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Stereoselective glycosidic bond formation remains a major challenge in nucleoside synthesis.
Azanucleosides, a prominent class of nucleoside analogs wherein the sugar oxygen is replaced by
nitrogen, exhibit unique biological activities but struggle to achieve anomeric selectivity in synthesis.
We disclose a catalyst-free iodocyclization strategy that uses simple achiral molecules—Nal or 2-
mercaptobenzimidazole—to stereodivergently access both a- and B-azanucleosides in high yields
(up to 98%) with excellent stereocontrol (8:« up to 8 only and «: 8 up to 19:1). The utility of this
method is demonstrated by a concise synthesis of forodesine in 8 steps with 20% overall yield and
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Introduction

Nucleoside analogues (NAs) are an important source of
antiviral, antitumor and antibacterial drugs.'”> Among them,
azanucleosides constitute a prominent group of structurally
modified nucleosides, featuring a nitrogen-containing ring.
Interestingly, B-azanucleosides usually exhibit unique phys-
ical, chemical, and biological properties.®® For example,
forodesine (BCX-1777, immucillin H) and galidesivir (BCX-
4430, immucillin A), two well-known B-azanucleosides, are
potent inhibitors of human purine nucleoside phosphory-
lase, protozoan nucleoside hydrolases, and purine phos-
phoribosyl transferases (Fig. 1).°**> Forodesine has been
approved in Japan for the treatment of relapsed or refractory
peripheral T-cell lymphoma. Galidesivir demonstrates broad-
spectrum antiviral activity by disrupting viral RNA-depen-
dent RNA polymerase.”?® Additionally, several other
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bioactive molecules structurally similar to forodesine also
exhibit significant antiviral activity.>*-** On the other hand, a-
nucleosides usually have remarkable biological activities,
high enzyme stabilities, and inhibitory activities against
tumors, bacteria, and plasmodia.** However, investigations
of a-azanucleosides are merely at the initial stage, due to
limited synthetic methods. Given the importance of both -
and a-azanucleosides, it is essential to develop a stereo-

controlled synthetic strategy applicable to both
configurations.
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Fig. 1 Structures of representative azanucleoside drugs and bioactive
molecules.

Chem. Sci.


http://crossmark.crossref.org/dialog/?doi=10.1039/d5sc08431h&domain=pdf&date_stamp=2026-01-05
http://orcid.org/0000-0002-6734-3388
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc08431h
https://pubs.rsc.org/en/journals/journal/SC

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 23 December 2025. Downloaded on 1/23/2026 11:01:38 PM.

(cc)

Chemical Science

A. Current strategies to synthesize forodesine
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B. This work: chiral modulator-controlled, catalyst-free iodocyclizaion
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Fig. 2 (A) Current strategies to synthesize forodesine. (B) This work
selective synthesis of - and B-azanucleosides.

C-Glycosylation is the most widely used method for
synthesizing C-nucleosides, including eletrophillic addi-
tion,* nucleophilic addition,?*> the Friedel-Crafts reac-
metal cross coupling, and radical-mediated
reactions.***® Current strategies for synthesizing B-azanu-
cleosides, as exemplified by the synthesis of forodesine,
primarily involve constructing the key glycosidic bond
through coupling reactions (Fig. 2A).***” To achieve milder
reaction conditions, improved stereoselectivity and higher
yields, various sugar donors have been developed, such as
imines, nitrones, and azalactams. Among all reported
synthetic routes to forodesine, the highest §: « selectivity is
8:1, with a maximum yield of 38%.*” The synthesis of gali-
desivir follows a similar strategy, focusing mainly on intro-
ducing the amine group at the C4 position of the purine
ring.*® Nevertheless, existing intermolecular cross-coupling

tiOl’l,30‘31 32-35
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catalyst-free, achiral modulator-controlled iodocyclization for stereo-

methods for B-azanucleosides face two major challenges: (1)
the synthesis of azasugar donors is often complex, typically
requiring at least five steps from furanose with low efficiency;
(2) control over glycosidic bond stereoselectivity remains
unsatisfactory and is highly dependent on auxiliary groups at
the C2' position of the glycosyl donor.

Catalytic asymmetric halocyclization of alkenes has
proven to be a powerful strategy for accessing stereodefined
heterocycles while installing halogen handles for further
functionalization.**** In our previous work, we established
a chiral phosphoric acid-catalyzed intramolecular iodo-
cyclization system for the synthesis of furanose nucleosides,
in which achiral additives (Nal or S=PPh;) were employed to
modulate anomeric stereoselectivity.®> However, this system
suffered from two critical limitations: it proved ineffective for
synthesizing azanucleosides where the nucleophile is an

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Optimization for a-alkylation of glycine Schiff base?

Entry PTC Scale  Temp. (°C) Results?
B 1 PTC4 01mmol  o°C 80%, 73% ee Ph
Fh PTC, ag. KOH 2 PTC-2 01mmol O0°C  83% 90% ee NZ > ph
Ry i -
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6 PTC-4 30 mmol —205C 93%, 99% ee
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Scheme 1l The synthesis of compound 5a. ?Reaction conditions: 1 (0.1 mmol), allyl bromide (0.12 mmol), PTC (0.0005 mmol), 50% ag. KOH (0.25
mL) in PhMe : CHCls (v:v =7:3, 0.75 mL), 0 °C, 8 h. PIsolated yield, ee values were determined by chiral HPLC.

NHR group, failing to deliver either a- or B-configured prod-
ucts with satisfactory stereocontrol (see SI Table S1); more-
over, its reliance on a chiral phosphoric acid catalyst severely
limited practicality and scalability. Indeed, industrial adop-
tion of chiral phosphoric acid catalysts is often hampered by
the high cost associated with the six-step synthesis from
BINOL. The global environmental factor (E; factor) high-
lights environmental drawbacks in synthetic systems by
quantifying waste generation across the full lifecycle,
including catalyst synthesis and reaction processes.’>**
Reducing the use of expensive chiral catalysts represents
a straightforward approach to minimize the Eg factor.

To address these challenges, we have developed a funda-
mentally distinct, catalyst-free iodocyclization strategy.
Stereodivergent synthesis of azanucleosides is achieved in
the absence of any chiral catalyst, using only simple achiral
modulators: Nal for a-selectivity and 2-mercaptobenzimida-
zole for B-selectivity (Fig. 2B). This approach not only avoids
the cost and environmental burden associated with chiral
catalysts but also successfully addresses the long-standing
challenge of stereoselective azanucleoside formation. The
resulting C2-iodinated products serve as versatile interme-
diates for further functionalization, enabling efficient access
to both o- and B-azanucleosides, including a concise
synthesis of forodesine. We believe that this method
provides a robust and scalable platform for diversifying
azanucleosides, which remain underexplored in medicinal
chemistry.

© 2026 The Author(s). Published by the Royal Society of Chemistry

Results and discussion

Our synthesis commenced with the preparation of halo-
cyclization substrate 5a (Scheme 1). Asymmetric a-alkylation
of glycine Schiff base catalyzed by chiral phase-transfer cata-
lysts (PTC) is a well-established method for accessing unnat-
ural amino acids.*** Quinuclidinium salts, derived from
cinchonidine and cinchonine, are widely used to induce
stereoselectivity.®>** To enhance the enantioselectivity, we
chose glycine Schiff base 1 bearing a benzyl ester group
instead of the conventional tert-butyl ester. The performance
of cinchonidine-derived quinuclidinium salts (PTC-1 to 4) in
the enantioselective allylation of 1 was evaluated (entries 1-4).
The dimeric cinchonidine derivative linked by a benzophe-
none group (PTC-4) proved highly effective, affording product
2 with excellent enantioselectivity (entry 4, 92% yield, 95%
ee). Lowering the reaction temperature improved both reac-
tivity and enantioselectivity, giving 2 in 95% yield and 99% ee
(entry 5). This condition performed well even on a 30 mmol
scale (entry 6, 93% isolated yield, 99% ee). Acid deprotection
afforded the free amine intermediate, which was subse-
quently protected with an Ns (nitrobenzenesulfonyl) group to
yield compound 3 in 85% yield. A Heck reaction between aryl
iodine 4 and alkene 3 in the presence of Pd[P(t-Bu)s], and
Cs,CO; furnished the C-C coupling product 5a, which served
as the substrate for subsequent halocyclization.

In our previous work, NalI and S=PPh; were identified as
key additives for controlling the stereoselectivity of catalytic

Chem. Sci.
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Table 1 Optimization of reaction conditions®
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NN { 74 ) MeCN, 0 °C @ :\N o & ’ ; ‘0-‘
BnO,C” ™ e N
N~/ Bom OMe : %
5a 7a CCDC No. 2378539
H
o s o) s R
= L= CL- = =0
N N N N
H H H N
8 9 10 1 12 13
Entry Variation from labeled conditions Yield” (%) B:a(6a:7a)
1 None 92 5:1
2 No S=PPh; 95 1:1
3 Nal instead of S=PPh;, 85 1:10
4 8 instead of S=PPh; 93 11:1
5 9 instead of S=PPh; 95 10:1
6 10 instead of S=PPh; 95 25:1
7 11 instead of S=PPh; 80 2:1
8 12 instead of S=PPh; 82 5:1
9 13 instead of S=PPh;, 79 2:1
10 Nal instead of S=PPh;, THF instead of MeCN 93 1:19
11 No S=PPh;, THF instead of MeCN 90 1:3

“ Reaction conditions: 5a (0.05 mmol), NIS (0.10 mmol), S=PPh, (0.05 mmol) in MeCN (2.5 mL), 0 °C for 1 h. ® Isolated yield. © 8 : « values were

determined by HPLC.

halocyclization by directing the reaction along specific
pathways.>” Therefore, we first investigated the effect of S=
PPh; on stereochemical control (Table 1). Pleasingly, when
S=PPh; was used as an achiral modulator with NIS as the
halogen source, B-nucleoside 6a was obtained as the major
product (entry 1; 8 : « = 5:1). In contrast, when Nal was used
as the modulator, the configuration inverted, affording o-
nucleoside 7awith a 8 : a ratio of 1: 10 (entry 3). The absolute
configuration of 7a was confirmed by single-crystal X-ray
crystallography (CCDC No. 2378539). The configuration of 6a
was then assigned by comparing its NMR NOE (Nuclear
Overhauser Effect) data with those of 7a. In the absence of any
modulator, no stereocontrol was observed (entry 2). These
results suggested that the thiocarbonyl group might be
crucial for B-selectivity. We then screened various thio-
carbonyl-containing compounds as B-selective modulators
(see SI Table S2). Among them, 2-mercaptobenzoheterocycles
exhibited excellent reactivities and stereoselectivities (entries
4-6). Notably, 2-mercaptobenzimidazole 10 afforded product
6ain high yield (up to 95%) with excellent B-selectivity (8: o« =
25:1; entry 6). To verify the necessity of the thiocarbonyl
group, control experiments with compounds 11, 12, and 13
were conducted (entries 7-9). These compounds showed

Chem. Sci.

almost no stereocontrol. We further optimized the reaction
conditions to improve a-selectivity (see SI Table S3). By fine-
tuning the solvent, high a-selectivity was achieved (8: a =1:
19, entry 10). In the absence of Nal, the diastereomeric ratio
was only §: @ = 1:3 (entry 11). Loading studies revealed that
both Nal and 10 could promote stereoselective iodo-
cyclization catalytically. High a-selectivity was maintained
(8:a=1:19), while B-selectivity slightly decreased (8:a=1:
14) under reduced loading of 10 (see SI Table S4).

We systematically evaluated the substrate scope under
both B- and a-selective conditions, using a series of halo-
cyclization substrates 5a-u bearing varied R' groups and
nucleobase structures (Fig. 3). Starting from model substrate
5a, the effect of different ester groups (R'=C0,Me, CO,t-Bu)
was examined. Both B-azanucleosides 6b-c¢ and o-azanu-
cleosides 7b-c were obtained in high yields (>90%) with
excellent stereoselectivity (6: «upto24:1and a: fupto 17:
1). To closely mimic the azanucleoside structure, a hydrox-
ymethyl group protected with various groups (TBS, TBDPS,
MOM, and Bn) was introduced at the C4’ position. Substrates
5d-g performed well, affording B-azanucleosides 6d-g in high
yields (>80%) with good stereocontrol (8: « up to 18: 1) and a-
azanucleosides 7d-g in high yields (>87%) with moderate

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Substrate scope of a- and B-azanucleoside synthesis.
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MeCN, 0°C
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7a, 90% yield, o:p > 15:1 4

Fig. 4 Gram-scale synthesis of B-azanucleoside 6a and a-azanu-
cleoside 7a via catalyst-free, achiral modulator-controlled
jodocyclizations.

stereocontrol (a:( up to 10:1). In the screening of nucleo-
base structures, we systematically examined the influence of
substituents in 5H-pyrrolo[3,2-d]pyrimidine derivatives. Both
mono-substituted derivatives at the C4-position (such as OEt,
OtBu, Cl, H, NHBn, NH{-Pr, Ph, and 4-OMe-Ph) and disub-
stituted derivatives at the C2 and C4 positions generally
exhibited good to excellent stereoselectivity under the opti-
mized conditions. B-Azanucleosides 6h-r were formed with
high selectivity (6:« up to ¢ only) and high yields (>86%),
except for 6k and 60 (8: & = 3:1). Similarly, a-azanucleosides
7h-r were mostly obtained with high selectivity («: 8 up to
10:1), except for 71 (a:8 = 2.5:1). Evaluation of N5-pro-
tecting groups (such as MOM and Bn) showed that they could
direct the formation of the corresponding B-azanucleosides
6s-t and oa-azanucleosides 7s-t  with  excellent

View Article Online
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stereoselectivities. Finally, preliminary evaluation of the 7H-
pyrrolo[2,3-d]pyrimidine scaffold confirmed the good
compatibility of the reaction system.

To demonstrate scalability, f-nucleoside analogue 6a and o-
nucleoside analogue 7a were synthesized on a gram scale from
5a (Fig. 4). Both yields and stereoselectivities were maintained:
B-nucleoside 6a was obtained in 93% yield with §: «>20:1, and
a-nucleoside 7a in 90% yield with «: 8 > 15:1.

Using this B-selective iodocyclization as the key step, we
developed an efficient asymmetric synthesis of forodesine and
a formal synthesis of galidesivir. As shown in Scheme 2, for-
odesine was synthesized in 20% overall yield over eight steps
from commercially available glycine Schiff base 1. Starting from
the PB-selective iodocyclization product 6a, one-pot reductive
debenzylation and halide elimination smoothly afforded
compound 14 in 75% yield. Stereospecific syn-dihydroxylation
of 14 with OsO,, followed by deprotection, gave compound 15.
Treatment of 15 with HCl in methanol then furnished for-
odesine. Following literature procedures,” functional group
modifications of the base moiety in forodesine, followed by
deprotection, provided the bioactive compound galidesivir. To
the best of our knowledge, this work provides the shortest route
to forodesine (8 steps vs. 10 in prior reports) and the highest 3 :
« selectivity (>20:1 vs. 8:1).

To demonstrate the versatility of our method and its
potential for constructing compound libraries in medicinal
chemistry, we performed diverse derivatizations on both -
and a-azanucleosides (Scheme 3). Specifically, B-nucleoside
6a underwent reductive elimination with NaBH,/DBU,
affording alkene 14 in 75% yield. Removal of the Ns group
under 1-mercaptooctane/t-BuOK conditions gave 17 in 87%

catalyst-free

BOM . g
7 iodocyclization
Ph Asymmetric NHNs [ N OMe
a-alkylation NIS, 10
~ 8
BnOZC/\N)\Ph Bnozcw
3 steps N=/ M_eCN, 0°C
1 5a 93% yield, B:a > 20:1
MeO
BOM
t-BuOK NN NaBH,
1-Mercaptooctane \ /) Os0O,4, NMO THF:H,0, rt.
N
PhMe, rt. HO Ns t-BuOH:THF, 50 °C then DBU, reflux
93% 92% 75%
OH OH
14
MeO 15 o H,N
BOM\ N N
= NH =z
W, 5 o
3 N/ conc. HCI o 7 ref. 45 N N
HO H —_— HO H — F HO H
N MeOH, reflux N . N
78% HCI «HCI
OH OH OH OH OH OH
16 TR
forodesine galidesivir

Scheme 2 Concise synthesis of forodesine and galidesivir.
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8 steps from 1, 20% overall yield

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Derivatization of $-azanucleoside 6a and a-azanucleoside 7a.

yield. Subsequent reflux of 17 in concentrated HCl/MeOH
furnished 18 in 72% yield. Alternatively, hydrogenation of 17
followed by deprotection afforded the C2’ and C3’-unsub-
stituted azanucleoside 20 in 60% yield over two steps. For the
a-azanucleoside series, treatment of 7a with DIBAL-H and
subsequent Ns deprotection provided 21 in 72% yield.
Radical-mediated deiodination of 21 yielded 22, while DBU-
promoted elimination afforded alkene 23 in 74% yield.
Treatment of 23 with concentrated HCI gave 24. Furthermore,
23 served as a key intermediate for the stereoselective
synthesis of target compound 25. This was achieved via Boc
protection of the C4’ hydroxymethyl group, dihydroxylation of
the C2'-C3’ alkene (occurring exclusively from the B-face to
give the corresponding diol), and final Boc deprotection.

To gain a thorough understanding of the reaction mech-
anism, especially on the effect of two achiral molecules, Nal
and 2-mercaptobenzimidazole 10, density functional theory
(DFT) studies were performed at the PBEO level,*® using
alkene 5a as a model substrate (Fig. 5). The a-selective
iodocyclization starts from Int1 (—4.6 kcal mol™'). We used

© 2026 The Author(s). Published by the Royal Society of Chemistry

the interaction region indicator (IRI)**® to analyze the
interactions between atoms of Intl (IRI pic. of Int1). Inter-
estingly, Nal in Int1 is identified as a centered role, cooper-
ating with Ns and ester carbonyl oxygen through Na-O
interactions. And Ns can stabilize NIS through ... stack-
ing, allowing NIS to attack substrates from the top face.
These interactions provide a favorable spatial environment
for a-selectivity. The electrophilic addition of I" to 5a and
meanwhile H' being transferred to the N atom result in Int2
with a reaction barrier of 22.5 kecal mol™". The following
nucleophilic cyclization occurs to generate PS, which is
exergonic by 25.1 kcal mol™'. In the B-selective iodo-
cyclization pathway, the IRI result of Int3 reveals that due to
the hydrogen bonding interaction, the thiol 10 consistently
occupies the region above the C=C bond throughout the
reaction. Due to the steric effect, the I from NIS attacks the
alkene from the bottom face only, resulting in B-selectivity.
Finally, nucleophilic cyclization is found to be exergonic by
16.9 kcal mol™*, and the reaction barrier is 32.5 kcal mol™*
(Int3 to PR).
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Fig. 5 Calculated free energy profile for the formation of nucleosides with «- and B-configurations from substrate 5a and other reactants.

Conclusion

In summary, we developed a catalyst-free iodocyclization
strategy using two simple achiral molecules, Nal and 2-mer-
captobenzimidazole 10, for the stereoselective synthesis of a-
and B-azanucleosides in high yields and stereoselectivities. DFT
studies reveal that Nal directs a-selectivity through hydrogen
bonding and Na-O coordination, while 2-mercaptobenzimida-
zole 10 controls B-selectivity via -7 stacking interactions. The
resulting C2'-iodinated azanucleoside products serve as key
intermediates for further functionalization into diverse azanu-
cleoside analogues. The utility of this method is demonstrated
by a concise synthesis of forodesine (8:« > 20:1, 8 steps, 20%
overall yield). To our knowledge, few existing methods achieve
such stereocontrol using solely achiral molecules in the absence
of chiral catalysts, particularly in nucleoside synthesis. This
work not only expands fundamental chemical understanding
but also provides access to underexplored azanucleosides for
therapeutic development.
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