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cial intelligence for molecular
design in pharmaceutical research

Alec Lamens ab and Jürgen Bajorath *ab

The rise of artificial intelligence (AI) has taken machine learning (ML) in molecular design to a new level. As

ML increasingly relies on complex deep learning frameworks, the inability to understand predictions of

black-box models has become a topical issue. Consequently, there is strong interest in the field of

explainable AI (XAI) to bridge the gap between black-box models and the acceptance of their

predictions, especially at interfaces with experimental disciplines. Therefore, XAI methods must go

beyond extracting learning patterns from ML models and present explanations of predictions in

a human-centered, transparent, and interpretable manner. In this Perspective, we examine current

challenges and opportunities for XAI in molecular design and evaluate the benefits of incorporating

domain-specific knowledge into XAI approaches for model refinement, experimental design, and

hypothesis testing. In this context, we also discuss the current limitations in evaluating results from

chemical language models that are increasingly used in molecular design and drug discovery.
Introduction

In the AI era, ML and deep generative modeling are increasingly
applied in drug discovery and design.1,2 Typical applications
include standard tasks such as physicochemical or biological
property predictions for small molecules and quantitative
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structure–property relationship modeling or new tasks such as
generative de novo design.1,2 Regardless of the applications,
most ML and all deep learning models produce black-box
predictions that are not understandable based on human
reasoning.3–5 Incomprehensible predictions are not only scien-
tically unsatisfactory, but also limit the impact of ML in
interdisciplinary research. This is the case because black-box
predictions are rarely used to guide experimental work, which
represents a substantial problem for applied ML3,4 and complex
deep ML frameworks.5–7 As a consequence, the eld of
explainable AI (XAI) experiences increasing interest.8,9 XAI
encompasses the development of computational concepts and
practical methods to explain predictions and underlying data
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patterns, identify internal model bias, and determine applica-
bility domains.8–11 Ultimately, XAI aims to increase the trans-
parency of model decisions and enable human interpretation of
predictions and causal reasoning. Beyond its scientic rele-
vance, XAI has gained importance due to the need for trans-
parency, trust, and interpretability in high-risk or high-cost
scientic domains such as drug discovery.11 Here, explainability
supports model validation and informed decision-making. In
addition to predictive models used to identify or design new
chemical matter, ML models are applied in regulatory and
safety-related contexts, particularly for the evaluation of impu-
rities, where explainability and interpretability support scien-
tic justication, prioritization, and risk-based evaluation.12

In the following, we present different XAI concepts and
explore opportunities and limitations of XAI in molecular
design. In addition, we discuss explanations that allow human
interpretation and support causal reasoning. Using exemplary
studies, we analyze benets of combining existing XAI concepts
with domain-specic knowledge for molecular design.
Furthermore, we discuss attempts to explain transformer
models for generative design tasks.
Evaluation criteria in the absence of
fundamental truth

Given the conceptual diversity of XAI approaches and their
different objectives, it is essential to dene best practices for
their use and identify specic limitations. Therefore, evaluation
criteria have been proposed, oen termed ‘desiderata’, to
support the assessment and comparison of alternative XAI
methods.13–16 An example is the evaluation of the accuracy
(delity) of explanations for a given black-box model. This
typically involves the comparison of explanations from alter-
native methods, the evaluation of the stability of explanations
that are based on similar data points, or the evaluation of the
robustness to data perturbation.13 Additional desiderata assess
whether given explanations are concise, non-redundant,
complete considering the underlying data patterns, or under-
standable within the applicability domain of a model.16

However, so far, desiderata have been rarely applied to expla-
nations of ML predictions in molecular design. Notably, model
explanations oen lack a ground truth. An explanation depends
on the chosen XAI approach, the MLmodel, parameter settings,
and the calculation protocols. There is no ground truth for
parameter or protocol variations. Therefore, it can oen not be
determined if an explanation is valid. Instead, one might need
to formulate and test hypotheses or compare different XAI
methods to assess the consistency of explanations.17 These
aspects directly apply to the evaluation of model explanations in
molecular design, as discussed below.
From model explanation to
interpretation

In the analysis of predictions, the terms explanation and
interpretation are oen interchangeably used. However, in XAI,
1412 | Chem. Sci., 2026, 17, 1411–1422
a formal distinction is made between explainability, that is, the
extraction of feature-based learning patterns from a model, and
interpretability, that is, the translation of an explanation into
terms understandable to humans.18–20 An explanation is there-
fore computational in nature (and thus falls into the AI
domain), whereas interpretation requires human intelligence.

From model interpretation to causality

In the life sciences including drug discovery, experimentally
testable hypotheses and causal reasoning depend on explana-
tions that can be directly related to chemically or biologically
meaningful concepts, even when derived from complex or non-
interpretable models.21 If ML predicts the outcome of a natural
process, a causal relationship exists if features determining the
prediction are directly responsible for the observed event.21 In
such cases, establishing a causal relationship typically requires
experimental follow-up. For example, one evaluates if chemical
features determining activity predictions of small molecules are
directly responsible for a specic biological activity. In addition,
ML relying on causal inference (also termed causal ML) gener-
ally attempts to establish cause-and-effect relationships
between different variables.22,23 Such relationships are oen
analyzed in medical diagnostics.23 They are statistically deter-
mined and also fall within the explanation-interpretation-
causation framework of XAI. A misunderstanding of statistical
relationships between different variables might lead to the
assumption of false causal relationships.24 In ML, models
producing predictions for other than apparent or assumed
reasons are oen referred to as ‘Clever Hans’ predictors.25,26

This term originated from psychology aer a horse mistakenly
believed to be capable of counting.25 In interdisciplinary
research, Clever Hans predictors impair hypothesis-driven
experimental design. In XAI, distinguishing between different
types of explanations and understanding their foundations as
well as limitations reduces the risk of over-interpretation.

Potential biases in chemical data

Charted chemical space largely results from preferred synthetic
reactions, and bioactive chemical space is strongly inuenced
by the nature of pharmaceutical targets and their compound
binding characteristics. In addition, chemical optimization
efforts produce series of analogues that inuence and may
distort compound distributions in bioactive chemical space.
Therefore, corresponding molecular property distributions can
show correlations that affect ML predictions and bias XAI
methods relying on feature independence assumptions. As di-
scussed below, this might lead to different explanations of
predictions using closely related method variants.

Methodological categories

XAI methods can be categorized based on algorithmic princi-
ples for generating explanations of predictions, as illustrated in
Fig. 1. Feature attribution methods quantify the contribution of
individual input features to model predictions.27 Locally
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Different XAI approaches. Three major categories of XAI methods are schematically illustrated including feature attribution (left), rule-
based (center), and example-based methods (right). Each category uses a different algorithmic approach to generate explanations.

Table 1 Comparison of different categories of XAI methods

Category Algorithms Advantages Disadvantages

Feature attribution LIME Local delity; complete explanation
with all features

Not generalizable; sensitive to small
input changes

SHAP Global importance assessment;
axiomatic foundation

Stochastic approximation
Context-dependent interpretation

Permutation feature importance Importance linked to model error;
concise global importance measure

No feature importance information
for predictions; vulnerable to
feature correlation

Integrated gradients Global importance estimates;
axiomatic foundation

Explanations depend on chosen
weight threshold; restricted to
neural networks

Attention quantication Applicable to transformers; no
additional calculations or surrogate
models required

Limited correlation with other
methods; prone to high variance

Rule-based Anchors Succinct informative explanations;
quantiable local delity

Outcome depends on chosen
precision/coverage thresholds;
limited scalability with large feature
sets

Example-based Counterfactual explanations Multiple equivalent explanations;
immediate interpretability

Multiple plausible explanations;
limited global insights

Contrastive explanations Identies highly differentiating
features; mimics human reasoning

Explanations based on feature
subsets; limited global insights
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interpretable model-agnostic explanations (LIME)28 is an
exemplary model-agnostic feature attribution method. LIME
derives a linear surrogate model in the feature space vicinity of
a test instance to quantitatively approximate original feature
contributions to its prediction.

Rule-based methods dene non-redundant (if-then) decision
rules in feature space that consistently yield corresponding
predictions.29 ‘Anchors’ is a popular rule-based approach that
probes the feature space around a test instance to generate a set
© 2026 The Author(s). Published by the Royal Society of Chemistry
of rules that anchors a prediction locally, regardless of other
feature values.30 Rules are evaluated using metrics such as
precision (that is, the fraction of consistent instance-based
predictions when the rule applies) or coverage (that is, the
proportion of test instances covered by the rule).

Albeit algorithmically distinct, feature attribution and rule-
based methods both attempt to answer the question ‘why was
prediction P obtained?’. By contrast, example-based methods
address the question “why was prediction P obtained but not
Chem. Sci., 2026, 17, 1411–1422 | 1413
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Q?”. This question reects a human tendency to gain insights
through object comparisons.31 Therefore, example-based XAI
methods generate hypothetical samples that closely resemble
a given test instance but result in a different prediction.
‘Counterfactuals’ are a leading example-based approach.32,33 In
molecular design, preferred exemplary counterfactuals are very
similar molecules (structural analogues) that lead to opposite
predictions. A related yet distinct approach termed ‘contrastive
explanations’ addresses the question “why was prediction P
obtained but not Q?” by identifying origins of different
prediction outcomes and ‘contrasting’ them.33,34 Therefore, an
expected prediction (P) is dened as the ‘fact’ and an alternative
(unexpected) prediction (Q) as the ‘foil’. Then, one attempts to
identify feature subsets that are essential for model decisions
distinguishing the fact from the foil.33 Table 1 compares
different XAI approaches and summarizes advantages and
disadvantages.
Feature attribution using Shapley
values and approximations

One of the currently most popular feature attribution
approaches in many areas is based on the Shapley value concept
originating from cooperative game theory.35 The Shapley values
were introduced to divide the ‘payoff’ of a game among players
of a team according to their individual contributions.35

ffðnÞ ¼
X

S4T \fpg

jSj!ðjT j � jSj � 1Þ!
jT j! ðnðSWpÞ � nðSÞÞ:

Here, T is the team including all players, S an ordered subset of
players (termed coalition) of players, nðSÞ the value of coalition
S, p is a player, and ff(n) the Shapley value of player p.

For ML, the Shapley value concept is applied based on an
analogy: Players are features, the game is the prediction of
a given test instance, and the payoff is the prediction of the test
instance aer subtracting the mean value of all other test set
predictions. The Shapley value of a feature is calculated as the
mean marginal contribution to all possible coalitions. Accord-
ingly, for n features, 2n coalitions must be accounted for. The
Shapley value formalism makes it possible to quantify the
importance of features that are either present or absent in test
instances.

In ML, the number of features usually signicantly exceeds
the number of players in a team. Therefore, the calculation of
exact Shapley over all possible coalitions is NP-hard and
computationally infeasible for large feature sets. Furthermore,
ML models require all features they were trained on to make
predictions and cannot use different subsets. Therefore, to
determine the contribution of a given coalition to a prediction,
all features missing in the coalition must be randomized or
sampled from a marginal distribution. These ML-specic
challenges typically require the approximation of Shapley
values, for which a variety of methods have been introduced.36

Among these, ‘Shapley additive explanations’ (SHAP)37 is the
most popular approach overall and the currently most widely
used explanation method in molecular design. SHAP relies on
1414 | Chem. Sci., 2026, 17, 1411–1422
feature attribution and local approximations and represents an
extension of LIME.37,38 It is model-agnostic and quanties
individual feature contributions that add up to the probability
of a given class label prediction.

SHAP variants

The original implementation of the SHAP formalism is oen
referred to as KernelSHAP because it generates a local approx-
imation model with a special kernel function to estimate
Shapley values using linear regression.37 Various SHAP variants
have been introduced that adjust the formalism for specic ML
methods or molecular decomposition schemes.36 These vari-
ants include MolSHAP that decomposes a compound into its
core structure and substituents (R-groups) and estimates the
importance of each R-group for a prediction using SHAP values
calculated during iterative masking of R-groups.39 In addition,
SHAP variants have been introduced for decision tree methods
(TreeSHAP)40 and deep neural networks (DeepSHAP).41 The
SHAP variant for decision tree structures enables the calcula-
tion of exact Shapley values.40 For support vector machines with
binary features (such as molecular ngerprints) and different
kernels, exact Shapley values can also be computed using
another (non-SHAP) methodology.42

One should consider that approximation methods for
Shapley values generally take the average model output as the
expected value, given coalitions comprising a constant subset of
features for which remaining features are sampled from their
marginal distributions.36 This approach yields an approxima-
tion of feature contributions by implicitly treating features as
independent entities. However, this assumption is problematic
in the presence of data correlation and produces varying
explanations. Alternatively, features not kept constant in coali-
tions can be sampled from the conditional (observational)
distribution.36 In this case, feature relations are accounted for
by restricting sampled coalitions to feature combinations
observed in the data. However, sampling from the conditional
distribution can assign importance to irrelevant features if they
are correlated with relevant features. The choice of the marginal
or conditional distribution depends on whether priority is given
to model delity or data characteristics, but inuences expla-
nations of given predictions.

SHAP analysis produces numerical explanations for molec-
ular predictions. Such explanations require further analysis
because they consist of importance values for each individual
feature. Hence, they are neither concise nor immediately
interpretable. To facilitate interpretation of explanations,
chemical features are oen projected on the structures of test
compounds using atom-based feature mapping of Shapley
values38 or heatmaps.43 Fig. 2 shows examples that identify
substructures with highest importance for correct predictions.

Notably, such visualizations represent explanations incom-
pletely because only features present in test compounds can be
mapped, but not absent features. However, features absent in
test compounds can also support or oppose predictions.
Furthermore, the Shapley value concept requires that SHAP
values add up to the difference between the expected value
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Feature mapping. A multi-layer perceptron was trained to distinguish between active and inactive compounds that were represented
using atom environment (extended connectivity) fingerprints44 comprising atom sequence features. For two correctly predicted active
compounds, feature importance values were calculated using model-agnostic KernelSHAP and the DeepSHAP variant for neural networks,
respectively. The SHAP values for features present in these compounds were then projected on the structures by atom-basedmapping. An atom
might participate in multiple features and the corresponding SHAP values were summed. The atoms are color-coded in red (positive SHAP
values, supporting the correct prediction) and blue (negative values opposing the prediction), with color intensity scaling with the size of the
absolute values.
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(average prediction of the model) and the prediction to be
explained. As a result, identical importance values for different
test instances have a different relative impact and should not be
directly compared across multiple test instances without
normalization.

Fig. 2 also illustrates that SHAP variants might generate
different explanations for test compounds correctly predicted
with a given ML model.17,42 For the compound at the top, the
feature maps based on DeepSHAP and KernelSHAP explana-
tions are similar, with the exception that the uorophenyl ring
weakly supports (DeepSHAP) or weakly opposes (KernelSHAP)
the correct prediction. For the compound at the bottom, the
magnitude of prediction support differs signicantly for the
explanations. For the aminoisoxazole ring, conicting contri-
butions are detected, with positive and negative values based on
DeepSHAP and KernelSHAP, respectively. Notably, differences
between explanations produced with different SHAP variants
result from the stochastic nature of the underlying feature
perturbation and sampling processes and ML method-specic
algorithmic modications. Importantly, such differences
affect model explanation and interpretation.17 Therefore, it is
advisable to consider alternative XAI concepts when explaining
predictions.

While explanations based on feature attribution are
primarily instance-based, cumulative (global) SHAP analysis
© 2026 The Author(s). Published by the Royal Society of Chemistry
can be carried out for multiple test compounds (or entire test
sets) by aggregating explanations to quantify global feature
importance.38 For example, global SHAP analysis was carried
out to identify structural determinants of multi-target
activity45,46 or metabolic stability47 of compounds. Global
SHAP analysis also reveals general prediction characteristics of
a given ML model. For example, in distinguishing between
compounds with dual- and corresponding single-target activity
using random forest models, correct predictions were mostly
determined by features that were present in dual-target and
absent in single-target compounds, as revealed using Tree-
SHAP.46 Thus, the models detected characteristic structural
features in dual-target compounds and classied compounds in
which these features were absent as single-target compounds.46
Structure-based explanations

Rationalizing predictions of new active compounds provides
a basis for synthesis and experimental evaluation and the
assessment of causality (see above). For numerical feature
attribution, interpretation requires feature mapping or other
follow-up analysis, as discussed above. However, by including
domain-specic knowledge into XAI approaches, it is also
possible to seamlessly integrate explanation and interpretation.
Therefore, in molecular design, explanations of predictions in
Chem. Sci., 2026, 17, 1411–1422 | 1415
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the applicability domain of a model should best be represented
at the level of molecular structure.
Anchors concept

The anchors concept, a representative rule-based XAI approach,
has been supplemented with chemical knowledge, leading to
the domain-specic MolAnchor methodology.48,49 In MolAn-
chor, test compounds are systematically decomposed by retro-
synthetic substructure generation.50 Beginning with individual
substructures, combinations are examined to derive rules of
minimal structural composition that determine predictions. As
an example, ‘if fragment X is present, then the compound is
predicted to be active’. For high-dimensional feature represen-
tations such as molecular ngerprints, the combinatorial frag-
ment exploration restricts the enormous search space of
possible rules that the original anchors algorithm explores,
leading to signicant improvements in computational effi-
ciency.48 Moreover, as illustrated in Fig. 3, MolAnchor analysis
ensures that each explanation represents a chemically sound
substructure (or combinations of substructures), rather than
a feature combination from the global search space that might
not be chemically understandable. By design, MolAnchor rules
integrate explanation and chemical interpretation of predic-
tions. In a recent application, MolAnchor analysis identied
substructures in isoform-selective protein kinase inhibitors that
consistently determined multi-task selectivity predictions and
for which causal selectivity relationships were determined
based on experimental data.49
Fig. 3 Structural explanations of predictions. For a correctly predicted
active compound represented using an extended connectivity
fingerprint,44 structural features representing decision rules are shown
that were generated with the Anchors algorithm (blue), the MolAnchor
variant (red), or both algorithms (green). The figure was taken from an
open access publication by the authors48 and modified. Adapted with
permission.48 Copyright 2024, Elsevier.

1416 | Chem. Sci., 2026, 17, 1411–1422
Counterfactuals and contrastive
explanations

The XAI concepts of counterfactuals and contrastive explana-
tions have also been adapted for chemistry and drug design.
Molecular counterfactuals are designed to explore narrow
chemical space around a test instance of interest. Therefore,
different computational strategies based on chemical knowl-
edge have been introduced. The rst approach, termed molec-
ular explanation generator (MEG), sampled compounds with
high structural similarity to a test instance through reinforce-
ment learning using graph neural networks.51 This study
focused on toxicity and solubility predictions showing, for
example, that minimal structural changes of a test instance
such as the addition of a methyl group reversed a toxicity
prediction.51 An alternative method termed model agnostic
counterfactual explanations (MMACE)52 charted local chemical
space around a test instance through algorithmic permutation
of self-referencing embedded strings.53,54 Compared to MEG
and MMACE, a simpler method was introduced to generate
counterfactuals for an entire compound test set by structural
decomposition followed by systematic recombination.55 There-
fore, analogue series were extracted from the data sets, their
core structures were isolated, and iteratively recombined with
a library of substituents. Candidate compounds were system-
atically re-predicted to identify counterfactuals for test
instances with isolated cores, typically producing large
numbers of counterfactuals.55 Fig. 4A shows a representative
example from a case study on different protein kinase inhibi-
tors.56 In this example, counterfactuals of a given test inhibitor
with predicted activity against different kinases directly provide
experimentally testable hypotheses for exploring causal rela-
tionships, that is, responsibility of the exchanged structural
moieties for activity against different kinases. This illustrates
the integration of the computational explanation and human
interpretation of predictions through molecular
counterfactuals.

Different from counterfactuals, contrastive explanations
including chemical domain knowledge have only recently been
introduced. Contrastive explanations identify minimal feature
sets required for opposite predictions, also known as pertinent
positive or negative feature sets.57,58 Therefore, feature sets for
model derivation are oen systematically reduced or, alterna-
tively, perturbed to analyze their relative impact on the predic-
tions.57,58 Iterative feature perturbation is also used to
determine increasingly contrasting predictions for the fact and
the foil class.33,34 For classication models, this can be accom-
plished by monitoring the resulting probabilities of fact or foil
predictions. The degree of contrast is formalized as contrastive
behavior dcontr that corresponds to the normalized shi in the
probability distribution of the foil relative to the fact.59

The principles of contrastive explanations were adapted for
molecular design, leading to the molecular contrastive expla-
nations (MolCE) methodology.60 Instead of randomly perturb-
ing features, MolCE introduces molecular feature perturbation
by exchanging cores or substituents of test compounds with
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Molecular counterfactual and contrastive explanations. (A) shows counterfactuals for a protein kinase inhibitor. Multi-class ML models
were derived to predict the activity of inhibitors against a panel of different kinases. For a correctly predicted vascular endothelial growth factor
receptor 2 (VEGFR2) kinase inhibitor (top, blue), exemplary counterfactuals are shown. Replacement of the chloroaniline moiety in the VEGFR2
inhibitor with a pyrrolidine carbonitrile or acrylamide group (highlighted in red) led to the prediction of activity against epidermal growth factor
receptor (EGFR) and Janus kinase 2 (JAK2), respectively. (B) shows the application of MolCE to a correctly predicted non-selective D2R test
instance using D2R-selective compounds as the foil class. Alternative core structures (scaffolds) and substituents increasingly change the
contrastive behavior towards the prediction of D2R selectivity.
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structurally analogous fragments. The resulting virtual
compounds represent foils for which the contrastive behavior is
determined. This theoretical framework enables the generation
of chemically intuitive contrastive explanations that are directly
interpretable at the level of molecular structure, comparable to
molecular counterfactuals.
© 2026 The Author(s). Published by the Royal Society of Chemistry
In the proof-of-concept study, MolCE was applied to multi-
class predictions distinguishing between selective and non-
selective ligands for members of the D2-like dopamine
receptor (D2R) family.60 Different prediction tasks were
analyzed using the fact-foil formalism including the correct
prediction of non-selective and incorrect prediction of selective
Chem. Sci., 2026, 17, 1411–1422 | 1417

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc08461j


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 2
/2

/2
02

6 
5:

18
:3

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
compounds. Fig. 4B shows an example of correctly predicted
non-selective compounds. By determining the contrast shis of
these compounds, it was possible to identify structural features
guiding predictions of receptor isoform selectivity. Thus, MolCE
also integrates explanation and interpretation of predictions,
leading to immediate causal inferences.
Chemical language models and
transformers

Language models have been adapted for molecular property
prediction and generative compound design. These models
operate on textual chemical representations such as molecular
strings and are oen termed chemical language models
(CLMs).61–63 Their popularity is largely due to their versatility in
Fig. 5 Attention map. Shown is an attention map for an input-to-output
tokenized SMILES strings. Each cell accounts for the color-coded attentio
the relative magnitude of weights.

1418 | Chem. Sci., 2026, 17, 1411–1422
tackling generative design tasks that are oen impossible to
attempt with other ML methods.63 First-generation CLMs were
mostly recurrent neural networks that were then increasingly
replaced by transformers with their hallmark attention/self-
attention mechanism.64,65 Currently, transformers represent
the preferred CLM architecture.63,66 In addition to task-specic
transformer CLMs, large language models (LLMs) are also
adopted for chemistry, for example, through additional training
with large amounts of chemical information.67,68 A major
attraction of such models is combining their interactive use in
natural language with specic chemical knowledge and tasks.
Depending on the scope of the domain-specic training, these
models can be used as 'AI research assistants'.67,68 Another
emerging trend is the use of such models as increasingly
autonomous ‘AI agents’ systems.68,69
compound mapping using a CLM. The compounds are represented as
nweight of a pair of input and output tokens. Color intensity scales with

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Explaining transformer models

While the transformer architecture is highly exible, its
inherent complexity hinders model explanation.70 The black-
box character is compounded by frequently observed halluci-
nation behavior, especially for LLMs. Hallucination refers to the
generation of seemingly plausible results without empirical
support.71 So far, XAI research for transformers has mainly
focused on quantifying the importance of individual tokens and
token relationships using perturbation-, gradient-, and
attention-based approaches.72–75 Perturbation-based
approaches function analogously to those in feature attribu-
tion methods, as discussed above. Alternatively, gradient-based
methods such as integrated gradients or layer-wise relevance
propagation compute internal weight gradients based on back-
propagation.75 Attention weights systematically quantify the
importance of relationships between tokens within a sequence
or across sequences for transformer modeling. For instance, the
importance of input tokens for each output token can be
determined. Attention weights are oen displayed in so-called
attention maps, which are heatmaps representing weights for
pairwise token combinations. Fig. 5 shows an example for
a CLM.

While the attention map represents a visual explanation of
a prediction, its chemical interpretability is limited. There is
also a debate in the literature about whether attention weights
can be used to explain transformer decisions, considering that
their correlation with other feature importance values is typi-
cally weak.76,77 However, it was also shown that the application
of feature attribution methods to transformer architectures and
complex tokenization schemes is prone to high variance and
errors.78 This raises the question of whether such comparisons
should even be considered. Furthermore, in a notable study,
feature attribution methods were applied in modied form to
explain aqueous solubility predictions of an encoder-only
transformer variant.79 Attention scores were calculated as
a measure of token relevance and the SHAP formalism was
extended using systematic masking of input tokens to compute
SHAP values. The resulting explanations were not chemically
interpretable, for instance, by analyzing functional groups and
their inuence on the predictions. Instead, the explanations
appeared to be more related to molecular similarity relation-
ships in latent space.79 These ndings also raised the question
of whether the transformer learned chemical information
related to solubility during ne-tuning or largely relied on the
similarity relationships of molecular embeddings encountered
during the extensive pre-training procedure.

Given the difficulties in adapting or developing interpretable
XAI approaches for transformer models, another recent study
attempted to indirectly investigate learning characteristics of an
encoder-decoder transformer CLM for a generative drug design
application. Here, sequence-based compound design was
chosen as a model system. Accordingly, the CLM was tasked
with learning sequence-to-compound mappings to ultimately
generate new compounds for given input protein sequences.80

This system made it possible to carry out many control
© 2026 The Author(s). Published by the Royal Society of Chemistry
calculations based on systematically modied sequences and
sequence–compound pairs. The CLM successfully reproduced
known active compounds for input proteins that were excluded
from ne-tuning. However, the control calculations revealed
that the model did not learn sequence information relevant for
ligand binding. Instead, it heavily relied on sequence and
molecular similarity relationships between training and test
data and on compound memorization effects. Furthermore, the
model tolerated sequence randomizations as long as ∼50–60%
of a native sequence was retained, which was sufficient for
learning. However, the distribution of retained sequence
segments across native sequences had no inuence on the
results.80 Thus, sequence-based compound predictions were
only statistically driven. The models relied on detectable
compound and sequence similarity and memorization, but did
not learn sequence motifs characteristic of protein families or
implicated in ligand binding. These conclusions could be rmly
drawn based on systematic control calculations, without the
need to adopt XAI methods for transformer CLMs.
Conclusions

In molecular design, interpretable explanations of ML predic-
tions play an important role. Candidate compounds are most
likely not synthesized and tested if the predictions cannot be
understood. This generally limits the impact of ML in drug
discovery. In the AI era, the use of complex generative or
property prediction models exacerbates this problem and leads
to increasing interest in XAI. The inclusion of domain-specic
knowledge helps to adapt XAI approaches for molecular
design. For transformers, XAI approaches are still in their early
stages. Attention maps are insufficient to generate chemically
interpretable explanations. However, for CLMs, model-agnostic
human-centered approaches such as counterfactuals are
applicable. Such explanations offer immediate opportunities to
formulate experimentally testable hypotheses for evaluating
causal relationships. Notably, current CLMs rely entirely on
statistical operations and the results may oen not depend on
learning chemically relevant information. In such cases, model
overinterpretation likely leads to Clever Hans predictors. Purely
statistically driven predictions may not benet from structure-
based explanations. Instead, concepts like uncertainty esti-
mates or contrastive scoring of output instances might be more
appropriate. Numerical estimates of feature importance can be
visualized by feature mapping to identify and highlight regions
in molecules that are primarily responsible for predictions.
There are numerous opportunities for future research to
develop new approaches for explaining black-box models in
molecular design taking domain-specic knowledge into
account.
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