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hylene formation in Cr/PNP
catalyzed ethylene oligomerization via
experimentally guided machine learning

Youcai Zhu, Yue Mu, Xiaoke Shi, Long Chen, Shu Yang, Li Sun and Zhen Liu *

Polyethylene formation remains a critical side reaction in ethylene selective oligomerization, lowering a-

olefin yields and lacking reliable predictive strategies. Here, an automated workflow incorporating

structural parsing and indexing was developed to construct a Cr/PNP catalysts library, extract

comprehensive molecular descriptors, and integrate them with machine learning models trained on

experimentally measured PE values. A combined classification-regression strategy enabled accurate

identification of low-PE catalysts and quantitative prediction of PE contents, establishing a broadly

applicable framework for catalyst design and side-product control in homogeneous catalysis. Analysis of

SHAP feature importance and DFT calculations revealed that the intrinsic properties of the ligand

primarily determine whether it produces low or high PE. In contrast, optimizing experimental conditions

plays a pivotal role in further reducing PE in low-PE ligands.
1. Introduction

Linear a-olens are important commodity chemicals widely
used in applications such as ethylene copolymerization and the
production of plasticizers, detergents, surfactants, and
lubricants.1–4 A signicant portion of the light fraction (C4–C8)
serves as comonomers in the copolymerization with ethylene to
produce linear low-density polyethylene (PE).5 Among them, 1-
hexene and 1-octene are particularly valuable for enhancing the
mechanical performance of the resulting polymers, especially in
terms of tear resistance.6 To enable the efficient and selective
production of these valuable a-olens, signicant attention has
been directed toward the development of transition metal
catalysts. Chromium-based catalysts3,7,8 have been most exten-
sively studied for selective ethylene oligomerization, especially
in comparison to those based on tantalum,9,10 titanium,11,12 and
other metals.13,14

Selective ethylene trimerization typically follows a meta-
llacyclic mechanism, where the relative stability of metallacyclic
intermediates dictates selectivity toward specic a-olens
(Fig. 1a, black line).3,15,16 Although crossover studies have
experimentally supported this mechanism,3 differentiating it
from classical Cossee–Arlman pathways, several mechanistic
uncertainties remain unresolved, including the oxidation states
of key intermediates,17 the reaction's kinetic order in ethylene,18

and the elementary steps involved in a-olen product release.19

Another particularly challenging issue is the mechanism
responsible for the formation of PE byproducts — an
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undesirable and costly side reaction.20 This side reaction not
only reduces the yield of target a-olens, but also leads to the
accumulation of high-molecular-weight PE, which can cause
reactor fouling and operational inefficiencies. The most widely
accepted explanation for PE formation is a catalyst degradation
pathway, where an off-cycle intermediate produces PE through
a Cossee-type chain growth pathway (Fig. 1a, red line).20

However, alternative pathways have also been demonstrated,
Gibson showed that chain transfer to aluminum mediated by
Me3Al can also generate PE.16 These ndings suggest that
mitigating PE byproduct formation solely through mechanistic
understanding is highly challenging, and thus alternative
approaches are required.

Given these mechanistic ambiguities, a common strategy is
to model transition states computationally using quantum
chemical methods. However, such approaches oen suffer from
intrinsic errors on the order of 2–3 kcal mol−1.21 In the context
of ethylene oligomerization, the energy barrier difference
between the key transition states, b-hydrogen transfer (TS1) and
ethylene insertion (TS2), can be as small as a few tenths of
a kcal mol−1. Such narrow DDG‡ windows render the predicted
product selectivity highly sensitive to computational uncer-
tainties.22 Errors stemming from functional choice, solvation
models, or inaccurate conformer sampling may lead to mis-
assignment of the favored product pathway (e.g., erroneously
favoring 1-hexene over 1-octene). In such scenarios, a hybrid
catalyst design framework that integrates quantum–mechanical
transition state modeling with machine learning techniques
offers a promising solution. Reaction-relevant descriptors were
extracted from quantum calculations and integrated into data-
driven models.23,24 This approach enables the systematic
Chem. Sci.
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Fig. 1 Overview of Cr-catalyzed ethylene oligomerization and modeling strategies. (a) Metallacyclic mechanism (black line) of ethylene tri-
merization/tetramerization, with an off-cycle pathway (red line) leading to PE byproducts; (b) machine learning model for transition-state
selectivity between 1-hexene and 1-octene; (c) workflow of this study: machine learning model for predicting PE byproduct formation.
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identication of critical features governing catalyst perfor-
mance, which are oen difficult to capture through conven-
tional analysis, and facilitates their use in rational catalyst
screening.

In recent years, data-driven approaches have demonstrated
increasing effectiveness across a variety of chromium-based
catalytic systems for ethylene trimerization and tetra-
merization. These methods offer promising alternatives or
complement to traditional transition state modeling, particu-
larly in addressing cases where minute energy differences
between competing pathways challenge the reliability of
quantum chemical predictions. Ess combined DFT-derived
transition state models with machine learning to predict the
1-hexene/1-octene selectivity of Cr/PN catalysts based on the
computed energy difference (DDG‡) between competing transi-
tion states (Fig. 1b).25 Their model identied key structural
descriptors (e.g., Cr–N distance and Cr distance out of pocket)
and enabled the design of new Cr/PN ligands predicted to
exhibit >95% selectivity for 1-octene. This approach was further
extended to Cr/PNP catalytic systems, where we identied key
factors correlating with the DDG‡ across 240 transition state
structures and established a standardized feature selection
protocol that yielded 20 descriptors, including 13
Chem. Sci.
multidimensional and 7 Mordred descriptors.26 A combined
DFT-ANN framework was also developed for Cr/PCCP catalysts,
where steric and electronic descriptors extracted from DFT-
optimized structures enabled accurate modeling and
screening of novel ligands. Experimental 1-octene selectivity
and activity of a newly synthesized ligand closely matched the
ANN predictions, underscoring the reliability of this approach
for guiding catalyst design.27

While signicant progress has been made in modulating 1-
hexene/1-octene selectivity, the issue of PE formation remains
relatively underexplored. As Sydora28 aptly stated, “any discus-
sion of ethylene tri-/tetramerization catalysts would not be
complete without mentioning PE formation.” The unclear
mechanism underlying PE byproduct formation remains
a major obstacle to the industrial application of Cr-catalyzed
ethylene oligomerization. Therefore, we chose the Cr/PNP
catalytic system as the model platform, given its well-
established high selectivity in ethylene trimerization and
tetramerization.5,29,30 Based on experimental data, a diverse set
of descriptors was extracted from DFT-optimized structures,
encompassing electronic, steric, and geometric features of the
catalysts. Classication and regression models were then
© 2026 The Author(s). Published by the Royal Society of Chemistry
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integrated to systematically investigate the key factors govern-
ing PE formation (Fig. 1c).
2. Computational details
2.1 DFT calculations

The DFT calculations, including geometry optimizations and
frequency calculations, were performed using the Gaussian 09
program package.31 Lowest energy conformers and protomers
were searched using automated conformer-rotamer ensemble
sampling tool (CREST).32 Subsequently, full optimization of all
structures was conducted employing the B3LYP-D3 functional
in conjunction with the def2-SVP basis set and the SMD solva-
tion model, with toluene employed as the model solvent.33–37

Harmonic frequency calculations were employed throughout to
assure that the structures were adequately optimized. The
nature of the lowest energy stationary points was then
conrmed by frequency calculations to ensure that they were
characterized as local minima with no imaginary frequency or
transition states with only one appropriate imaginary
frequency. The larger triple-zeta basis set def2-TZVP in combi-
nation with the functional M06-L was adopted to calculate the
single-point energy (E).38–40 Thermal correction of free energy
(Gtherm) is performed by thermochemical analysis. The SMD
solvation model for toluene was used to calculate the solvation
free energy (Gsol). The free energy required to change the stan-
dard state of 1 atm/1 M (Gstd) is included. Therefore, the relative
Gibbs free energy (DG) is dened as DG = DGtherm + DGsol +
DGstd + DE.
2.2 Model training

The machine learning models were trained using Jupyter
Notebook and the Scikit-learn library, with all code written in
Python.41 We employed both classication and regression
models. For classication, we used Logistic Regression, Deci-
sion Trees, and Random Forest.42–44 Six models were applied for
regression: Linear Regression, Ridge Regression, Random
Forest (RF) Regressor, Support Vector Regression (SVR),
XGBoost Regressor, and Lasso Regression.44–46 Cross-validation
Fig. 2 Workflow for generating catalyst and ligand conformer ensemble
followed by DFT refinement, Gibbs free energy-based ranking, and de
removing CrCl3 molecular fraction, and the resulting ligand geometries

© 2026 The Author(s). Published by the Royal Society of Chemistry
was performed by randomly splitting the data into 20% test and
80% training sets, using 5-fold cross-validation. Hyper-
parameter optimization was conducted via Grid Search.47
3. Result and discussion
3.1 Database construction

As the catalyst optimization relies on experimentally deter-
mined PE contents, we constructed a comprehensive descriptor
library incorporating PNP ligands evaluated in ethylene oligo-
merization reactions. The dataset encompasses most of the
ligands reported to date, with more than 200 experimental
entries including variations in temperature, pressure, and other
reaction conditions. It should be emphasized that the PE
contents used as targets in our models are overall experimental
observables, which may include contributions from multiple
active species and degradation pathways, rather than purely
from a single idealized catalytic cycle. The aim was to construct
a PNP descriptor library applicable to reactions with varying
ligand coordination environments. The resulting parameters
needed to be comparable across PNP skeleton with different P-
or N-substituents, so that disparate PNP ligands could be
meaningfully compared.

One key challenge in establishing the computational work-
ow for PNP ligands is the representation of their conforma-
tional space, the relative conformer energies, and the resulting
contribution to ligand properties. This is particularly critical for
steric descriptors, which vary substantially with conformation.
While no single model system (e.g., free ligand or specic
reference complexes) can fully capture the conformational
space accessible to PNP ligands in catalytically relevant envi-
ronments, it is possible to dene reasonable limits for attain-
able geometries and properties. Probing these ranges allows us
to assess ligand behavior in Cr-catalyzed ethylene oligomeriza-
tion and to predict catalytic performance.

Reliable geometries were obtained using GFN2-xTB
combined with CREST-based workows to generate conformer
ensembles (Fig. 2). The conformational space was explored in
two reference states: (i) coordinated species represented by the
s. Conformer ensembles were generated using GFN2-xTB and CREST,
duplication. Low-energy catalyst conformers were then modified by
were used for single-point energy calculations.

Chem. Sci.
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Fig. 3 Categories of molecular descriptors. (a) Five descriptor classes: electronic, RDKit-derived, geometric, steric, and ACSF, with represen-
tative examples of calculated properties. (b) Variants of descriptor values, including Boltzmann-weighted conformer averages, min–max ranges,
and lowest-energy conformer.
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(PNP)CrCl3 model complex and (ii) the corresponding free
ligands. Free ligands typically occupy more space around the
nitrogen lone pair or phosphine substituents, making them
appear sterically more demanding than their coordinated
counterparts, yet both states are essential for accurately
describing catalytic behavior and potential side reactions such
as ligand dissociation. Specically, the conformer ensembles
generated by CREST were further rened using DFT calcula-
tions, and the resulting structures were ranked by their Gibbs
free energies to identify the lowest-energy conformer set. To
extract ligand-level information, single-point energy calcula-
tions were subsequently performed on geometries derived from
this lowest-energy catalyst conformer set, in which the Cr and Cl
atoms were removed while preserving the ligand geometry. This
Chem. Sci.
strategy ensured that the ligand descriptors were obtained in
a manner consistent with the catalytically relevant
conformations.

To comprehensively capture the factors relevant to
transition-metal catalysis, both catalysts and ligands were
characterized using ve categories of descriptors: electronic,
RDKit, geometric, steric, and atom-centered symmetry func-
tions (ACSF). The descriptor set includes global catalyst-level
properties (e.g., molecular electrostatic potential, percent
buried volume, and bite angle) together with ligand-specic
features, such as the lone-pair environment of the phos-
phorus donor atoms and sterimol parameters of the nitrogen
substituents (Fig. 3a). Of particular importance, the steric
descriptors were designed to reect quadrant-specic
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Automated structural parsing and indexing workflow.
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contributions for ligands with different symmetry elements. For
example, in the case of a C2v symmetric ligand (Section 2 of SI),
the percent buried volume of the northwestern quadrant illus-
trates how optimized geometries oen deviate from ideal
Fig. 5 Descriptor reduction and feature selection workflow. (a) Correlatio
redundancy removal (<200 descriptors), followed by dimensionality redu
into four major classes based on phosphorus substituents: P–N (nitro
(aliphatic carbon substituents), and P–C_Ar (aryl carbon substituents); (
descriptors, with the combination of LASSO and RF further considered t

© 2026 The Author(s). Published by the Royal Society of Chemistry
symmetry, leading to quadrant-specic values that are not
equivalent.

To account for this, we report the minimum, maximum, and
average values of symmetry-equivalent quadrants, thereby
capturing subtle directional steric effects that traditional global
parameters cannot reect. In total, more than 700 descriptors
were evaluated. For each descriptor, four variants were gener-
ated: Boltzmann-weighted average, maximum, minimum, and
the value of the lowest-energy conformer. This strategy ensured
both conformational diversity and statistical representativeness
(Fig. 3b).

To enable efficient and scalable descriptor extraction, we
developed a fully automated structural parsing and indexing
workow (Fig. 4). This approach integrates SMILES strings with
information from generated MOL les, and through grouping,
decomposition, and heavy-atom tracking, it precisely identies
key atomic relationships. Based on the core scaffold and pre-
dened SMILES rules, the structures and atom ordering of
substituents R1–R5 are determined. Because tools such as RDKit
place heavy atoms before hydrogens, the indices of substituents
can be directly derived from SMILES, while bond connectivity in
MOL les provides the corresponding hydrogen indices. These
atom indices then serve as anchors for computing geometric
and electronic descriptors in a reproducible way. The fully
automated process eliminates manual intervention, improves
efficiency and consistency, and ensures the comparability of
descriptors across large ligand libraries.
n heatmaps of the initial descriptor library (>2000 descriptors) and after
ction using UMAP. The UMAP projection reveals clustering of ligands
gen substituents), P–C_Ole = (olefinic carbon substituents), P–C_Al
b) feature selection using PCA, LASSO, and RF to identify the top 20
o capture both linear and nonlinear effects.

Chem. Sci.
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Fig. 6 Performance of classification and regression models based on four descriptor sets. (a) Confusion matrices of decision tree classification
models (threshold PE = 1 wt%); (b) regression results for catalysts with PE < 1 wt% using XGBoost.
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3.2 Feature engineering and model development

To reduce redundancy and highlight the most informative
descriptors, we rst eliminated highly correlated variables,
reducing the descriptor space from more than 2000 to fewer
than 200 non-redundant descriptors (Fig. 5a). UMAP-based
dimensionality reduction further conrmed the clustering of
ligands into the four major classes present in the database (P–N,
P–C_Ole, P–C_Al, and P–C_Ar). This indicates that the reduced
descriptor set preserves sufficient chemical information to
represent the structural diversity of phosphorus substituents,
thereby validating the effectiveness of the selected descriptors.
Subsequently, three complementary feature selection strategies
were applied to identify the most relevant descriptors: principal
component analysis (PCA), linear LASSO regression with cross-
validation (LASSO-CV), and nonlinear random forest (RF)
ranking (Fig. 5b). For each method, the top 20 descriptors were
retained, and the union of LASSO and RF selections was con-
structed to capture both linear and nonlinear effects. These
rened descriptor subsets were then used to train classication
and regression models, with model performance evaluated by 5-
fold cross-validation using accuracy (for classication) and R2/
MAE (for regression) as metrics.

Direct regression of the full dataset yielded poor predictive
performance due to the highly imbalanced distribution of PE
values (Section 3 of SI). To address this challenge, a classica-
tion-regression strategy was implemented. First, classication
models were constructed to distinguish between catalysts with
low PE (<1 wt%) and high PE ($1 wt%) using four different
descriptor sets (Fig. 6a). Among them, the combined LASSO +
RF descriptor set achieved the best performance under the
decision tree model, with an accuracy of 0.91. Notably, 26 out of
27 low-PE cases were correctly predicted, demonstrating an
excellent precision for the low-PE class. Since PE values below
Chem. Sci.
1 wt% are oen considered industrially acceptable, this classi-
cation framework provides a robust basis for practical catalyst
screening.

Regression models were then applied to the low-PE catalysts,
which are particularly favorable for ethylene oligomerization, to
predict their quantitative values. Six machine learning algo-
rithms were evaluated, including linear regression, ridge
regression, RF, SVR, XGBoost, and LASSO (Section 3 of SI).
Among them, XGBoost consistently delivered the highest
predictive accuracy. Across the four descriptor sets, the
combined LASSO + RF descriptors again yielded the best
performance, with an R2 of 0.88 and a MAE of 0.07 (Fig. 6b).
These results demonstrate that the proposed descriptor strategy
effectively captures the structural and electronic features gov-
erning catalyst performance, enabling accurate, quantitative
predictions in the low-PE regime.

The SHAP summary plots for both the Decision Tree
Regressor and XGBoost models provide signicant insights into
the contributions of individual features to the predictions
(Fig. 7).48,49 Detailed interpretations of the descriptors corre-
sponding to the SHAP analysis are provided in Section 4 of the
SI. In the Decision Tree Regressor model, VSA_Estate7 and
4_O_Vbur_7_lec stand out as the most important features
(Fig. 7a). Apart from pressure, the top six most important
features are all descriptors related to the structure of catalyst,
indicating that the inherent properties of catalyst primarily
determine whether the PE values are high or low (Table S12).

By contrast, pressure emerges as the most important feature
in the XGBoost model when used to describe the experimental
conditions, with a clear positive correlation with PE content
(Fig. 7b). A similar trend is observed for temperature, where
higher temperatures are associated with higher PE content. In
contrast, R5_G4_bol shows a negative correlation with PE
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Feature importance analysis. (a) SHAP feature importance for the classification model (Decision Tree Regressor); (b) SHAP feature
importance for the regression model (XGBoost); (c) partial dependence plots for the regression model (XGBoost).
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content. Notably, four out of the top ve most important
features are related to experimental conditions, emphasizing
their signicant role in inuencing PE content predictions.
Consistent with this, a quantitative SHAP analysis shows that
the experimental conditions collectively account for over 70% of
the total importance of the features in the regression model
(Table S13). Therefore, feature importance is primarily deter-
mined by ligand-specic properties in the classication model,
which play a critical role in distinguishing between materials
with high (PE > 1 wt%) and low (PE < 1 wt%) PE. However, once
a ligand has been classied as a low PE material, optimizing the
experimental conditions becomes crucial. In this instance,
factors such as pressure, temperature, the amount of Cr, and
© 2026 The Author(s). Published by the Royal Society of Chemistry
the Al/Cr ratio play a much larger role in controlling PE
formation.

The partial dependence plots (PDPs) illustrate the impact of
individual features on the predicted PE values in the regression
model (Fig. 7c). Pressure and temperature have a signicant
positive effect on the predicted PE, with increasing values
leading to higher PE predictions. R5_G4_bol exhibits clear
threshold effects, with substantial changes in predicted PE
when their values cross certain points. The L_NBO_R3_bol
shows minimal inuence on the PE prediction. These results
highlight the importance of experimental conditions, such as
pressure and temperature, in the regression model for low PE
ligands. Optimizing these conditions can further reduce the PE
Chem. Sci.
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Fig. 8 Computed energy profiles and steric maps for Cr/L10 and Cr/L34 catalytic systems along the Cossee–Arlmanmechanism. (a) Free energy
profiles (kcal mol−1) for ethylene chain growth via [LCr(II)–Me]+ species; (b) Buried volume analysis of the rate-determining transition state (TS-2-
3) showing steric distributions for Cr/L10 and Cr/L34 systems.

Fig. 9 DFT-ML workflow for screening new Cr/PNP ligands toward low PE formation.
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content, emphasizing their critical role in predicting and
improving low PE outcomes.

To further elucidate the physical meaning of the selected
descriptors and their relationship to PE formation, we carried
out DFT studies on representative PNP ligands, L10 and L34. Cr/
L10 system has been experimentally identied as one of the
most selective catalysts for 1-octene formation, exhibiting
a relatively low PE content (0.9 wt%), whereas Cr/L34 system
leads to signicantly higher PE formation (13.6 wt%).5 Although
the detailed mechanism of PE formation remains unclear,
Chem. Sci.
chain growth via insertion of ethylene into a metal-hydride or
metal–methyl bond is well established. Therefore, our compu-
tational study focused on the Cossee–Arlmanmechanism.50,51 At
the same time, experimental evidence from Duchateau indi-
cates a non-redox Cr(II) pathway for ethylene polymerization.52

Accordingly, the [LCr(II)–Me]+ complex was adopted as the
catalytic model to explore the chain propagation step respon-
sible for PE formation.

For both Cr/L10 and Cr/L34 catalytic systems, the reaction
initiates from the Cr–Me intermediate 1, and subsequent ethylene
© 2026 The Author(s). Published by the Royal Society of Chemistry
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coordination affords intermediate 2, with both processes being
exergonic. Subsequently, ethylene insertion into the Cr–C bond
leads to the formation of a new C–C bond, requiring activation
barriers of 13.2 kcal mol−1 for Cr/L10 system and 9.8 kcal mol−1

for Cr/L34 system, respectively (Fig. 8a). Further coordination and
insertion of an additional ethylene molecule proceed with lower
energy barriers, indicating a gradual facilitation of chain propa-
gation. From a kinetic perspective, the lower barrier for Cr/L34
system suggests a higher propensity toward PE formation,
consistent with the experimental observations. To rationalize
these differences, we analysed the buried volume parameters of
the two systems at the transition state (TS-2-3) corresponding to
the rate-determining ethylene insertion step (Fig. 8b). In partic-
ular, the buried volume for octant 7 with a radius of 4 Å, corre-
sponding to the ethylene insertion site, was found to be 7.9% for
Cr/L10 system, larger than 7.1% for Cr/L34 system. This indicates
that the increased local steric hindrance effectively suppresses
chain growth, thereby reducing PE formation. This observation
aligns well with the SHAP analysis, conrming that the selected
structural descriptors not only correlate strongly with catalytic
performance but also provide physically interpretable insight into
the steric effects governing polymerization behaviour.

To translate the above models into practical ligand design,
we nally outline a simple workow for screening new PNP
ligands (Fig. 9). We encode the generic PNP skeleton as [Cr]
1([P](N([P]1(R1)R2)R3)(R4)R5)(Cl)(Cl)Cl, where R1–R5 can be any
user-dened substituents. For any proposed set of R1–R5, the
corresponding ligand is rst written as a SMILES string and
converted into a 3D structure (e.g., via RDKit). Starting from this
structure, CREST is used to generate conformational ensem-
bles, which are rened at the DFT level; the same set of
geometrical, steric and electronic descriptors as in the training
stage is then extracted and fed into the pretrained PE models.

As shown in Fig. 9, this allows us to compare, for example,
two novel representative ligands generated from the same
scaffold: (i) P1, obtained when R3]C(C1CC1)CC and R1–R2, R4–

R5= c1ccccc1, and (ii) P2, obtained when R1–R3]C and R4–R5]

CC. Aer CREST/DFT renement and descriptor calculation,
the classicationmodel predicts P2 to fall in the high-PE region,
whereas P1 is classied as a low-PE ligand. Applying the
regression model to P1 then yields a quantitative prediction of
the polymer content (predicted PE = 0.72 wt%), indicating that
P1 is expected to generate a relatively low amount of PE under
the reference conditions. From an industrial perspective, such
low-PE ligands are especially attractive because they are less
likely to cause reactor fouling or plugging and can be further
optimized to deliver high overall selectivity to the prime prod-
ucts 1-hexene and 1-octene.

4. Conclusions

This work presents an integrated computational and data-
driven framework to investigate PE byproduct formation in
Cr/PNP catalyzed ethylene oligomerization. A comprehensive
virtual ligand library was constructed, and conformational
ensembles were systematically explored using GFN2-xTB/CREST
sampling and DFT renement to derive catalyst- and ligand-
© 2026 The Author(s). Published by the Royal Society of Chemistry
level descriptors capturing key steric, electronic, geometric
and ACSF features. A fully automated structural parsing and
indexing workow ensured reproducible descriptor extraction
across diverse PNP ligands, greatly facilitating the systematic
acquisition of descriptors for transition metal catalysts. This
workow is readily extendable to other reactions, enabling the
extraction of additional descriptors and providing a powerful
tool for transition metal catalyst development.

To address the challenge of predicting PE formation, a clas-
sication-regression strategy was implemented. Classication
models effectively distinguished low-PE from high-PE catalysts,
with the combined LASSO + RF descriptor set achieving an
accuracy of 0.91 and excellent recall in the industrially relevant
low-PE regime. For catalysts with PE < 1 wt%, regression anal-
ysis showed that XGBoost combined with the LASSO + RF
descriptor set delivered the best performance, with R2 = 0.88
and MAE = 0.07. Through SHAP feature importance analysis, it
was found that the ligand's inherent properties determine
whether it will generate low or high PE. DFT calculations
consistently conrm that the steric features of the ligands
directly inuence the reaction barriers associated with the
formation of PE. Meanwhile, the optimization of experimental
conditions is crucial for further reducing PE in low-PE ligands.

From a broader design perspective, the current PE models
are intended to serve as the rst screening layer in a multi-
objective workow for Cr/PNP oligomerization catalysts. New
ligands can rst be evaluated by the classication and regres-
sion models developed here to identify candidates that are
intrinsically disfavored toward PE formation. These low-PE
candidates can then be subjected to further optimization of 1-
hexene/1-octene selectivity using existing machine-learning
models for 1-hexene/1-octene selectivity in Cr/PNP systems. In
this way, the risk of excessive PE formation is addressed
upfront, and prime-product selectivity is ne-tuned within
a ligand space that has already been ltered for robustness
against polymer formation. In future work, we envisage using
this workow to guide the synthesis and catalytic testing of new
model-predicted low-PE ligands under experimentally opti-
mized conditions, thereby enabling prospective validation and
further renement of the models.
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Oligomerization_Cr-PNP_ML. Additional data supporting the
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machine learning model development, and a benchmark of
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