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Halogen bonding has emerged as a powerful yet underexplored tool for modulating radical reactivity. Here
we demonstrate that halogen-bonding interactions between alkyl iodides and water can lower the C—I|
bond dissociation energy, enabling visible-light-induced photolysis to generate alkyl radicals under mild
conditions. Harnessing this activation mode, we achieved a previously unknown 1,3-carbohydroxylation
of allyl carboxylates, wherein radical addition is coupled with 1,2-cationic acyloxy migration (CAM) to
furnish B-acyloxy alcohols. The transformation exhibits broad structural tolerance, accommodating
diverse esters, thioesters, amides, and perfluoroalkyl iodides, and is effective in the late-stage
diversification of natural products and drug-derived scaffolds. Mechanistic studies, including isotopic
labeling, radical trapping, UV-vis spectroscopy, and DFT calculations, reveal a pathway in which halogen
bonding initiates radical alkene addition, followed by rearrangement and carbocation capture. These
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Introduction

Halogen bonding (XB), a directional noncovalent interaction
between a Lewis base (LB) and an electrophilic region on
a halogen atom (o-hole), has emerged as a powerful activation
mode in molecular design and synthesis." The o-hole strength
depends strongly on the substituents: electron-withdrawing
groups, like fluorines, in CF;I lower the carbon orbital energy,
shifting the LUMO coefficient onto iodine and creating
a pronounced o-hole (Fig. 1A).> Consequently, CF;I forms
stronger XB interactions than CH;I, whose o-hole is negligible.
In a typical XB interaction, the lone-pair of the Lewis base (XB
acceptor) donates electron density into the antibonding o*(C-
X) orbital of the XB donor, lowering the bond dissociation
energy (BDE) of the C-X bond and enabling selective activation
under mild conditions.” Depending on the energy input, the
weakened bond can undergo either a two-electron (thermal
heterolysis) or a one-electron (photolysis) process, generating
cationic or radical intermediates, respectively.® This simple yet
powerful interaction has emerged as a general activation
strategy in organic synthesis, enabling molecular recognition,
catalysis, and selective bond transformations.®> For example,
Ritter and co-workers demonstrated condensed-phase XB
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cascades, opening new opportunities for reaction development.

adducts of CF;I and C,FsI for perfluoroalkylation under visible
light,* while Chen and colleagues showed that water itself can
act as an XB acceptor to iodoperfluoro compounds, triggering
radical generation.® Yamaguchi and Itoh showed that photo-
irradiation of halogen-bonded complexes between haloarenes
or haloalkanes and amines or phenols efficiently generates
carbon radicals without metal catalysts or oxidants.® Collec-
tively, these studies highlight halogen bonding as a versatile
platform for C-X bond activation and molecular
functionalization.

Allyl carboxylates have continued to serve as privileged
scaffolds in organic synthesis due to their diverse reactivity.”
They participate in transition-metal-catalyzed nucleophilic (e.g.,
Tsuji-Trost and decarboxylative allylations)*#™* and electro-
philic substitutions,”®"** and undergo anionic acyloxy migra-
tions and rearrangements through two-electron pathways.*
More recently, radical-based strategies have enabled novel 1,2-
functionalizations and rearrangements, expanding the
synthetic utility of this substrate class beyond traditional sig-
matropic and substitution manifolds." Despite these advances,
formal 1,3-difunctionalization reactions, wherein two distinct
groups add across the allyl unit in a 1,3-relationship accompa-
nied by acyloxy migration, remain rare and mechanistically
challenging. To address this limitation, our laboratory recently
reported a visible-light-induced, phosphine-catalyzed 1,3-car-
bobromination of allyl carboxylates, which proceeded via a 1,2-
radical acyloxy migration (RAM) mechanism (Fig. 1B)."* This
transformation exploited the interaction between bisphosphine

© 2026 The Author(s). Published by the Royal Society of Chemistry
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B. XB-induced 1,3-carbobromination via 1,2-radical acyloxy migration (1,2-RAM)
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C. This work: XB-induced 1,3-carbohydroxylation via 1,2-cationic acyloxy migration (1,2-CAM)
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Fig. 1 Halogen bonding (XB) in C-X bond activation and acyloxy
migration-enabled alkene functionalization. (A) Electronic origin of
halogen bonding in alkyl iodides and its effect on C-I bond weakening.
(B) Previous work: visible-light-induced phosphine-catalyzed 1,3-
carbobromination of allyl carboxylates via 1,2-radical acyloxy migra-
tion (1,2-RAM). (C) This work: visible-light-induced halogen-bonding-
assisted formal 1,3-carbohydroxylation of allyl carboxylates via 1,2-
cationic acyloxy migration (1,2-CAM).

(dppm) catalysts and bromodifluoroacetates to promote
photolytic C-Br bond cleavage under visible light irradiation.
During these investigations, we observed an unexpected
divergent pathway: iododifluoroacetates furnished 1,3-carbo-
hydroxylation products even in the absence of a phosphine
catalyst. Mechanistic studies indicated that water forms
a halogen-bonded complex with the iododifluoroacetate,
promoting visible-light-induced C-I bond photolysis. The
resulting perfluoroalkyl radical adds regioselectively to allyl
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carboxylates, followed by a 1,2-cationic acyloxy migration and
hydration to afford B-acyloxy alcohols (Fig. 1C). This trans-
formation is significant because it (i) establishes a radical-
cationic cascade reaction platform with broad substrate scope,
including late-stage modification of bioactive molecules, (ii)
expands allyl carboxylate chemistry beyond classical two-
electron pathways and radical 1,2-migrations, (iii) demon-
strates that water serves as a simple yet powerful halogen-bond
acceptor for C-I activation, (iv) enables site-selective synthesis
of mono-protected 1,2-diol products, (v) represents the first
example of XB-induced 1,3-carbohydroxylation of allyl carbox-
ylates, and (vi) leverages perfluoroalkyl iodides, valuable
precursors to fluorinated motifs of pharmaceutical impor-
tance," under mild, photocatalyst-free conditions.

Results and discussion

Building on these mechanistic insights, we next optimized the
reaction conditions to validate the proposed pathway and
establish general parameters for this transformation. To this
end, 2-methylbut-3-en-2-yl benzoate (1a) and ethyl iodo-
difluoroacetate (2a) were selected as model substrates (Table 1).
The optimal conditions were identified as the coupling of 1a
with 2a under 100 W blue LED irradiation in 1,2-dichloroethane
(0.10 M) at 90 °C for 24 h, in the presence of Na,CO; (2.5 equiv.)
and degassed H,O (10 equiv.), furnishing the desired 1,3-
carbohydroxylated product 3a in 99% NMR yield (entry 1). The
reaction completely shut down in the absence of Na,CO; (entry
2), and substitution with other carbonate bases delivered
diminished efficiencies (entries 3 and 4), underlining
a pronounced counter-cation effect, likely by influencing ion
pairing and solvation in DCE.™ A non-carbonate ionic base was
less effective (entry 5). Concentration studies revealed that
dilution to 0.05 M had little effect on yield, whereas increasing
the concentration to 0.20 M diminished product formation

Table 1 Selected optimization experiments®

E Na,COj3 (2.5 equiv) )\

Ph._0O E )
\f . I&OE( degassed H,0 (10 equiv) 070 E F
A T e
Me Ve 90°C, 24 h Me Me O
1a, 1.0 equiv 2a, 3.5 equiv "standard conditions" 3a
Entry Deviation from the standard conditions NMR-yield (%)
1 None 99
2 Without Na,CO; <2
3 K,CO; instead of Na,CO; 60
4 NaHCO; instead of Na,CO; 83
5 ‘BuOK instead of Na,CO, <2
6 0.05 M instead of 0.10 M 99
7 0.20 M instead of 0.10 M 61
8 Without light <2
9 Without heat 15
10 In air <2

“ See SI for experimental details. Reaction yields were determined by 'H-
NMR using CH,Br, as an internal standard.
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(entries 6 and 7). Control experiments confirmed that light,
and an oxygen-free environment are essential for

heat,
achieving high reaction efficiency (entries 8-10).
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With the optimized conditions in hand, we evaluated the
substrate scope of the halogen-bonding-induced formal 1,3-

carbohydroxylation of allyl carboxylates (Table 2). A broad array

Table 2 Halogen bonding-induced 1,3-carbohydroxylation of allyl carboxylates via 1,2-CAM?

ia via
R? Standard conditions !
RE&_0 A : y
B R R? . T— Na,COs (2.5 equiv) | R
o} N . IXEWG H,0 % o degassed H,0 (10 equiv) B }Eo\ R3 R3
gt HOO EWG DCE (0.10 M) o F o e
1,2-CAM R R 100 W blue LED Y
1 2 3 90°C,24h
XB-induced Photolysis 1,2-CAM
A. Allyl carboxylates
Ph Ph R j’\h
/ 0”0 F F
0”0 R F

e

3a, 76% (63%)° 3b, 55%
Ph
)\ Ph
0”0 E F

0”0 Fk F

OEt
H,O
Me [e)
Me

3c, 67%
Ph
OJ\O R F
.0 OEt
H
Me o

AcO

Ph
O)\O R F
.0 OEt
H
Me o

3i, X=Br, 71%, dr 1:1

3e, 63%
Ph

O/OFF

o

3f, 65% 39, 58%, dr 1:1 3h, 75%, dr 1:1 3j, X=Cl, 60%, dr 1:1 3k, 56%, dr 1:1
B. lododifluoresters
Ph F’h Ph Ph )P\h
0)\ OJ\OFF OJ\OFF 0”0 F F
o .0 (e}
H,OMO\/\TMS H” M H,OM \ﬁm: H'OMO H
Me COMe Me Me O Me Me Me o) [ ; Me Me o) [e)
31, 60% 3m, 66% 3n, 54% 30, 68% 3p. 66%
Ph ph )P\h Ph
O/ O FE F 07 "0 EF OJ\O EF
M S
\)\)ﬂr M @ M NP N GEN H,OMSQ
Me Me o] ME Me o)
3q, 63% 3r, 60% 3s, 46% 3t, 46% 3u, 44%
C. lododifluorc id
Ph Ph Ph Ph Ph
A 25 y py _Ph iy i
o/oFFO o kF (O 0% kr (s O/OFFO o/ong\o
SO N S0 N /O N .0 N O N
H M H M]/ J H M \) H M H M
Me Me o) Me Me o) ME Me o) Mé Me o) Me Me o)
3v, 85% 3w, 67% 3x, 64% 3y, 63% 3z,62%
Ph Ph Ph
M A
Og\OFFre 070! R IF O)\OFF
M .0 NH Ph NH
Mé Me o) Mé Me C Me Me o) Mé Me o)
3aa, 69% 3ab, 60% 3ac, 55% 3ad, 54% 3ae, 32%
D. lodo alkyl substrates
Ph
Ph Ph AL, Ph Ph
02\0 R F 0770 R CF; OZ\O R F 02\0 H H
H’o S R H’O S CF; H’O K SO,Ph H’ONCN
Me Me Me Me Me Me Me Me
3af, R = CsF 4, 74%
3ag, R =CsFys5, 75% 3ah, 51% 3ai, 66% 3aj, 91% 3ak, 75%

“ See SI for experimental details. Standard reaction conditions: 1

1 (0.20 mmol, 1.0 equlv ), 2

(0.70 mmol, 3.5 equiv.), Na,COj3 (0.50 mmol, 2.5 equiv.)

and degassed H,O (2.0 mmol, 10 equiv.), DCE (0.10 M), blue LED, 90 °C, 24 h. ? Parenthetical yields are from gram-scale experiments.
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of acyclic and cyclic allyl carboxylates underwent efficient 1,3-
difunctionalization, furnishing the corresponding B-acyloxy
alcohols (3a-3k) in good yield (Table 2A). Symmetrical acyclic
allyl carboxylates, such as 1a, furnished the desired product 3a
in 76% yield. Importantly, the reaction was readily scalable to
the 5 mmol level, affording 0.97 g of 3a in 63% yield. Cyclic
systems ranging from five- to twelve-membered rings, including
those incorporating a cyclic ether (3c) or an ethylene ketal (3d),
were well tolerated, affording products 3b-3f in 55-75% yield.

View Article Online

Chemical Science

Furthermore, nonsymmetrical allyl carboxylates bearing dialkyl
groups (3g), additional ester units (3h), halogens (3i, 3j), and
a phthalimide motif (3k) also participated smoothly, high-
lighting the broad functional group compatibility of the
transformation.

The reaction also proved effective with a variety of di-
fluoroester partners (Table 2B). Acyclic esters spanning primary,
secondary, and tertiary substitution were all competent,
including those bearing a trimethylsilyl group (31), long-chain

Table 3 Halogen bonding-induced 1,3-carbohydroxylation of allyl carboxylates via 1,2-CAM*

via via
R2 _O R? Standard conditions
R3 R3 )\ Na,COj3 (2.5 equiv) R?
o B % 9FNG IROR? degassed H,0 (10 equiv) " =0 R R
X+ 1 ewe Hz0 .0 g z 0---I—Rg de;
A H ) EWG DCE (0.10 M) W —
1,2-CAM R R 100 W blue LED ] R
1 2 3 90°C,24 h
XB-induced Photolysis 1,2-CAM
A. Migrating groups
By OMe cl CFs3
Me
079
Q70 FEF 079 E F o R OEt 070 E F Q70 E F
.0 OEt 0, OEt H™Y .0 OEt 20 OEt
T H) ve HOY H
$ s € Me o $ 3
Me Me le) Me Me [e) Me Me e} Me Me o)
3al, 80% 3am, 65% 3an, 62% 3ao0, 79% 3ap, 56%
FsC —
S A
FsC F4CO
070 | F 0= 0l R R 070 E F OFN0; RiR 0% £ F
0 OFt e OEt y-° OEt 1O OFEt e OEt
H R S & ¥
Me Me o Mé Me o Mé Me o) Me Me o ME Me o
3aq, 57% 3ar, 53% 3as, 56% 3at, 57% 3au, 53%
B. Complex mol I
Me
N 2‘ M2 O O Me\L J/Me Ph
W Y Me Me " )\
O_N O_é_O OF 0! R F
7 T Blc) OFEt
Me H
Me [e)
N= 0
o3
Me— XS g O R F ~ 0% £ E Me, N
p. H M 40 OEt 0?0 E F Z A =0
QR0 RF M Me o .0 OEt S
.0 OEt |\ o HY Me
H 3 o Mé Me o
Meé Me o)
3av, 59%, dr 1:1 3aw, 55%, dr 1:0.9 3ax, 74%, dr 1:1 3ay, 63% 3az, 50%, dr 1:1
Febuxostat derivative Ibuprofen derivative Oxaprozin derivative Probenacid derivative Pentoxifylline derivative
Ph
Ph =0 B F
Ph o lo)
HYTY Ph [e] Me
O)\O F F e\:/Me 02\0 RF Me Mé Me o J\ )<Me
o Ok .0 O., 020 E F N7 07 “Me
HY H ¥ T \Me o N
Me Me o) Me Me o Me HOY
Me Me o
Me
3aaa, 78% 3aab, 74% 3aac, 74% 3aad, 54%

(+)-Menthol derivative (+)-Borneol derivative

Cholesterol derivative Tropane alkaloid derivative

“ See SI for experimental details. Standard reaction conditions: 1 (0.20 mm

ol, 1.0 equiv.), 2 (0.70 mmol, 3.5 equiv.), Na,CO3 (0.50 mmol, 2.5 equiv.)

and degassed H,O (2.0 mmol, 10 equiv.), DCE (0.10 M), blue LED, 90 °C, 24 h.
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substituents containing ester functionalities (3m), and a steri-
cally demanding tert-butyl group (3n), affording the desired
products in good yield. Secondary and tertiary cyclic esters
within 5-7-membered ring systems, including the bulky ada-
mantyl group (3r), furnished the corresponding B-acyloxy alco-
hols in 60-68% yield. Notably, thioesters bearing linear alkyl
chains, additional ester substituents, or adamantyl were also
effective (3s-3u), thereby extending the scope to sulfur-
containing substrates.

Encouraged by these results, we next investigated iodo-
difluoroacetamides, which provided the desired PB-acyloxy
alcohols (3v-3ae) in moderate to excellent yield (Table 2C). Both
symmetrical and nonsymmetrical amides, encompassing cyclic
and acyclic frameworks, were tolerated. Six-membered cyclic
amides incorporating ether (3w), thioether (3x), N-phenyl (3y),
or ethylene ketal (3z) functionalities afforded the desired
products in 62-85% yield. Acyclic diethyl-substituted derivatives
(3aa) as well as N-substituted systems, such as adamantyl (3ab),
tert-butyl (3ac), phenylpropyl (3ad), and phenyl (3ae) were also
compatible.

We further expanded the scope to iodoalkyl derivatives,
which delivered B-acyloxy alcohols (3af-3ak) in good to excellent
yield (Table 2D). Perfluoroalkyl iodides, including per-
fluorohexyl (3af), perfluorooctyl (3ag), perfluoroisopropyl (3ah),
and perfluorobenzyl (3ai), were successfully engaged to give
products in 51-75% yield. Notably, a fluoroalkyl iodide bearing
a phenylsulfonyl group (3aj) exhibited excellent reactivity and
afforded the desired product in 91% yield. Even iodo-
acetonitrile, without fluorine substituents, participated effi-
ciently to afford the product in good yield (3ak).

We next investigated the effect of substituents on the
migrating carboxylate group (Table 3A). Aryl esters bearing
electron-donating substituents at the para- or meta-positions
provided B-acyloxy alcohols (3al-3an) in 62-80% yield. Electron-
withdrawing groups, including halogens and trifluoromethyl,
were also tolerated across para, meta, and ortho positions (3ao-
3as), with yields remaining largely unaffected by substitution
pattern. A heteroaryl ester such as a thiophene derivative fur-
nished the desired product (3at) in 57% yield, while an aliphatic
ester migrated effectively to give product (3au) in 53% yield.

Late-stage modification of bioactive, structurally complex
molecules is a powerful strategy for the discovery of new
medicinal agents.” To demonstrate the applicability of the
halogen-bonding-induced 1,3-carbohydroxylation of allyl
carboxylates to late-stage diversification, a series of natural
product- and drug-derived substrates were subjected to the
standard conditions (Table 3B). Substrates derived from
febuxostat (gout preventive), ibuprofen (analgesic/antipyretic),
oxaprozin (anti-arthritic), and probenecid (gout treatment)
smoothly underwent 1,3-carbohydroxylation, affording prod-
ucts 3av-3ay in 55-74% yield. An allyl benzoate derived from
pentoxifylline (vasodilator) furnished product (3az) in 50%
yield. Iododifluoroacetate derivatives of naturally occurring
alcohols such as (+)-menthol, (+)-borneol, and cholesterol were
also competent, affording products 3aaa-3aac in 74-78% yield.
Notably, an amide incorporating the tropane alkaloid scaffold,

3622 | Chem. Sci,, 2026, 17, 3618-3626
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a motif common in CNS-active agents, participated to provide
the corresponding B-acyloxy alcohol (3aad) in 54% yield.

To gain further insight into the reaction mechanism, we
performed a series of experimental and computational studies
(Fig. 2). Crossover experiments with substrates 1u and 1e yiel-
ded exclusively the corresponding non-crossover products 3u
and 3e, indicating that the acyloxy migration proceeds via an
intramolecular pathway (Fig. 2A). ®0-Labeling provided addi-
tional mechanistic evidence: reaction of *®0-labeled substrate
80-1a (95% ®0 incorporation) furnished product '*0-3a with
94% '80 retention, consistent with a five-membered [2,3]-
acyloxy shift involving a dioxolium carbocation VII (Fig. 2B).
Complementarily, conducting the standard reaction in the
presence of degassed H,'®0 afforded "*0-3a-2 with 77% "*0
incorporation in the benzoyl carbonyl group, implicating
nucleophilic attack of H,O at the benzylic position of carboca-
tion intermediate VIL. The slight decrease in *®0 incorporation
is likely attributable to the hygroscopic nature of Na,COj3, which
may introduce unlabeled water into the reaction medium.

Further evidence for a radical pathway was obtained by
radical-trapping experiments. The addition of TEMPO markedly
suppressed product formation, and the corresponding TEMPO-
difluoroacetate adduct (4) was detected by '°F NMR and HRMS
(Fig. 2C). In addition, a pre-synthesized 1,2-iodo-
difluoroalkylated intermediate (5) could be converted to the
desired 1,3-carbohydroxylated product 3a in 41% yield under
the standard conditions (Fig. 2D), suggesting that the trans-
formation may proceed via an initial 1,2-iododifluoroalkylation
followed by intramolecular substitution reaction to give the
dioxolium carbocation VII.

To further probe the presence of halogen bonding, Job's plot
analysis revealed a 1:1 complexation between iodo-
difluoroacetate 2a and H,O (Fig. 2E). Consistently, UV-vis
absorption spectra of iododifluoroamide 2z in the presence of
water exhibited an enhancement in absorption (Fig. 2F),
indicative of halogen-bonding interactions between water and
the iododifluoro reagent. We propose that this H,O---I-Rg
complex serves as the key precursor to visible-light-induced
generation of the difluoroacetate radical under the reaction
conditions. Nevertheless, we cannot rule out the possibility that
Na,CO; may also engage in halogen bonding and contribute to
halide activation. Furthermore, to assess whether the trans-
formation proceeds via a radical chain process, we conducted
light on/off experiments and quantum-yield measurements. As
shown in Fig. 2G, the combined yield of the 1,2- and 1,3-
substituted products did not increase upon cessation of irra-
diation, and the quantum yield measurement gave @ = 0.20.
These observations suggest that extended radical chain propa-
gation pathway is unlikely.

DFT calculations revealed that, upon water-assisted photol-
ysis of 2a, the resulting Rg radical II can add to allyl carboxylate
1a to form the more stable secondary radical V (Fig. 3). This step
is exergonic by AG = —13.4 keal mol™", with an associated
transition state (TS1) barrier of AG* = 18.1 kcal mol .
Recombination of V with the iodine radical is barrierless and
highly exergonic (AG = —35.8 kcal mol ™). In contrast, a radical-
chain pathway is disfavored due to the high transition state

© 2026 The Author(s). Published by the Royal Society of Chemistry
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D. Probing if the reaction proceeds via 1,2-iodoalkylated intermediate (5):
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Fig. 2 Mechanistic studies of halogen-bonding-induced 1,3-carbohydroxylation of allyl carboxylates. (A) Crossover experiment demonstrating
intramolecular acyloxy migration. (B) 120O-Labeling experiments supporting formation of a dioxolium cation intermediate. (C) Radical-trapping
experiment with TEMPO. (D) Reactivity of a preformed 1,2-iododifluoroalkylated intermediate. (E) Job's plot indicating 1:1 complexation
between iododifluoro reagent and H,O. (F) UV-vis absorption changes consistent with halogen-bonding interactions. (G) Light on/off and

quantum-yield experiments probing radical chain propagation.

barrier for halogen atom transfer (TS2, AG* = 28.1 kcal mol %),
consistent with the light on/off experiments and quantum yield
subsequently

measurements (Fig. 2G). Intermediate VI

© 2026 The Author(s). Published by the Royal Society of Chemistry

undergoes a 1,2-cationic acyloxy migration (1,2-CAM), forming
a dioxolium ion intermediate (VII) via a moderate barrier (TS3,
AG* = 23.8 kcal mol™"). The alternative 3-membered TS3' is
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Fig. 3 Energy profile of halogen bonding-induced 1,3-carbohydroxylation of allyl carboxylates 1a with iododifluoroester 2a via 1,2-CAM. DFT
calculations were performed at the M06/6-311+G(d,p)-SDD/SMD(dichloroethane)//B3LYP-D3(BJ)/6-31 G(d)-SDD/SMD(dichloroethane) level of

theory. The 3D representation was prepared by using CYLview.*®

significantly less favorable by 13.1 kcal mol . The resulting VII
then undergoes carbonate-promoted hydrolysis through a six-
membered  transition-state complex (TS4, AG* =
13.7 keal mol ) to afford intermediate VIII, which is in good
agreement with the '®0O-labeling experiments (Fig. 2B). Finally,
intermediate VIII undergoes NaHCO;-assisted ring opening and
proton transfer to yield the desired and kinetically favored 1,3-
product (3a) via TS5 (AG* = 16.3 kcal mol™') in an overall
thermodynamically favorable step (AG = —13.95 kcal mol ). In
contrast, the competing ring-opening pathway leading to the
1,2-product (3a’) is kinetically disfavored, with a higher barrier
(TS5', AG* = 18.2 kcal mol™!). This computational finding
aligns with experimental results, where only the 1,3-product (3a)
was observed.

Conclusions

In summary, we have developed the first halogen-bonding-
induced, visible-light-mediated formal 1,3-carbohydroxylation
of allyl carboxylates via a 1,2-CAM pathway, furnishing B-acyloxy
alcohols in good yields with broad functional-group tolerance.
Mechanistic and computational studies reveal that water serves
not only as the halogen-bond acceptor enabling photocatalyst-
free C-I activation, but also as the source of the oxygen atom

3624 | Chem. Sci, 2026, 17, 3618-3626

incorporated into the carbonyl group of the acyl fragment in the
acyloxy group. This work establishes a radical-cationic cascade
that bridges halogen-bonding activation with ionic rearrange-
ment. We anticipate that the 1,2-CAM reactivity of allyl
carboxylates and halogen-bonding-induced radical activation
will inspire new strategies for tandem radical-cationic trans-
formations in organic synthesis.
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