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the library: cluster synthesis of
diverse molecules on a single robotic platform
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Nicolas Ducrot, b Aurélien Demilly,b Jean-Christophe Meillon,a Nicolas Do Huub

and Quentin Perronb

The development of a general autonomous platform for organic synthesis that enables faster, flexible and

efficient delivery of target molecules is an attractive strategy for many fields such as drug discovery and

materials science. Traditionally, automated parallel synthesis relies on the synthesis of libraries of various

sizes, sharing the same transformations and name reactions with defined reaction conditions. Herein, we

report on the development of our platform and a paradigm shift in high throughput robotic synthesis:

from mono-reaction type libraries to multi-reaction type clusters. This fundamentally distinct approach

differs from the current strategies by clustering reactions based on their reaction conditions, defined as

ranges of acceptable temperature and reaction time by expert chemists. As a result, many different

reactions can be merged into a cluster. An algorithm has been developed to help chemists organize the

workload into the minimum number of clusters, taking into account the physical and chemical

constraints of the platform. We applied this strategy to efficiently organize the synthesis of 135

molecules, using 27 different name reactions in only 6 clusters and 3 synthetic campaigns.
1 Introduction

Autonomous laboratories are oen seen as the laboratory of the
future.1,2 Such environments are complex and expensive by
design and require both robotics3 and articial intelligence4

with a high degree of integration in order to allow automatic
execution, data capture and decision, leading to the completion
of additional steps in a dened workow.5–8 Although much
progress has been made in the eld of lab automation as well as
in the eld of chemistry digitalization,9 a fully autonomous lab
has yet to be implemented and run on challenging tasks at high-
capacity. One of the current bottlenecks is the translation of
ideas to real materials ready for testing.10

Indeed, research in chemistry relies heavily on navigation
through a chemical space, whether it is to nd biologically
active molecules11 or novel materials12 having specic proper-
ties. To accomplish this goal, modern tools such as in silico
models have been developed to help chemists navigate larger
and larger chemical spaces in a relevant manner.13 However, the
acquisition of real-life data points is mandatory to continue
driving the research and the next iteration of the classical
Design Make Test Analyze cycle (DMTA). Running multiple
projects in parallel gives rise to siloed library syntheses, with
du Québec, 91140 Villebon-sur-Yvette,

is work.

y the Royal Society of Chemistry
each project working independently under its own constraints
of building block availability, resulting in an overall lack of
efficiency. Furthermore, incremental modications oen lead
to very similar compounds, prepared via the decoration of
a main scaffold using the same transformations, applied with
the same reaction conditions for each well. While automated
combinatorial chemistry reveals limitations regarding chem-
istry outcomes and the impact in the exploration of chemical
spaces, many strategies already exist to efficiently prepare lists
of molecules of various sizes and structural diversity. Among
those, diversity-oriented synthesis is aimed at generating high-
structural diversity within a library, accelerating the discovery of
hits.14 Such a strategy is oen embedded in generative AI-
tools.15 The counterpart is the challenge associated with the
synthesis of a list of chemical compounds that are less similar,
thus requiring extensive manual lab work.16

Nowadays, many automated platforms exist, providing
robust solutions for high-throughput experimentation (HTE,
Fig. 1A)17 and parallel synthesis (Fig. 1B).18,19 Flow chemistry
alternatives have also been developed with signicant results in
rapid reaction optimization20–22 and linear organic
synthesis.23–26 However, currently, high-throughput synthesis
(HTS) is typically associated with low molecular diversity.
Indeed, these two technologies (HTE and parallel synthesis) rely
on performing similar types of chemistry experiments in the
same campaign with adjusted parameters, allowing optimiza-
tion of reaction conditions for one transformation in the case of
HTE, or access to target libraries with parallel synthesis.
Chem. Sci.
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Fig. 1 Applications of robotic platforms in organic synthesis: (A) high-throughput experimentation for reaction optimization. (B) Conventional
approach: siloed library synthesis for each project; (C) this work: merging and clustering approach for the synthesis of diverse molecules on
a single platform.
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On the other hand, the automated synthesis of highly diverse
molecules, originating from a diversity-oriented strategy or even
from different projects, and using a vast variety of reactions
simultaneously, is largely unexplored and remains a great
challenge (Fig. 1C). Indeed, such a new automated organic
synthesis paradigm requires criteria to batch reactions together:

� a queue list of molecules to make;
� a queue list of reactions to perform;
� an interface to make decisions;
� a scheduler that merges reactions together in a cluster

based on similar reaction time and temperature;
� a versatile platform with enough positions for solids,

solvents and solutions;
� a robust traceability tool, with mapping and barcodes to

avoid mistakes;
� a general program that can adapt to any size of campaign

and any type of chemistry within the physical limits of the
synthesis platform.

To this end, we developed our own Iktos robotic platform
(Section 2), based on proprietary existing tools (Subsection 2.1),
which have been integrated with newly developed tools
(Subsections 2.2 and 2.3). Finally, we will showcase its utiliza-
tion, focusing on the workload organization for the synthesis of
135 diverse molecules (Section 3).
Chem. Sci.
2 Iktos robotic platform
2.1 Proprietary existing tools as a pillar for building an
autonomous platform

Herein, we present an AI-driven platform built to tackle this
novel approach to synthetic chemistry, one that can generate
molecules, propose a retrosynthetic access, schedule the work-
load, structure the data and pilot a robot to execute automated
organic synthesis (Fig. 2). This balance of human creativity and
AI-driven, constraint-aware design ensures that the robot is fully
used. Our vision is actually in good agreement with the
approach developed by the MicroCycle at Novartis.27 Our plat-
form is specialized in drug discovery, where we operate DMTA
cycles to advance medicinal chemistry projects (Fig. 2A);
however, it may be generalized to other domains relying on
organic synthesis. In our previous work,28 we presented our
vision on how DMTA cycles can be handled differently, with an
advanced integration of our AI tools for drug design and ret-
rosynthesis, and the use of a robotic platform to accelerate the
synthesis part of libraries of molecules. In this work, we report
on the implementation of scheduler layers and chemical
templates to combine different types of reactions within a single
synthetic campaign (Fig. 2B). Indeed, the ultimate goal of our
platform is to expedite DMTA cycles, with a smooth data ow
throughout the cycle. The requirements are depicted in the next
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A) Our previous work: generation using GenAI, 40 molecules selected based on 1 scaffold with 2 exit vectors run as library synthesis. (B)
This work: generation of a list of unrelatedmolecules run as cluster synthesis. (C) Overall data workflow: the journey of a molecule from virtual to
synthesis using integrated silos.
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paragraphs and in Fig. 2C, where the silos drug design (1),
retrosynthesis (2), orchestration (3) and laboratory execution (4)
need to be integrated based on existing tools (1 and 2) or newly
developed ones (3 and 4).

2.1.1 De novo generative AI – Makya. Our R&D laboratory
has developed an AI-driven platform, Makya, dedicated to the de
novo design of bioactive molecules. Makya generates in silico
a list of optimal molecules for specic targets (Fig. 2C(1)), and
high diversity can be obtained by varying the parameters. The
generation relies on the use of the Growing Optimizer (GO) and
Linking Optimizer (LO) algorithms29 that allow the design of
molecules under synthesis constraints (including the robotic
constraints), increasing the chances of making the molecules
with the robot. The platform supports common design strate-
gies such as fragment-growing, fragment-linking, cyclization,
macrocyclization, guided by several types of tness functions
such as 3D ligand-based and structure-based modeling, QSAR
and global ADMET modeling. In Makya, the auto-QSAR algo-
rithm is also implemented: upon integration, experimental data
can be directly injected in this algorithm and seamlessly close
the DMTA cycle by proposing new molecules to make and test
for the next iteration.

2.1.2 High-throughput retrosynthesis – Spaya. Separately,
for retrosynthesis tasks, we developed and optimized Spaya,30

an MCTS (Monte-Carlo Tree Search) algorithm31 trained on the
Pistachio32 reaction dataset with more than 4 million clean and
deduplicated reactions (Fig. 2C(2)), to nd synthesis routes for
each Makya-generated molecule. Spaya is available either
through a user interface to deeply explore the route and asso-
ciated literature, or through its API allowing parallel high-
throughput retro-synthesis of large lists of molecules in
© 2025 The Author(s). Published by the Royal Society of Chemistry
a cost- and time-efficient manner. Spaya API represents our in-
house Computer-Assisted Synthesis Planning (CASP) tool that
automates the retrosynthesis for our platform.33,34 Price,
providers, or building block availability can also be taken into
account during the search. In addition, we use a feature
allowing the retrosynthesis to run only with a restricted list of
available name reactions, corresponding to the current robot
capabilities. This cornerstone option ensures that the molecule
will be feasible for downstream processing on the platform.

2.1.3 Robotic platform for automated organic synthesis.
For laboratory execution (Fig. 2C(4)), we acquired a Chemspeed
Swing platform designed with a specic layout for general
automated organic synthesis (SI).

The available tools were adapted to our specic needs:
grippers for vial manipulation, a barcode scanner for invento-
rization, solid and liquid dispensers, ionizers, heatable and
shakable racks of substrates, two independent reactors with
cooling and heating systems, an SPE ltration set-up, and MTP
racks for collecting nal compounds. With the hardware in
hand, the goal was then to design a data model compatible with
the use of a general program for launching campaigns of
automated organic synthesis. We identied 3 different levels of
data: campaign parameters, batch parameters, and reaction
parameters. For the sake of clarity, all the necessary information
to run chemical reactions is now divided into 11 CSV les
(campaign, batch, substance, reaction, substrate, powder,
solution, solvent, product, cong, and preload) (SI). These data
correspond to variables in our program. For each action such as
powder dispense or solution dispense, we built specic fully
parameterized macros. Once operated, these macros can search
data in the CSV les, create new dynamic zones where they are
Chem. Sci.
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actionable, iterate multiple times, and perform tool actions. By
utilizing these key programming tools (variables, macros and
dynamic zones) in the robot soware (AutoSuite), we managed
to build a robust program that encompasses all cases of
campaigns we may need to set up on our platform, from 1 to 96
reactions. Without such a program, every new campaign would
require spending time to prepare complex sequences of actions
and parameters, with a great risk of error, potentially leading to
failure of the campaigns and hardware incidents. With
a general organic synthesis program in hand, we turned our
attention to the development of a tool that generates reliably
and automatically structured data. Indeed, regarding orches-
tration (Fig. 2C(3)), extensive development was required on our
side to create a functional platform able to connect the four
silos, by structuring the data and assisting chemists in making
decisions.
2.2 Development and integration of new tools

In order to optimize the synthesis ow of the platform, we aim to
group various reactions in the same reactor to run them in
parallel: a new synthesis paradigm that we call cluster synthesis.
Reactions can share the same reactor if they have similar reaction
conditions. Therefore, we implemented two layers of scheduling,
aimed at maximizing the number of reactions inside each
synthesis campaign. The rst layer is called strategic scheduling
(detailed in Subsubsection 2.2.1) for route selection. It is followed
by the validation of expert chemists and the assignment of
reaction conditions (i.e. templates, see Subsubsection 2.2.2),
which unlocks the provisioning of chemicals through a procure-
ment system (see Subsubsection 2.2.3). The second layer is the
tactical scheduling, which is run on a daily basis to schedule the
cluster synthesis (see Subsubsection 2.2.4).

2.2.1 Strategic scheduling: synthetic route selection.
Conceptually, the strategic scheduling is a smart parallel ret-
rosynthesis of a list of molecules, where the goal is to maximize
the chance of having reactions with similar reaction times and
temperatures, which is likely when they share the same name
reaction. For every input molecule, the strategic scheduler calls
the Spaya retrosynthesis API with a set of robotic constraints—
cost of building blocks, number of steps, Pistachio name reac-
tions, and so on—yielding several possible synthetic routes per
compound (see Fig. 3(1)). On the routes found by Spaya, we
apply a quality lter based on a Rscore35 trigger (the retrosyn-
thesis score provided by Spaya) to drive the selection within the
top routes. If multiple routes per molecule remain, an algo-
rithm then reviews all the candidate routes and identies the
most common name reactions across the whole set. It selects,
for each molecule, one single route whose steps can be batched
with other reactions because they share those common name
reactions. At the end of the strategic schedule, a restricted list of
one robotic-compatible route per molecule is obtained,
including reaction SMILES, Pistachio name reactions, building
block SMILES, and the number and order of steps.

2.2.2 Chemical templates and reaction reviews. At this
point, we observed a gap between the routes proposed by our
retrosynthesis tool and how to get machine-readable data to
Chem. Sci.
submit to our robotic platform. We tested the implementation of
data extraction from patent procedures using an in-house LLM-
based algorithm.36 However, several questions arose, such as
the degree of condence in the patent literature or in the auto-
mated extraction, the compatibility of the reaction conditions
with the robotic constraints (e.g. slow addition or temperatures
out of the allowed range), and the risk of multiplication of
different conditions for similar name reactions. The latter could
lead to many reactions having different temperatures, making it
difficult to cluster them in the same reactor, as well as a quick
saturation of available positions for chemicals.

Therefore, we decided to create our own lab name reactions
and associated them with one or several Pistachio name reac-
tions. To these lab name reactions, we then designed and
associated sets of conditions we used to call “reaction
templates” (see Fig. 3(2)). We dened the required chemicals
(reagents, additives, catalysts, ligands, and solvents) from a list
of chemicals validated on the platform. We selected their stoi-
chiometry, their position in the robot (solution, powder or
solvent), and also the expected nal reaction concentration.
Several optional robot actions were registered in the template,
such as rinsing, quenching, dilution and nal SPE ltration
steps.

Importantly, we dened a temperature range and a reaction
time range where we believe the template will be valid. For
example, for amide bond formation via peptidic coupling, one
template used in the following study was set up between 25 and
35 °C for 6 to 18 h. These ranges allow the creation of clusters
based on their intersection with other ones, and running
different types of reactions in the same campaign (see Sub-
subsection 2.2.4). Overall, for the sake of synthesis exibility, we
can associate to each name reaction several templates having
different reaction conditions.

For each molecule designed, the strategic schedule returns
one route with the associated name reaction of each step.
Similarly to Coley et al.,23 we consider CASP as a recommenda-
tion problem, where the proposed routes should be validated.
In this perspective, we put in place a reaction review panel,
which allows chemists to choose which reactions should be
continued towards synthesis, and easily discard reactions they
consider not appropriate in the given context. At this stage,
chemists will review each reaction, verify that the name reaction
extraction was correct, update it if necessary, and select one of
the available templates. Selecting a template will automatically
ll in all the necessary parameters required to run a reaction:
the only things the chemist needs to choose will be the limiting
reactant, the stoichiometry and the reaction scale. If further
changes are expected, it is possible to choose another template
or to edit an existing one. So far we have developed 130
templates, associated with 68 lab name reactions that encom-
passed 127 Pistachio name reactions, representing 36.5% of the
patented literature (SI). If the proposed route involves multi-
step synthesis, chemists will review all reactions individually
and the validation of each step is necessary to validate the route.

2.2.3 Procurement system. Aer the reaction review, it is
veried whether the substrates are already available internally
in our inventory. If they are, the chemists can directly prepare
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Top: overview of the workflow to translate digital molecular ideas into physically executable reactions. (1) Strategic scheduling: for each
input molecule, multiple synthetic routes are generated via the Spaya API under robotic constraints. One route per molecule is selected based on
feasibility (Rscore), building block availability, and name reaction comparison. In the output, the Pistachio name reactions are given. (2) Chemist
review: Pistachio name reactions are automatically translated into internal lab name reactions, allowing chemists to assign one of the associated
reaction templates. Each template encompasses the necessary chemicals and operational conditions, with temperature and time ranges.
Building blocks are either sourced from the internal inventory or requested via an integrated procurement system. (3) A scheduling layer
evaluates which reactions can be run based on the current inventory and overlapping template conditions. Reactions are clustered into
executable batches by finding intersections in condition intervals (e.g., temperature and time), enabling efficient use of robotic reactors through
parallel synthesis across diverse projects and chemotypes. Bottom: exemplification of clustered reactions organized for parallel execution.
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the vials by weighing the expected mass indicated in the reac-
tion review. If not, we put in place a procurement system to
assist organic chemists in the commercial process (Fig. 3).
Quote requests can be automatically sent by email to building
block providers, and the quotes lled with prices and delivery
date estimations are received back in our system. A similar
process is at work for ordering the chemicals, and the barcode
list is then retrieved from our inventory.

Indeed, all building blocks required for a reaction are pre-
weighed, by chemists or an external provider, into 2 mL bar-
coded vials and registered into the Ilaka inventory before the
campaign set-up. Finally, we seamlessly integrated a smart
robotic storage system (Hamilton Verso Q20) by connecting it to
Ilaka via API. This straightforward communication allows an
automatic reception and update of substrates, as well as a fast
and errorless recovery of a list of vials for a specic campaign.

2.2.4 Tactical scheduling: reaction clustering. When
a single route has been selected and validated for each mole-
cule, the required building blocks are ordered. Since necessary
reactants may arrive at different times, maximizing the robot's
efficiency means knowing—on a daily basis—which reactions
can be run based on the current inventory. Additionally, the
experimental conditions for each reaction template are dened
as intervals. If two templates overlap, the reactions from either
template can be scheduled in parallel in the same reactor by
selecting temperature and duration values within the intersec-
tion of both sets of conditions (see step 3 of Fig. 3). This allows
us to fully take advantage of parallel synthesis, because we can
dene clusters with reactions coming from different templates
and ll the robot reactors to the maximum. To manage this, we
apply a second scheduling layer called tactical scheduling: an
algorithm that takes all pending reactions and available starting
© 2025 The Author(s). Published by the Royal Society of Chemistry
materials as input to output an optimized plan for the next
synthesis campaign. While Qianxiang Ai et al.37 scheduled the
necessary actions while mutualizing some with common
intermediates in retrosynthesis routes, we choose to schedule
reactions regarding their templates to batch similar conditions
in the same reactor in the robot. Indeed, this allows running
completely different projects with different chemotypes and
chemistry on the same platform on the same day.

Moreover, depending on the slot capacities, some slots can
be shared for multiple reactions: if two reactions share the same
solvent, this solvent can be stored in only one slot if the
combined volume is small enough, allowing for extended
capabilities rather than limiting the number of reactions to the
number of solvent slots of the robot. This can also be done for
powders and solutions. This parameter, taken into account in
the optimization problem, is referred to as a bin-packing
problem.38

In multi-step synthesis, another molecule type is involved in
Ilaka, naturally called “intermediate”. The status of the inter-
mediate stays as “pending” until the completion of its
synthesis, when it will then be marked as “in stock”. When
available in the inventory, the next synthetic step will be
updated from “pending” to “schedulable” and will therefore be
directly considered in the next tactical schedule. The tactical
schedule then unleashes its powerful ability to (re)program very
quickly the optimized synthesis planning of the day based on
stock availability.
2.3 Integration in Ilaka GUI

With a complex workow and multiple novel tools in hand, we
turned our efforts to the development of a user-friendly interface.
Indeed, user interface design in laboratory automation systems
Chem. Sci.
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represents a critical bottleneck in pharmaceutical research,
where sophisticated AI-driven synthesis processes remain
underutilized due to poor human–computer interaction para-
digms.39,40 While automated laboratory orchestration technolo-
gies have matured signicantly,41,42 their adoption is severely
hampered by interface complexity that fails to align with
researchers’ workow requirements. This design-user mismatch
creates cognitive overhead that diminishes the effectiveness of
otherwise powerful automation capabilities, ultimately limiting
research productivity and system adoption rates.

2.3.1 Ilaka's architecture. The fundamental challenge lies
in translating complex automated processes into intuitive,
actionable interfaces that preserve researcher agility and exi-
bility while providing comprehensive system oversight. While
pioneering platforms such as ChemOS and ChemOS 2.0 have
demonstrated the potential of web-based orchestration soware
in autonomous laboratories,43,44 recent developments reveal
persistent barriers to widespread adoption. For instance, the
ChemSpyD Python package for operating Chemspeed Tech-
nologies45 exemplies these challenges: despite providing
dynamic control capabilities, the lack of a GUI and the under-
lying proprietary AutoSuite soware still require specialized
programming expertise, including complex variables, arrays,
and dynamic applications that present signicant technical
hurdles for typical laboratory users.

To address these challenges, we developed Ilaka, our user-
centered web application for laboratory orchestration supervi-
sion (SI). Our approach prioritizes researcher workows while
leveraging advanced technical architecture: an intuitive front-
end utilizing GraphQL for optimized data exchange,46 coupled
with a distributed microservices back-end implementing event
sourcing patterns. The resulting platform enables researchers
to maintain their domain expertise and decision-making
authority while fully exploiting AI and automation capabil-
ities, effectively bridging the gap between technological
sophistication and practical usability in laboratory settings.

2.3.2 Trust and transparency. Building user condence in
autonomous chemical synthesis systems requires comprehen-
sive transparency mechanisms across all decision points and
workow phases. The platform implements multiple trust-
building strategies to address the inherent complexity of auto-
mated chemical processes, as summarized in Table 1. Expla-
nations are available at many places within the interface, and
auto-calculations are easily visible, thus improving the trans-
parency of the platform and avoiding the black box effect.
Furthermore, the ability to export data in a comprehensive
Table 1 Operative trust mechanisms in Ilaka and the associated user be

Trust mechanism Implementation

Decision point transparency Clear explanation of logic
Calculation transparency Visible auto-calculations for react

parameters, equivalent ratios, am
substance, mass and volume

Comprehensive reporting Visualize and export any data
Workow phase visibility Step-by-step activities and status
Cross-context operations Unied state transitions

Chem. Sci.
manner helps chemists share their latest results. Finally, step-
by-step tracking of both activities and status brings con-
dence by enabling visibility into anything occurring at any time.
Efforts to implement cross context operations that will provide
a seamless experience are ongoing. This is a challenging step
since it should avoid overriding previous trust mechanisms and
bringing the user back to the black box problem with opaque
results and difficulties in making decisions.

Overall, we assembled and integrated both soware and
hardware into a functional, responsive and resilient automated
discovery platform that can handle many use cases occurring in
a chemistry laboratory. From a list of targets and a list of routes
in hand, our chemists can populate our orchestration soware
to organize the work as schedules and prepare the corre-
sponding campaigns. This digitization process already accel-
erates the Make step of the DMTA cycle. The intuitive utilization
of our Chemspeed robotic platform is an additional way to
accelerate this step. From our orchestrator soware, machine-
readable data are obtained and used as input for the Chem-
speed platform. In our previous study, we exemplied the
parallel synthesis of a small library of 40 compounds, made in 2
steps (Suzuki coupling and reductive amination).28 In the next
section, we will apply it in the context of the synthesis of a large
queue of various molecules.
3 Experiments, results and discussion
3.1 Generation of a list of molecules

Our study started with the generation of the chemical space
accessible in one step based on available chemicals in our
inventory and the name reactions validated on our platform. At
this stage, we considered 68 name reactions, and selected about
350 compounds as starting materials. A one step forward-
generation using our growing optimizer29 was performed,
leading to a chemical space of over 4000 molecules (SI). A ret-
rosynthesis search was then performed, requiring only few
hours, and the output was additionally ltered to ensure having
routes compatible with the building blocks available in our
inventory. The output was a list of reaction SMILES, the name
reaction associated, and the building-blocks required. To limit
the number of experiments performed on the robot while
testing it on challenging conditions (by maximizing diversity),
we then applied further lters, such as limiting the maximum
number of reactions per name reaction (25/NR), limiting the
maximum of 5 reactions per substrate, and one reaction
maximum for compounds in a batch of 50 mg. Finally, since
nefits

User benet

Condence in automated decisions
ion
ount of

User verify and modify chemical calculations

Users can export detailed analysis
tracking Process understanding

Seamless experience

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Top: the chemical space 2D representation shows the
coverage of the 135 molecules (in blue) selected among the 3616
synthetically accessible generated molecules (in grey). Such a repre-
sentation has been obtained using UMAP based on the pairwise
distances between the Morgan fingerprints of the molecules (radius 2,
2048 bits); Bottom: distribution of 27 name reactions used for the
synthesis of the 135 molecules.
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diversity of chemical reactivity was important for this work in
order to assess the clustering approach, we tried to get the
maximum number of name reactions possible in this list. This
ltration process led to 335 molecules in a dataset having good
quality synthesizability. Among these 335 molecules, which can
be prepared in one step, we nally performed a manual selec-
tion to get a nal list of 135 molecules along with 135 reactions
to perform in this project.

A projection of the synthetically accessible chemical space is
illustrated in Fig. 4B, with the 3616 molecules represented in
blue; and the nal selection of 135 targets in orange. We were
pleased to see that these selected targets allowed covering
a wide chemical space. Furthermore, based on the distribution
displayed in Fig. 4B, 27 lab name reactions were used, thus
highlighting the wide diversity of chemical reactions. In
summary, 135 diverse molecules have been selected by our
process (scheduler + expert chemists), ready to be synthesized
in one-step routes.

3.2 Reaction review to assign chemical templates

With these 135 validated targets and disconnections in hand, we
aimed at preparing the necessary data for real-life synthesis. At
this stage, we were able to review each reaction in Ilaka, verify that
the name reaction extraction was correct, update it if necessary
(e.g. typically to make a distinction between SNAr and Buchwald–
Hartwig amination), and select one of the available templates. For
each reaction, we dened the limiting reactant, the stoichiometry,
and the scale of the reaction was xed at 0.10 mmol. The reaction
review process for the 135 reactions took us roughly 2 hours,
meaning an average of one minute per reaction.

Then, the following step is the procurement of the reactants.
Since all compounds were already in our inventory, we did not
need to buy them. However, it was necessary to reformat them
in the 2 mL barcoded vials, and assign a barcode to each
building block. Loading this information in our soware
unlocked the building block status from incoming to in stock
and the reactions status from pending to schedulable.

3.3 Workload organization based on chemical templates
and robotic constraints

The tactical scheduling version used in this study produced
variable results, due both to the stochastic nature of the run and
to its limitation of handling only one campaign at a time.
Therefore, when running the tactical scheduling for the 135
reactions, several iterations were processed in order to have
a combination of schedules that allowed running all reactions
in only three campaigns. The chosen iteration of the tactical
scheduling suggested a rst campaign with 95 scheduled reac-
tions in 2 clusters of 48 and 47 reactions. These clusters contain
both 10 lab name reactions, associated with 23 and 20 Pistachio
name reactions respectively. The proposed schedule was 90 °C
for 10 h and 25–35 °C for 14–18 h. In the case of the 2nd cluster,
we decided to run the reactions at 35 °C for 16 h. Aer approval
of this rst schedule, a second schedule was attempted on the
remaining 40 reactions, and 29 reactions were scheduled in 2
batches of 15 and 14 reactions each at 105 and 70 °C,
© 2025 The Author(s). Published by the Royal Society of Chemistry
respectively. Finally, a third schedule was obtained from the last
11 reactions, with 2 nal batches containing 7 and 4 reactions.

Overall, for 135 reactions, 6 clusters were obtained with
a good distribution of temperature (10, 35, 40, 70, 90, and 105 °
C), and they could be run in only 3 campaigns according to our
robotic constraints (see result output Fig. 5).
3.4 Synthesis campaign set-up

Once the reactions are scheduled, our interface Ilaka gives
information to the chemist to prepare the campaign and facil-
itate the transition from virtual to reality. It includes the total
Chem. Sci.
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Fig. 5 Top: conversion heatmap by campaigns and clusters; bottom left: robotic set-up for performing Campaign 3 of 95 reactions; bottom
right: success rates by name reactions.
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mass of each powder, the volumes of each solvent needed, a tool
for automatic calculations to easily prepare stock solutions in
barcoded vials and a mapping of each rack. Finally, all data are
structured in a machine readable format and can be exported in
CSV les or pushed in a database connected to the Chemspeed
automated platform.

Aer loading the platform with all necessary components
using SPE-cartridges, and both non-barcoded vials (solvent) and
barcoded vials (building blocks, stock solutions, powders, and
crude collection), the robot can start executing the program. As
mentioned in Subsubsection 2.1.3, our workow is general and
can adapt to any number of reactions included in the campaign:
in other terms, we will use only one program to set up the next
three campaigns of this study (11, 29 and 95 reactions), with
only the required data being different.

The program begins with inventory tasks, prompting the
user to conrm the positions of non-barcoded vials. The robot
then scans all barcoded vials and powder containers to verify
the presence of expected materials and record the exact location
of each item—since vials can be placed randomly to reduce
human error. Once the robot has validated the inventory and
mapped all vial positions, the chemistry workow can begin.
The rst step is substrate dissolution: appropriate solvents are
dispensed into the 2 mL vials, then heated at 35 to 40 °C and
shaken for 15 minutes. Substrates are then transferred into the
reactors, followed by stock solutions, powders, and any
remaining solvent if required. Each reactor – capable of
Chem. Sci.
handling up to 48 reactions – is heated and stirred according to
the campaign parameters (temperature, agitation, and dura-
tion). Post-reaction operations are predened in the execution
les (CSV), including dilution of the reaction mixture,
quenching of reactive intermediates or excess reagents, and
ltration.
3.5 Synthesis results

In terms of synthetic output, all reactionmixtures were analyzed
using acidic and/or basic HPLCmethods. The success threshold
for a reaction was set at 5% of the total UV area in the trace of
the best detection method (acidic or basic). This level was
considered sufficient to allow purication of a minimum
amount of compound, since in our drug discovery approach
only 1 mg is needed for testing, with active compounds being re-
synthesized as required. Then, a conversion rate was estimated
for each reaction based on LC-MS analysis interpretation.
Resulting heatmaps, with detailed success rates per campaign
and per cluster, are depicted in Fig. 5 (top).

Overall, 86 expected products have been detected aer 3
campaigns, representing 64% of the 135 reactions. This is
a good success rate, considering that no optimization was per-
formed. Excellent reactivity outcome was observed for classical
reactions (see Fig. 5 bottom right), such as palladium catalyzed
couplings (Suzuki and alkyl-Suzuki couplings at 100%, Buch-
wald–Hartwig amination at 84%, Boration, and Heck and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Sonogashira couplings at 67%), amide bond formation (amide
Schotten Baumann at 100% and peptidic coupling at 83%),
sulfonamide synthesis (71%). On the other hand, reactions
based on C–O bond formation proved unsatisfactory with only
SNAr being above average (SNAr – oxygen at 67%, Ullmann
condensation at 20%, and Williamson ether synthesis and
esterication at 0%). Although these statistics on a limited
number of reactions should be taken with care, they still
provide rst insights into the strategy of running many chem-
ical reactions simultaneously. Furthermore, 2 name reactions
(namely aldehyde and ketone reductive aminations) led to 10%
of the global failure. These failures could be potentially attrib-
uted to one or several of these issues: the choice of the template,
the quality of a reagent (e.g. NaBH(OAc)3) or solvent, the length
of the set-up for an automated process on a very large campaign,
or substrate-specic sensitivity of a reaction. Since the 0%
success rate for reductive aminations was clearly not in line with
our statistics on these name reactions (typically 65–80% success
rate per campaign), we decided to run again the 14 reactions in
a new campaign by changing the template and the batch of the
reducing agent. The alternative template included a larger
amount of the reducing agent (NaBH(OAc)3) and the use of
DCM as the solvent (instead of DMA used previously). With the
clustering parameters being similar, this additional campaign
was run at 35 °C for 16 h, like in Campaign 3 – Cluster 2. Overall,
it would have led to the same six clusters obtained for the 135
reactions. We were pleased to observe the formation of 11
products out of the 14 reactions (SI) in LC-MS analysis, repre-
senting 79% of success rate, a result more in line with our
current statistics on reductive aminations. Taking into account
Table 2 Purification data for 12 reactions – comparison between isolat

Molecule Reaction ID Lab name reaction
% Area
(UV), LC-MS

1 IKT-R-26 Amide Schotten–Baumann 6%, acidic
2 IKT-R-81 Amide Schotten–Baumann 76%, acidic
3 IKT-R-42 Sulfonamide Schotten–Baumann 67%, basic
4 IKT-R-39 Sulfonamide Schotten–Baumann 21%, basic
5 IKT-R-31 Peptidic coupling 52%, acidic
6 IKT-R-46 Peptidic coupling 30%, basic
7 IKT-R-36 SNAr – oxygen 78%, acidic
8 IKT-R-130 SNAr – nitrogen 93%, acidic
9 IKT-R-47 Heck reaction 100%, acidic
10 IKT-R-10 Sonogashira (Heck-alkynylation) 100%, acidic
11 IKT-R-134 Suzuki coupling 83%, acidic
12 IKT-R-33 Buchwald–Hartwig amination 87%, acidic

© 2025 The Author(s). Published by the Royal Society of Chemistry
these additional successes among the total of 135 reactions, we
could increase the global success rate from 64% to 72%.

3.6 Purication of samples

Out of the 97 successful reactions, 12 were selected for puri-
cation, primarily for time and cost considerations, as purica-
tion was outsourced. The goal was to choose a representative
subset of compounds, covering structural diversity, a wide
range of name reactions, and varying levels of %UV area
observed in LC-MS analysis (from 6% to 100%) (see Table 2).
This selection aimed at assessing the practical difficulty of
purication by comparing HPLC-based UV detection % with the
actual isolated yields.

Our external partner succeeded in the purication of 10
compounds, i.e. 83% of success rate, with isolated masses from
1.1 to 14.5 mg, nal purities above 90%, and corresponding
yields from 4 to 48%. Surprisingly, we noted that some
compounds that are well detected by UV could be difficult to
purify, with the examples of reactions IKT-R-42, -47 and -10.
They showed respectively 67, 100 and 100% of UV detection of
compounds 3, 9 and 10, but below 10% of yield, due to low
recovered quantity and very low purity. Degradation or issues
during the automated outsourced purication process could
explain these disappointing results. Indeed, the time between
sending the crude materials and receiving back the puried
products was about 3 weeks, which encourages us to internalize
the analysis and purication process on our platform.

More positively, some compounds that appeared at rst
glance difficult to purify, either due to low % in UV (IKT-R-26,
molecule 1) or to closeness with other peaks (IKT-R-46,
ed yields and % of UV area when products were detected in LC-MS

method
Net weight
(mg) Purity (%)

Isolated yield
(%) Yield/UV detection

1.1 93 4 0.67
13.7 98 48 0.63
0.4 0 0 0
1.8 95 6 0.33
10.8 100 32 0.62
7.9 97 25 0.83
5.6 97 18 0.23
10 90 28 0.30
0.6 3 0 0
3.1 90 10 0.10
14.5 100 35 0.42
4.1 100 19 0.22

Chem. Sci.
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molecule 6), nally showed relatively good recovery, highlighted
by a comparison rate Yield/UV detection of 0.67 and 0.83,
respectively. In the case of reaction IKT-R-26, even if the yield of
4% was low, we considered the purication successful since we
obtained more than 1 mg of isolated compound 1, with 93% of
purity, enough to perform a future biological assay. Other puri-
cation results were quite satisfactory, with acceptable recovered
quantities and Yield/UV detection rates between 0.22 and 0.63.

Therefore, based on these results, we could conclude that the
probability of purication success was not directly linked to the
initial UV detection %, and cannot be easily predicted. Indeed,
we assume that the limited number of purications performed
in this project could not allow generalization of the calculated
rates. However, we were able to conrm that performing the full
process of one-step robotic synthesis, analysis, and purication
was possible to obtain a large diversity of pure molecules, in
sufficient quantities for further biological testing in the context
of a medicinal chemistry project.
3.7 Discussion

In the context of our study, we decided to schedule all the
available reactions. The goal was to determine the set of
temperatures and times for both reactors of 48 slots and to
maximize the number of reactions compatible with this setup.
Thus, the planning of the 135 reactions was possible in 6
clusters resulting in only 3 synthesis campaigns on our plat-
form. However, we could note that this version of our algorithm,
which relied on optimizing the lling of the reactors for each
campaign on a daily basis, tends to provide a variability of 3 to 4
campaigns, with very unbalanced sizes of campaigns. As
a result, the time of preparation for the chemists and robotic
set-up will be largely affected by the number of reactions,
making it potentially unpractical for very large campaigns, and
inefficient for small ones. Moreover, some additional parame-
ters like the numbers of solvents, substrates, solutions, and
powders to be used are not optimized in such a schedule, but
just veried when running the lling of the available positions.

To address such limitations, we later upgraded our tactical
scheduling algorithm to represent all constraints natively in
a linear optimization problem (see Subsection 5.1) (SI). The
optimization problem incorporates all robotic hardware
constraints, including the limited number of slots for each
compound type (solvents, substrates, solutions, and powders)
and reactor capacity limitations. We dene a clustering
Table 3 Comparison of tactical scheduling results for 135 reactions – v

Chem. Sci.
problem where each cluster represents a reactor, and pairs of
clusters form execution groups (potential synthesis campaign).
This approach offers several advantages: rst, it provides
complete visibility into the entire reaction queue through
a single tactical request, enabling chemists to predict the total
number of groups required and choose a group based on their
available time. Second, each approved group of clusters
becomes a campaign ready for robotic execution.

To validate this improved algorithm, we retrospectively
applied it to the 135 reactions from our previous synthesis
campaign, resulting in 6 well-balanced clusters with more
evenly distributed group sizes compared to the original
approach. The comparison between the two versions is shown
in Table 3. All reactions could be still performed within 3
groups, containing respectively 71, 52 and 12 reactions (note
that the reaction numbers can vary depending on the runs of
the tactical scheduling, because there could bemultiple optimal
solutions to the problem as discussed in Subsection 5.1),
ensuring a more practical set-up for chemists when possible.
We could also note that temperature and time distributions are
similar to the rst ones, and that name reactions diversity in
each group seems more balanced. Overall, a more optimized
solution is found by this new version of our scheduling.

Retrospectively, the key takeaways from this project are (1)
the safe and reproducible data ow and (2) the signicant time
saved through the use of our automated workow. For each
campaign, the total preparation and execution time was tracked
(SI). As expected, the process becomes increasingly efficient as
the number of reactions increases. While little time was saved
in the 11-reaction campaign, substantial time saving was
observed for the 29- and 95-reaction campaigns, freeing the
chemist to focus on other tasks. In addition, the use of barcodes
and standardized, reproducible procedures help ensure an
error-free reaction setup.

We compared the estimated time to plan and execute the
synthesis of our 135-reaction set using a manual process or an
automated workow, either via a library mode or via our clus-
tering approach (SI). Thus, our workow proved to be at least 2
to 4 times faster than manual or automated library approaches,
while offering greater reproducibility and higher-quality data.
However, a manual setup allows more tailored adjustment of
reaction conditions for each individual transformation, poten-
tially leading to higher success rates. Our current approach is
ersion 1 run to synthesis ( )/version 2 after optimization ( )

© 2025 The Author(s). Published by the Royal Society of Chemistry
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designed to accelerate the execution of large and diverse sets of
syntheses, prioritizing throughput over yield optimization.

Interestingly, since Ilaka tracks all events and stores the data
of our platform, it would be possible to ag any unexpectedly
poor outcome at the campaign or name reaction level. This
could be performed simply by comparing the performance of
a campaign (campaign success rate) or of a name reaction
(name reaction success rate) and compare it directly to histor-
ical data. With the implementation of a trigger (e.g. <10% of
success rate or < “historical success rate”/2), a notication could
directly draw the attention of the chemist to investigate more
deeply the reasons behind the failure. In the long term
approach towards a more autonomous laboratory, it could be
envisioned to automatically trigger a new campaign with the
next most probable template. This could have been applied to
handle the issue encountered with the reductive amination.

An additional advantage of the robotic platform is its scal-
ability: if higher throughput is required, the system can be
expanded by adding more robots. This modularity enables
a straightforward path to increase capacity without fundamen-
tally changing the workow, making it well-suited for projects
of varying size and ambition. In a context where new targets are
continuously added to the pipeline, the advantages of a robust
and fully automated workow become evenmore signicant. To
further improve performance, several enhancements are under
development, such as enabling reaction duplicates under
varying conditions and dynamically optimizing or rening
synthetic templates based on usage history. These improve-
ments aim to increase the overall success rate of high-diversity,
clustered synthesis campaigns.

4 Conclusion and outlook

Our robotic platform, launched three years ago, has rapidly
evolved through the stepwise integration of key components—
including our chemical template system, AI-based scheduling
tool, and procurement services, all seamlessly orchestrated by our
central soware Ilaka. This platform represents a paradigm shi
in chemical synthesis, enabling high-throughput execution by
merging pending reactions into a queue and clustering them
based on compatible temperature and time parameters. Addi-
tional robotic constraints are also considered to ensure that the
generated schedules are executable in practice, making the plat-
form not only efficient but fully operational in real-world settings.

This scheduling algorithm is embedded within a proprietary
soware suite that offers an integrated environment to manage
retrosynthesis, procurement, inventory, compound storage, and
robotic execution. We believe this new synthesis paradigm has
the potential to accelerate discovery across all domains where
organic chemistry is a key enabler of innovation, while deliv-
ering structured and reproducible data. Within our internal
research pipeline, it already supports the efficient development
of drug candidates,47 handling multiple targets and projects in
parallel on a single automated platform.

The synthesis workow we have developed for our Chemspeed
system is highly adaptable, compatible with a wide variety of
chemical reactions and scalable for campaign sizes ranging from 1
© 2025 The Author(s). Published by the Royal Society of Chemistry
to 96 reactions. Current limitations include the inability to perform
staged additions or pre-activation steps (e.g., sequential additions
with intermediate stirring) due to the nature of our clustering and
reagent distribution strategies. However, we are actively exploring
solutions to overcome these challenges. A new study that mimics
real world situations (multi-step syntheses, delay of chemical
delivery etc.) is under consideration in our laboratory.

Looking ahead, our focus for the next two years is to further
enhance the platform by developing and integrating automated
analysis and purication capabilities48–50 into Ilaka, making the
full process more intelligent, schedulable, and efficient. We are
also progressing toward the integration of a bio-assay platform
to enable increasingly autonomous DMTA cycles.

Finally, we record every decision made by chemists within
Ilaka—including template selection and reaction choices—with
the long-term vision of building AI models capable of selecting
the most appropriate synthetic template based on the context.
This data-driven approach paves the way toward our ultimate
goal: the creation of a fully autonomous laboratory.
5 Methods
5.1 Tactical schedule

In this section, we want to cluster reactions as effectively as
possible, which means minimizing the number of synthesis
campaigns. Each cluster of reactions is identied by its
campaign cp and its reactor j, with j ˛ {0; 1}.

To do so, we dened an integer linear programming problem
that takes a list of Nr reactions as input, and outputs the
assignment of each reaction to a cluster (cp, j), with each reac-
tion ri having ranges of accepted temperatures Ti and durations
Di.

5.1.1 Objective function. Let us dene R= {riri˛ {1,., Nr}}
as the set of reactions to schedule.

Let C = {cprp ˛ {1, ., Nr}} be the set of available campaigns.
We have that

c p ˛ {1, ., Nr}, cp = {rirxi
p = 1}

where xi,p is the binary variable indicating if reaction i is
assigned to campaign cp and xi,p = xi,p,0 + xi,p,1 with xi,p,j indi-
cating if ri is assigned to the reaction cluster (cp, j).

The objective is to minimize the number of campaigns used:

Minimize Ncampaigns

XNr

p¼1

Yp

where Yp = 1{cpsB} is a binary variable indicating whether there
is a reaction assigned to campaign p (note that the number of
campaigns is less than the number of reactions Nr).

5.1.2 Constraints. 1. Reaction assignment: each reaction
must be assigned to only one cluster, and a campaign is used if
it has at least one reaction assigned.

XNr

p¼1

X1

j¼0

xi;p;j ¼ 1 ci
Chem. Sci.
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xi,p,j # yp,j ci,p,j

2. Cluster capacity: the number of reactions assigned to
a cluster must be smaller than the capacity of the reactor.

XNr

i¼1

xi;p;j # cluster_maximum_size c p; j

3. Temperature and duration assignment:
To deal with temperature and duration constraints, we let

ztemp
p,j,T be the binary variable indicating if temperature T is

assigned to cluster (cp, j) and zduration
p,j,D the binary variable

indicating if duration D is assigned to cluster (cp, j).
Each used cluster (containing at least one reaction) has

exactly one temperature and duration time assigned.
X

T

ztemp
p;j;T ¼ yp;j c p; j

X

D

zduration
p;j;D ¼ yp;j c p; j

4. Reaction compatibility: if a reaction i is in cluster (cp, j), the
assigned temperature and duration of the cluster are contained
in the templates of reaction ri

xi;p;j #
X

t˛Ti

ztemp
p;j;T c i; p; j

xi;p;j #
X

d˛Di

zduration
p;j;D ci; p; j

5. Campaign usage: a campaign is used if at least one of its
clusters is used.

Yp $ yp,0 c p

Yp $ yp,1 c p

6. Capacity constraints and bin-packing38 formulation:
To ensure feasibility with respect to robotic hardware limi-

tations, we impose capacity constraints per campaign. For each
campaign p, the total number of substrates used by all reactions
assigned to that campaign must not exceed the available slots:

XNr

i¼1

jsubstratesij$xi;p #Smax

where Smax is the maximum number of substrate slots.
For solvents, solutions, and powders, the allocation is

modeled as a bin-packing problem for each unique chemical
identier (SMILES). Each usage of a SMILES by each reaction in
a campaign must be distributed among a nite number of slots
(or bins), Bmax, each with a xed capacity Vmax. Let wi,p,sm,b be
a binary variable indicating whether the usage of SMILES sm by
Chem. Sci.
reaction ri in campaign cp is assigned to bin b, and binUsedp,sm,b

indicate whether bin b is used for SMILES sm. We also dene
ui,sm as the quantity (mL or mg) of a SMILES sm required by
reaction ri, where d is a safety margin:

XNr

i¼1

�
ui;sm þ d

�
wi;p;sm;b #Vmax

XBmax

b¼1

wi;p;sm;b ¼ xi;p if ui;sm . 0

X

sm

XBmax

b¼1

binUsedp;sm;b #Bmax

cb˛f1;.;Bmaxg;
X

sm

binUsedp;sm;b # 1

This bin-packing approach ensures that, for each chemical,
the total amount required by all reactions assigned to
a campaign can be feasibly distributed among the available
slots, respecting both per-slot and total slot limits.

This integer linear programming has been implemented
using Pulp library,51 and solving the scheduling problem
described in Section 3 took approximately 1 minute. It is worth
mentioning that this problem can yield multiple clustering
solutions, all of which achieve the optimal value of the objective
function.

5.2 Chemical synthesis

The complete experimental part, including general information
for the generation and retrosynthesis workow, methods for
chemical synthesis, the layout of our Chemspeed platform, the
model of CSV instructions, synthetic procedures used for each
reaction, analysis result tables and HPLC chromatograms can
be found in the SI.
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E. Simaei, T. Fellowes, R. Clowes, L. Kotopanov,
C. E. Shields, Z. Zhou, et al., Nature, 2024, 1–8.

8 IBM, IBM RXN, https://rxn.res.ibm.com/rxn/robo-rxn/
welcome, 20241, accessed: 2024.

9 W. Gao, P. Raghavan and C. W. Coley, Nat. Commun., 2022,
13, 1075.

10 C. A. Nicolaou, C. Humblet, H. Hu, E. M. Martin,
F. C. Dorsey, T. M. Castle, K. I. Burton, H. Hu, J. Hendle,
M. J. Hickey, et al., ACS Med. Chem. Lett., 2019, 10, 278–286.

11 P. G. Polishchuk, T. I. Madzhidov and A. Varnek, J. Comput.-
Aided Mol. Des., 2013, 27, 675–679.

12 C. Y. Cheng, J. E. Campbell and G. M. Day, Chem. Sci., 2020,
11, 4922–4933.

13 S. Sosnin, Drug Discovery Today, 2025, 104392.
14 S. L. Schreiber, Science, 2000, 287, 1964–1969.
15 E. Lenci and A. Trabocchi, Eur. J. Org Chem., 2022, 2022,

e202200575.
16 M. D. Burke and S. L. Schreiber, Angew. Chem., Int. Ed., 2004,

43, 46–58.
17 N. Gesmundo, K. Dykstra, J. L. Douthwaite, Y.-T. Kao,

R. Zhao, B. Mahjour, R. Ferguson, S. Dreher, B. Sauvagnat,
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