data from this latent representation. The latent space is typically
regularised to follow a standard normal distribution, allowing for
generation from random noise. CVAEs extend this architecture
by incorporating auxiliary condition information (here, the ion
score) into both the encoder and decoder. The objective of CVAEs
is to minimise

−E[logP(X |z,c)+DKL[Q(z|X ,c)||P(z)], (2)

where X is the input, z is the latent variable, c is the condition (ion
score), and P(z) is typically the standard normal distribution. The
first term encourages accurate reconstruction, while the second is
the Kullback-Leibler (KL) divergence, which regularises the latent
space. In our implementation, ions were represented as SMILES
strings, linear textual representations of molecular structures. We
used Gated Recurrent Units (GRUs) as the encoder and decoder
to process these sequences. To incorporate the ion score, we con-
catenated it with each token embedding in the SMILES during
encoding, and also with the latent vector (z) during decoding. To
improve training stability, we applied a cyclic annealing sched-
ule58 to the KL term, gradually adjusting its weight over training
epochs. During sampling, a latent vector z is drawn from a stan-
dard normal distribution, concatenated with a desired ion score
(0 or 1), and passed through the trained GRU decoder to generate
novel ion structures.

We constructed a vocabulary based on the unique characters
in the PubChem dataset. SMILES strings were tokenised into se-
quences of integers, which were then passed through an embed-
ding layer, producing 292-dimensional vectors. Both the encoder
and decoder consisted of three GRU layers with hidden dimen-
sions of 292. The latent space dimensionality was set to 128
(excluding the dimension for the ion score). The models were
trained for 100 epochs using the Adam optimiser with a learning
rate of 0.0001 and a batch size of 128.

2.4 Post-filtering

To ensure the quality of the generated ions, we implemented
a post-filtering step based on several criteria. Specifically,
we removed ions that: (1) had a synthetic accessibility score
(SAScore)59 greater than 4, (2) contained unpaired electrons,
(3) exhibited incorrect formal charges (e.g., negatively charged
cations), (4) received an ion score below 0.5, or (5) contained
unstable ion groups, e.g., unstabilised alcoholates and quaternary
amides. The representative unstable ion structures are shown in
Figure S6. The unstable ion groups include unstable amides, car-
bonions, alcholates and ions with extreme acidity or basicity.

2.5 Ion combination & melting point prediction

After generating a large number of cation-anion pairs, it was nec-
essary to identify those most likely to form ILs. A key distinguish-
ing property of ILs is their relatively low melting points. To fil-
ter out less promising combinations, we trained a melting point
prediction model capable of generalising to both IL and non-IL
compounds. For this task, we adopted the TabPFN model,60 a
transformer-based approach known for its strong performance on
tabular data. We configured the model with 16 estimators. For
molecular features, we used 197 descriptors computed via RD-
Kit.61 The general MPT dataset was split into training and test
sets using an 80:20 ratio. The trained model was subsequently
used to screen the generated cation-anion pairs, retaining only
those predicted to have low melting points, and thus higher like-
lihoods of forming ILs.

3 Results and Discussion
We first present the performance of the melting point prediction
models, which are later used to filter cation-anion pairs. Subse-
quently, we report the performance of the ion scorers and the ion
generation model, followed by a detailed analysis of the gener-
ated ILs.

3.1 Performance of the melting point prediction model

We evaluated the performance of the melting point prediction
model using root mean squared error (RMSE), mean absolute er-
ror (MAE), and the coefficient of determination (R2). The par-
ity plot comparing predicted and experimental melting points for
the test set of the general MPT database is shown in Fig. 3a. Most
data points lie close to the parity line, indicating strong agreement
between predictions and experimental values. We also compared
the performance of different ML models for melting point predic-
tion, as summarised in Table 1. Models trained on the general
MPT database compiled in this work demonstrate competitive
performance compared to previously reported IL-specific models.
Among the evaluated models on the general database, TabPFN
here achieves the best results, with an R2 of 0.755, an RMSE of
39.4 K, and an MAE of 29.0 K, outperforming both XGBoost and
Random Forest (RF). These results highlight the effectiveness of
TabPFN in handling complex, tabular molecular data for melting
point prediction.

Since our dataset includes melting points collected from gen-
eral MPT databases, it avoids the inherent bias present in IL-
specific datasets, which tend to be skewed toward lower melting
points (Fig. 1b). ML models trained solely on IL databases are
likely to underestimate the melting points of cation-anion pairs,
making them less suitable for use as filters to eliminate high-
melting-point candidates. In contrast, the general MPT database
compiled in this work provides a more balanced and compre-
hensive view of cation-anion combinations. As a result, mod-
els trained on this broader dataset should exhibit reduced bias
and be better suited for accurately identifying high-melting-point
compounds. This characteristic is particularly valuable in large-
scale virtual screening tasks, where the model must generalise
well across a diverse chemical space.
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Fig. 3 Melting point predictions. (a) Parity plot of predicted versus ex-
perimental melting points for the test set. (b) Predicted melting point
distributions of ILs constructed from ions with an ion score of 1 (high
likelihood of forming ILs) versus those with an ion score of 0 (low likeli-
hood). Note that these ions are not filtered by the post-filter.

3.2 Performance of the ion scorers

To maintain simplicity and interpretability in the ion scorers, we
performed feature reduction on the RDKit descriptors. Feature
importance was evaluated based on the absolute values of the
coefficients from a logistic regression model. The 25 most infor-
mative descriptors were selected for use in the final models. As
illustrated in Figure S4, the selected descriptors capture critical
molecular properties, including structural complexity, hydrogen
bonding capability, polarizability, electrostatic interactions, and
topological features, all of which are highly relevant to the be-
haviour of ILs. For instance, hydrogen bonding is known to play
a significant role in determining IL properties.66 By considering
these diverse descriptors, we can gain multiple perspectives and
effectively differentiate between PubChem ions and those specif-
ically relevant to ILs.

After feature selection, the logistic regression models were re-
trained using the top 25 descriptors. The performance of the clas-

Table 1 Performance comparison of different models on melting point
prediction

a

model database size RMSE (K) ↓ MAE (K) ↓ R2 ↑
ANN 62 799 33.3 -

b
0.54

RF 35 2,212 45.0 33.0 0.66
KRR 41 2,212 38.5 29.8 0.76
Transformer CNN 63 3,073 45.0 33.7 0.66
GC 64 3,080 37.1 28.8 0.76
XGBoost [this work] 5,848 42.5 30.9 0.71
RF [this work] 5,848 42.4 31.3 0.72
TabPFN [this work] 5,848 39.4 29.0 0.75

a ANN, artificial neural network; RF, random forest; KRR, kernel ridge regression;
CNN, convolutional neural networks; XGBoost 65, a gradient boosting algorithm
for decision trees; and GC, graph convolutional. ↑ indicates "higher is better", and
↓ indicates "lower is better".

b The metric is not reported.

sification model was measured by accuracy, recall and the area
under the receiver operating characteristic curve (ROC-AUC). Ac-
curacy is the proportion of total correct predictions made by the
model. Recall is the proportion of actual positives that were
correctly identified by the model. ROC-AUC indicates how well
the model distinguishes between positive and negative examples,
with higher values meaning better performance. Performance
metrics for both cation and anion scorers are summarised in Ta-
ble 2. Despite the model’s simplicity, both scorers achieved strong
performance, indicating that the classification task is relatively
tractable. High recall scores demonstrate the models’ effective-
ness in identifying IL-relevant ions. Notably, the cation scorer
outperformed the anion scorer, likely due to the greater number
of cation samples available during training.

Table 2 The performance of ion scorers. ↑ indicates "higher is better".

metric cation anion
accuracy ↑ 0.9147 0.8578
ROC-AUC ↑ 0.9142 0.8617
recall ↑ 0.9511 0.9271

After training the ion scorers, we randomly sampled 10,000
PubChem cations and anions and computed the ion scores of
PubChem ions and IL ions. The resulting score distributions are
presented in Fig. 4. As expected, the scorers successfully as-
signed higher scores to IL ions and lower scores to PubChem ions,
demonstrating effective discrimination between the two classes.
Notably, due to the application of label smoothing during train-
ing, the score distributions are less sharply polarised. This allows
a subset of PubChem ions to receive relatively high scores, reflect-
ing the model’s capacity to recognise potentially IL-like structures
beyond those present in the training data.

3.3 Performance of the ion generation models
We built two separate CVAEs for cations and anions, respectively.
To evaluate the performance of the ion generation models, we
sampled 10,000 SMILES and assessed them using four metrics:
validity, uniqueness, novelty, and reconstruction accuracy. Va-
lidity refers to the proportion of generated SMILES that can be
parsed by RDKit. Uniqueness measures the fraction of unique
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Fig. 4 Ion score distributions. (a) Distribution of ion scores for IL cations
and PubChem cations. (b) Distribution of ion scores for IL anions and
PubChem anions.

SMILES among the valid ones. Novelty quantifies the percent-
age of generated SMILES not present in the training set. Recon-
struction accuracy is defined as the proportion of test set SMILES
that are correctly reconstructed by the model. The performance
metrics are summarised in Table 3. The cation and anion genera-
tion models demonstrate high uniqueness and novelty, indicating
their ability to generate diverse and previously unseen structures.
However, the validity is not very high, likely due to the complex-
ity of learning syntactic rules from highly diverse ion structures.
To further assess the conditional generation capability, we sam-
pled 5,000 ions conditioned on label 0 (non-IL ions) and another
5,000 on label 1 (IL ions) and calculated their ion scores. The la-
bel 1 condition is intended to bias the generation toward ions with
a higher likelihood of forming an IL. The average ion scores for
label 1 samples were 0.45 for both cations and anions, whereas
the averages for label 0 were 0.17 and 0.20, respectively. These
results confirm that the conditional generation model effectively
produces ions with higher predicted relevance to ILs when guided
by label 1. It is worth noting that the generated examples for la-
bel 1 do not consistently achieve very high ion scores. This may
be due to class imbalance in the training data. For cations, there
are 678,076 label 1 examples compared to 176,279 label 0 exam-

ples. A similar trend is observed for anions, with 290,998 label 1
examples and 102,235 label 0 examples. This imbalance makes it
difficult for the CVAEs to achieve high average scores for label 1.
Despite this, the use of ion scores still helps the CVAEs generate
more positive examples (0.45 vs. 0.20).

Table 3 The performance of the CVAEs (recon.: reconstruction accu-
racy)

ion type validity uniqueness novelty recon.
cation 77% 100% 99% 71%
anion 72% 100% 98% 71%

Upon visual inspection of the generated ions presented in Fig-
ure S6, we observed that although the ion generation model suc-
cessfully produces diverse and novel structures, some generated
ions exhibit chemically unstable features. For instance, certain
ions are excessively complex, contain implausible substructures
(e.g., carbanions), or possess radical electrons. There are gen-
erally two strategies to address such issues: (1) pre-filtering the
training data to exclude undesired structures before model train-
ing, or (2) post-filtering the generated molecules to remove in-
valid or implausible candidates. To better explore potential IL
ions across a broad and diverse chemical space, we opted for the
post-filtering approach. As described in Section 2.4, we applied
several structural and chemical filters to eliminate unreasonable
ions from the generated set. Representative examples of filtered
ions are shown in Fig. 5. These examples demonstrate that the
ion-level generation model produces diverse ion structures. For
instance, the positively charged groups include rings of various
sizes, ranging from 3-membered to 9-membered rings; while the
negatively charged groups include carboxylates, thiocarboxylates,
phosphonates, and amides. At the same time, key characteristics
commonly found in ILs, such as long alkyl chains and fluorine
atoms, are also present in many generated structures. This sug-
gests that the generative model, combined with ion scoring and
post-filtering, is capable of exploring a large chemical space while
still capturing important structural motifs observed in real ILs.

To further assess the impact of ion scores on the CVAEs, we
randomly sampled 100 cations and 100 anions from the decoder,
each with ion scores of 0 and 1. Cations and anions with the
same ion score were then paired to construct IL candidates. Us-
ing the trained melting point prediction model, we estimated the
melting points of these ILs, and the results are shown in Fig. 3b.
The predicted values indicate that ILs composed of ions with an
ion score of 1 generally exhibit lower melting points compared to
those formed from ions with a score of 0. This suggests that the
ion scorers effectively guide the generation process toward chem-
ical space regions more likely to correspond to low-melting-point
ILs. By using ion scores as conditions, the CVAE model is able
to generate ions with properties similar to those found in known
ILs, increasing the likelihood of forming ILs with desirable melt-
ing behaviour. Compared to transfer learning approaches, this
conditional generation method offers a softer constraint, and it
does not force the generated chemical space to closely mimic the
existing IL dataset.33 Instead, it allows for meaningful expansion
of the IL chemical space while still preserving key characteristics
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Fig. 5 Sampled cations and anions. The cations and anions were generated with label 1 (high likelihood of forming ILs) as the condition. A post
filter was applied to the sampled cations and anions to filter out chemically infeasible ions.

of known IL ions. Overall, the cation and anion CVAEs effectively
alleviate the limited diversity of the existing chemical space of ILs.

3.4 Performance of generated ILs

In addition to the previously sampled ions, we randomly sam-
pled another 100 cations and 100 anions, each conditioned on an
ion score of 1. These filtered ions were then combined to gener-
ate 10,000 unique ion pairs, which were subsequently evaluated
using the melting point prediction model and ranked based on
their predicted melting points. The top 5,000 ILs with the lowest
predicted melting points were selected as the generated IL candi-
dates. As shown in Fig. 6, our workflow effectively expands the
existing IL chemical space by discovering numerous novel ILs that
are chemically diverse and distinct from those currently known,
while also generating ILs similar to existing ones. The divergence
in chemical space observed in the generated ILs may be attributed
to the fact that the collected ILs database was not directly incor-
porated into our workflow. Instead, the use of ion scorers as a
soft constraint guided the generation process toward a distinct
yet chemically plausible region, that is likely to form low-melting-
point ILs. Compared to previous IL generation workflows,24,29

which primarily focus on ion generation using only known IL ions
as inputs, our approach leverages a large pool of PubChem ions to
explore a much broader chemical space, enabling the generation
of novel ions beyond the scope of existing IL datasets.

Additionally, our framework explicitly incorporates melting
point consideration during IL generation, enabling the identifica-
tion of low-melting-point candidates. We computed the average

melting point of the generated ion combinations via the trained
melting point prediction model, finding it to be approximately
380 K. This is lower than the average melting point of the general
MPT database (395 K), indicating that the CVAE models are capa-
ble of generating ions that can form lower-melting-point ion mix-
tures even without melting point filtering. To further validate the
effectiveness of our approach, we applied the MD-based workflow
from our previous work34 to compute the melting points of top 15
generated ILs with the lowest predicted values (details provided
in the Supplementary Information Section S6). The results show
that 13 out of 15 ILs exhibit melting points below 373 K, with an
average melting point of 353 K. This provides additional confir-
mation that our workflow can reliably identify low-melting-point
ILs.

4 Conclusion
We have proposed an ML-based workflow to explore and expand
the chemical space of ILs. By leveraging extensive ion databases
from PubChem and incorporating ion scorers, we trained CVAEs
capable of generating diverse and novel ion structures likely to
form low-melting-point ILs. Here, ion scorers aim to assign high
scores to ions that are more likely to form ILs. A melting point
prediction model, trained on a general melting point dataset, was
used to filter out cation-anion pairs with undesirably high melt-
ing points. Our workflow fundamentally differs from existing IL
design approaches, which either generate IL databases through
motif manipulation, producing structures highly similar to known
ILs, or rely on limited IL datasets, resulting in biased predictions.
The results demonstrate that our framework not only expands
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Fig. 6 IL chemical space. We calculated ECFP for the generated ILs and existing ILs, and used UMAP to project ILs to a 2D space. We show a few
existing IL samples and the generated IL samples from this work. The molecules with green frames are from generated ILs. The molecules with brown
frames are from existing ILs.

the chemical space of existing ILs, but also ensures the genera-
tion of ILs with desirable low melting points. This success can be
attributed to three key components: (1) the ion scorers, which
capture intrinsic features distinguishing IL ions from general ions
and assign higher scores to IL-like candidates; (2) the CVAE mod-
els, which generate ions conditioned on these scores to favour IL-
relevant structures; and (3) the melting point prediction model,
trained on a diverse general MPT database, which contains the
melting points from a wide range of cation-anion pairs, includ-
ing low-melting-point ILs and high-melting systems. Some of the
representative generated IL examples are shown in Supplemen-
tary Information S6.

Looking ahead, promising directions include the direct gener-
ation of ion pairs guided by melting-point prediction, the inte-
gration of active learning with automated melting-point calcu-
lations or experiments, and optimisation-based strategies (e.g.,
Bayesian optimisation or reinforcement learning) to identify low-
melting-point ILs within large chemical spaces more efficiently.
We also observed structural imbalances in the PubChem ion
dataset; for instance, most anions contain carboxylate functional
groups, while others, such as borate-based ions, are underrepre-
sented. This imbalance can limit the diversity of generated ions.
Although ion scoring helped mitigate this issue, future work could
explore additional strategies, such as data augmentation, to ad-

dress dataset biases. Meanwhile, we found that several generated
ions contained unstable structures. Although we attempted to re-
move these structures using post-filtering, this approach was not
very efficient. We also tested pKa prediction models to identify
unstable ions; however, this method depends heavily on the ac-
curacy of the prediction model, and the existing models cannot
give good pKa predictions on IL ions. Overall, our framework,
which integrates structural scoring, conditional generation, and
predictive filtering, shows promising performance in IL discovery.
Furthermore, it holds promise for generalisation to other mate-
rial systems, such as deep eutectic solvents and transition metal
complexes.
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