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Abstract

The position of mobile active and inactive ions, specifically ion insertion sites, within 

organic crystals, significantly affects the properties of organic materials used for 

energy storage and ionic transport. Identifying the positions of these atomic (and ionic) 

sites in an organic crystal is challenging, especially when the element has low X-ray 

scattering power, such as lithium (Li) and hydrogen, which are difficult to detect by 

powder X-ray diffraction (XRD). First-principles calculations, exemplified by density 

functional theory (DFT), are very practical for confirming the relative stability of ion 

positions in materials. However, the lack of effective strategies to identify ion sites in 

these organic crystalline frameworks renders this task extremely challenging. This 

work presents two algorithms: (i) Efficient Location of Ion Insertion Sites from Extrema 

in electrostatic local potential and charge density (ELIISE), and (ii) ElectRostatic 

InsertioN (ERIN), which leverage charge density and electrostatic potential fields 

accessed from first-principles calculations, combined with the Simultaneous Ion 

Insertion and Evaluation (SIIE) workflow –that inserts all ions simultaneously—to 

determine ion positions in organic crystals. We demonstrate that these methods 

accurately reproduce known ion positions in 16 organic materials and identify 

previously overlooked low-energy sites in tetralithium 2,6-naphthalenedicarboxylate 

(Li4NDC), an organic electrode material, highlighting the importance of inserting all 

ions simultaneously, as in the SIIE workflow.
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Introduction

Understanding the structure of inorganic and organic-based materials containing 

electroactive elements, such as Li, Na, and zinc (Zn)1–14 is relevant for the 

development of the next generation of rechargeable battery technologies, which are 

prevalent in vehicular transportation, heavy-duty applications, and the supporting 

electrical grids. 

With the advent of the Rietveld methods,15–18 diffraction-based techniques using X-ray 

(XRD) or neutron (ND) sources are commonly employed to determine the structures 

of energy materials. However, structural determinations through diffraction methods 

can be hindered by the weak scattering of X-rays by light elements, such as hydrogen 

and lithium (Li), which can partially occupy multiple crystallographic sites because of 

their high intrinsic mobility. In some cases, significant ion mobilities can cause the 

blurring of Bragg intensities.19,20 While ND experiments enhance sensitivity to specific 

elements, e.g., light elements H and Li, ND experiments are significantly less available 
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than XRD, and they still face challenges related to disorder, defects, and temperature-

dependent site mixing.21

Organic electrode materials (OEMs) are promising for inexpensive and high-energy-

density rechargeable batteries. Indeed, OEMs can provide three main benefits: (i) high 

material-level energy densities of 900-1000 kWh kg–1, (ii) a growing range of designs 

as shown by the variety of molecules studied so far, and (iii) potential benefits in 

sustainability and supply chains.6,22–28 One of the main challenges hindering the 

practical implementation of OEMs is a poor understanding of their structure-property 

relationships. The electrochemical reaction pathways of OEMs are typically 

interpreted based on simplistic molecular models, rather than describing these 

processes at the material level. These molecular-type OEM models are often paired 

with ex situ or operando XRD experiments, which frequently cannot reveal their 

underlying crystal structures and potential phase transformations.29–32 To date, only a 

handful of studies have resolved structures at both the charged and discharged (ion-

containing) states of specific OEMs.23,33–37 For example, 1,4-benzoquinone (BQ) 

undergoes a phase transition from monoclinic (P21/c) to orthorhombic (P42/ncm) upon 
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lithiation or sodiation, forming Li2BQ or Na2BQ,23,38 indicative of a biphasic intercalation 

reaction with substantial change in the molecular orientation, symmetry and the lattice 

parameters. By contrast, dilithium 2,6-naphthalene dicarboxylate (Li2NDC) retains a 

monoclinic (P21/c) structure upon complete lithiation (Li4NDC),34,35,39 following a 

biphasic intercalation reaction, with little change in molecular orientation and lattice 

parameters. However, distinguishing specific reaction mechanisms remains poorly 

understood in the OEM literature, mainly because structural data for the discharged 

state are scarce. In contrast, structural models for the charged state are often 

available.

A comprehensive understanding of OEM structures and their behavior across different 

ion content (i.e., different states of charge) remains crucial for bridging the gap 

between molecular-scale insights and crystalline materials with intrinsic periodicity. In 

general, this knowledge is essential for elucidating the physicochemical processes that 

govern electrochemical behavior, including phase transitions,23 voltage profiles,37 and 

mechanical degradation.36,40 However, accurate identification of the positions of 

mobile ions such as Li+, Na+, K+, Zn2+, and Mg2+, in organic crystalline frameworks, 
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remains a significant experimental and computational challenge.29,33,35,36,41–49 This 

challenge arises primarily from the ample intermolecular space (void within the crystal 

framework) caused by weak intermolecular interactions, which are responsible for 

molecular assembly into organic molecular crystals.50,51 This results in numerous 

possible cation arrangements within the organic framework. Therefore, developing 

computational tools that accurately predict ion positions within the crystalline 

structures of organic materials is essential for breakthroughs and for unlocking hidden 

potential for rational materials design at the crystal level. While such approaches have 

been established for inorganic electrode materials, 52–55 predictive search for ion sites 

in OEMs remains largely confined to the molecular scale and,46,56 to the best of our 

knowledge, has not yet been demonstrated for crystalline organic frameworks.

In this paper, we present two complementary computational algorithms and an ion 

insertion workflow for identifying the optimal active and inactive ion insertion sites 

within organic frameworks: (i) The Efficient Location of Ion Insertion Sites from 

Extrema (ELIISE) in electrostatic local potential and charge density, which identifies 

electrostatically stable ion positions by locating local extrema in electrostatic local 
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potential and electronic charge density (CD) fields. (ii) The ElectRostatic InsertioN 

(ERIN), which, by following the electrostatic potential, iteratively places ions into 

electrostatically favorable regions of the unit cell until the entire cell volume is sampled. 

(iii) The Simultaneous Ion Insertion and Evaluation (SIIE), which inserts the ions 

simultaneously and evaluates to determine the correct structure. ELIISE and ERIN, in 

conjunction with SIIE, are applied with a library of 16 representative organic structures, 

illustrating their ability to automatically identify candidate ion sites within complex, 

flexible organic frameworks using limited computational resources. These predictions 

are subsequently refined using agnostic first-principles calculations, resulting in high-

confidence ion positions, which provide crucial insights into ion coordination 

environments and other structural evidence. These predictive workflows establish a 

powerful toolkit for the systematic exploration of electroactive structures and their ion 

transport pathways, elucidating reaction mechanisms and guiding the rational design 

of materials for the development of competitive organic-based electrochemical 

devices, as well as the exploration of soft materials for other energy-storage 

applications.
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Methods

1. Finding candidate ion insertion sites in organic crystals: ELIISE and ERIN

Figure 1 shows the identification of candidate ion sites using ELIISE and ERIN, which 

rely on the electronic charge density (CD, or 𝜌(𝑟)) and the local electrostatic potential 

𝐿𝑃(𝑟) Eq. 1, and the spherically averaged local potential, ALP(𝑟), of Eq. 2.

𝑳𝑷(𝒓) =  𝑽𝒉𝒂𝒓𝒕𝒓𝒆𝒆(𝒓) + 𝑽𝒊𝒐𝒏𝒊𝒄(𝒓); Eq. 1

where 𝑉ℎ𝑎𝑟𝑡𝑟𝑒𝑒(𝑟) is the Coulomb potential set by 𝜌(𝑟), and 𝑉𝑖𝑜𝑛𝑖𝑐(𝑟) is the Coulomb 

potential originating from the ionic core of all atoms. From 𝐿𝑃(𝑟), the 𝐴𝐿𝑃(𝑟) is defined 

as: 

𝐀𝐋𝐏(𝒓) =
∫ 

𝑽𝒔 𝑳𝑷(𝒓 + 𝒓′) 𝒅𝟑𝒓′
𝟒
𝟑  𝝅 𝒓𝟑

𝒔

. Eq. 2

where 𝑉𝑠 represents the spherical region within radius 𝑟𝑠 that is averaged at each point 

𝑟 , and 𝑟′ is a dummy variable over which the averaging occurs. Note, in Eq. 2, 𝐴𝐿𝑃(𝑟) 

is the spherically averaged electrostatic potential at each point in the organic crystal 

framework, with constant radii (𝑟𝑠) set by the user (here, fixed to the empirical covalent 

radii of the atom that is inserted).
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Both methodologies rely on an initial organic framework to compute 𝐿𝑃(𝑟) and CD. 

The choice of the initial organic framework is trivial when the organic framework of the 

discharged (ion-inserted) structure— i.e., the lattice parameters, the symmetry, and 

the atomic positions— is known. In such cases, only the precise determination of ion 

positions is necessary, as is often the case with lithium; here, ELIISE serves as an 

appropriate tool. Conversely, the more prevalent scenario is when only the organic 

framework of the charged (ion-removed) phase is known. Under these circumstances, 

ERIN is recommended (See Discussion section for more details) as employing ELLISE 

may result in unreliable outcomes.
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Figure 1: Workflow and schematic illustration of the ELIISE (left) and ERIN (right) algorithms. ELIISE: 

Process for identifying potential ion sites based on local potential and charge density. ERIN: Workflow 

illustrating the iterative process used to identify potential ion sites based on electrostatic stability 

systematically.

2. The Efficient Location of Ion Insertion Sites from Extrema in electrostatic local 

potential and charge density (ELIISE) Method
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The ELIISE method identifies candidate ion sites using both the CD and the spherically 

averaged local potential 𝐴𝐿𝑃(𝑟) , defined in Eq. 2, within the empty (i.e., without any 

mobile species) organic framework from the discharged state. 

Following the ELIISE workflow in the left part of Figure 1, the local potential and 

electronic CD are initially computed by performing a first-principles calculation without 

changing the atom positions (or changing the volume or cell shape of the material) of 

the empty organic framework. Subsequently, ELIISE identifies candidate active sites 

in an organic framework by identifying the local maxima and the local minima in the 

𝐴𝐿𝑃(𝑟) the CD fields, respectively. Figure 1 shows a schematic diagram of the local 

minima in CD and local maxima in the 𝐴𝐿𝑃(𝑟), which are used to identify candidate 

sites. We have concluded that a spherical average of the 𝐿𝑃(𝑟) provides the best 

predictions in terms of candidate ion sites, as it accounts for the finite size of inserted 

ions. Here, the empirical covalent radii of atoms by Slater57 appear to be a reliable 

option for defining this ion size. When different types of active species are involved in 

ion insertion, we imposed the empirical radius of the smaller atom for spherical 

averaging of the local potential. The candidate sites identified by both the CD and the 
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𝐴𝐿𝑃(𝑟) descriptors are combined into a single collection. To avoid repetition of sites, 

spatially close sites are merged by calculating the geometric mean of their 

coordinates, as indicated in Figure 1. The resulting sites are then ordered by their 

electrostatic stability, from most to least favorable, as determined by the 𝐴𝐿𝑃(𝑟).

Large values of 𝐴𝐿𝑃(𝑟) indicate regions that are electrostatically favorable for 

positively charged ions, typically near more electronegative (usually negatively 

charged) atoms within the crystal structure. Therefore, local maxima in 𝐴𝐿𝑃(𝑟) 

naturally point to potential cation sites. Similarly, local minima in the CD usually occur 

in voids near more electronegative atoms. It is reasonable to assume that these 

electronegative atoms strongly attract electron density, leading to electron-deficient 

regions nearby, which are likely to form local minima in the charge density. Therefore, 

these minima in CD often correspond to favorable coordination environments for 

cations. An exception to this trend becomes evident when local minima occur within 

large structural voids, which are common in organic crystals and nanoporous 

materials. These voids may be too far from the organic framework to provide any 

stabilizing interactions for inserted ions. These situations can lead to surprisingly high 
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Coulomb energies. To address this potential issue during the site search in both 

ELIISE and ERIN, we set cutoff distance thresholds to exclude regions that are either 

closer than the specified distance (e.g., 1.5 Å) or farther than ~3 Å from atoms in the 

organic framework.

3. The ElectRostatic InsertioN (ERIN) Method

In contrast to ELIISE, ERIN only requires the 𝐿𝑃(𝑟) (Eq. 1) of the organic framework, 

obtained from first-principles calculations. The ERIN approach in the right part of 

Figure 1 only uses the spherically averaged local potential ALP(𝑟) (Eq. 2) to explore 

electrostatic energy landscapes and systematically generates sparsely spaced 

candidate ion sites in a decreasing order of electrostatic favorability within the given 

unit cell. ERIN identifies and selects the site with the maximum 𝐴𝐿𝑃(𝑟) value. 

Subsequently, ERIN excludes a spherical region within a user-defined radius, rexclude 

(e.g., 2 to 3 Å), around this site from future searches. Then, ERIN repeats the search 

for the site with the next highest value of 𝐴𝐿𝑃(𝑟) to select as a candidate. This process 

is repeated iteratively until the entire volume of the unit cell is scanned systematically 

and excluded. The site search is performed independently within each symmetry-
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distinct region of the unit cell to identify candidate sites in all possible Wyckoff 

positions.

4. Simultaneous Ion Insertion and Evaluation (SIIE) Workflow for Candidate Site 

Insertion

Once ELIISE or ERIN identifies the candidate sites, the next step is to determine the 

optimal combination of sites that yield the expected stoichiometry of the system and 

is energetically viable. For this purpose, we introduce the Simultaneous Ion Insertion 

and Evaluation (SIIE) workflow, in which ions are introduced simultaneously within the 

organic framework to achieve the desired stoichiometry, as opposed to the sequential 

insertion method, where ions are inserted one at a time.52,58 In the SIIE workflow, if the 

organic framework of the discharged structure is known, its atoms are kept fixed during 

ion insertion, with only inserted ions and decorating hydrogen atoms (whose positions 

are typically unknown from standard XRD experiments) allowed to change. Otherwise, 

if only the organic framework of the charged phase is known, then both the ions and 

the organic framework are allowed to relax completely. 
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As shown in Figure 2a, SIIE uses the candidate ion insertion sites from the ELIISE or 

ERIN methods discussed in the previous sections as inputs. While ELIISE and ERIN 

provide sets of candidate ion positions, they do not determine the final configuration 

of ions in the discharged structure. In real systems, multiple symmetry-distinct sites 

may be occupied simultaneously, and therefore, the correct discharged state often 

results from a specific combination of these candidate sites. 

Finding the right combination of candidate sites is challenging due to the large number 

of unique possibilities. Note that the number of possible combinations of predicted ion 

sites that produce the target ion content can grow combinatorially, in the range 10 – 

106, which typically makes direct DFT evaluation of all combinations computationally 

infeasible.

To address this challenging task, we incorporate a machine learning interatomic 

potential (MLIP), such as MACE or Orb-v3,59–61 to screen thousands of configurations 

efficiently. Here, we use MACE to identify and remove high-energy structures. More 
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details on how MACE and DFT are combined in the SIIE workflow are provided later 

(see Computational Details section).

Figure 2: Workflow for the Simultaneous Ion Insertion and Evaluation (SIIE) method (a) and its 

application in two OEMs (b) Disodium 1,4-benzoquinone (Na2BQ) and (c) Tetrasodium rhodizonate 

(Na4C6O6). Combining SIIE with ELIISE, the Na-ion positions are located in two exemplary OEMs38,62

Results

Case Studies: Implementing the Suggested Workflows on Example Systems

To demonstrate the effectiveness of these algorithms, we showcase the application of 

the ELIISE (ERIN) + SIIE workflow to several model compounds. The accuracy of 

ELIISE+SIIE is verified by “rediscovering” the Na-ion sites in two known fully sodiated 
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compounds: (i) the disodium 1,4-benzoquinone (P42/ncm, Na2BQ),38 and (ii) the tetra-

sodium rhodizonate with formula Na4C6O6 (C2/m).62 Similarly, starting from the known 

dilithium 2,6-naphthalenedicarboxylate (P21/c, Li2NDC), using ERIN+SIIE, we predict 

Li positions in Li4NDC (tetra-lithium 2,6-naphthalenedicarboxylate),35,63 which contains 

2 additional Li sites per formula unit (f.u.).

Na4C6O6 (C2/m)62 is an oxocarbon-salt-based layered compound; it is a planar 

conjugated ring with six carbonyl oxygens, known to undergo a two-to-four electron 

reduction with Na.36 To test the ELIISE method, we first remove all Na atoms from 

Na4C6O6 and perform a static DFT calculation, at the volume and geometry available 

in literature, to calculate the electronic charge density and local electrostatic potential 

fields, and subsequently apply the ELIISE algorithm to find the possible sites for Na-

ions (as described in Methods Sec. 2).

The ELIISE algorithm yields nine symmetry-distinct Na sites with different multiplicities 

(Table S2). These candidate sites from ELIISE are then “funneled” into the SIIE 

workflow. We examine all possible combinations of sites from these nine symmetry-
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distinct candidates that produce the desired Na4C6O6 stoichiometry. This yields only 

59 unique sodium configurations, for which we perform DFT and MACE optimizations 

to identify the most plausible Na-atom positions. To quantify the prediction accuracy 

of ELIISE+SIIE, we use a metric called the maximum atom displacement error 

(MADE), which is defined in Eq. 3: 

𝐌𝐀𝐃𝐄 = 𝑴𝒂𝒙{|𝒓𝒊 ― 𝒓𝒓𝒆𝒇
𝒊 |; 𝒊 ∈ 𝐚𝐥𝐥 𝐚𝐜𝐭𝐢𝐯𝐞, 𝐢𝐧𝐚𝐜𝐭𝐢𝐯𝐞 𝐬𝐩𝐞𝐜𝐢𝐞𝐬} Eq. 3

Where 𝑟𝑖 is the predicted ion position of the 𝑖th ion, and 𝑟𝑟𝑒𝑓
𝑖  is the position of the 

corresponding ion from the literature. The predicted and literature ion pairs are 

matched based on the pairing that minimizes the sum of their absolute deviations. 

Thus, MADE (Eq. 3) is the maximum displacement between any predicted ion position 

and its corresponding literature reference, i.e., the actual atom positions reported in 

the literature.62 MADE is defined when the organic framework of the discharged 

structure is known and remains fixed during the optimization of ionic positions. MADE 

assesses the accuracy of predicted sites by quantifying the extent to which ions 

deviate from the positions reported in the literature.
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In practice, we interpret MADE values ≤ ~0.4 Å as indicating correct predictions for all 

ions in the structure, while MADE values ≥ ~0.4 Å suggest that at least one ion site 

has been predicted incorrectly. Among the predicted structures for Na4C6O6, the 

lowest-energy structure of Figure 2c displays a MADE of ~0.026 Å, indicating excellent 

agreement with the structure previously reported in the literature.62

In the second example, we investigate the structure of disodium 1,4-benzoquinone, 

Na2BQ38 (Figure 2b), and the fully reduced (sodiated) form of a para-benzoquinone, 

i.e., BQ. In Na2BQ, the Na atom positions are available from the literature.38 In Figure 

2b, the Na2BQ features a highly open organic framework with large voids, making a 

brute-force search of the potential Na positions computationally expensive. Using 

ELIISE,  we identify four symmetrically distinct candidate sites. Applying the SIIE 

workflow, we evaluate all combinations of these four symmetry-distinct ions that 

produce the stoichiometry of Na2BQ. This step yields only three valid configurations, 

which we used for further DFT structural relaxations (keeping the volume and shape 

fixed to the experimental structure of Na2BQ). The most stable structure with the 

Page 19 of 48 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

0/
20

26
 1

0:
36

:0
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5SC07602A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc07602a


20

lowest DFT total energy singled out with ELIISE+SIIE, shown in Figure 2b, exhibits a 

MADE of ~0.024 Å, demonstrating excellent agreement with the experimental Na 

positions.38

Figure 3: Li4NDC structures: Model 1, Model 2, Model 3, and experimentally refined from single-crystal 

XRD.35 Different crystallographic Li sites are shown.

We tested our methods on a third structure, Li4NDC, which shares structural 

similarities with its precursor, Li2NDC64 , with 2 Li atoms per molecule. Prior 

experimental studies indicated that the NDC organic framework largely remains 

unchanged upon reaction with Li. Two structural arrangements of Li species, Model 1 

and Model 2 (Figure 3), have been proposed for Li4NDC.63 Models 1 and 2 preserve 

Li-ions in tetrahedral coordination sites as observed in Li2NDC64 (shown as Li1 in 

Figure 3) and introduce new Li positions (shown as Li2 in Figure 3), approaching 

composition Li4NDC (four Li atoms per molecule).
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Using ERIN with SIIE workflow, we predict the Li positions in Li4NDC based on the 

organic framework of Li2NDC as input. We recovered Models 1 and 2, described in 

the literature. A close inspection of Model 1 and Model 2 reveals that these two 

structures reported in Ref.63 are different in the relative orientation of NDC molecules, 

as displayed in Figure 3. However, this striking contrast is not highlighted in Ref.63, 

which suggests that Model 1 and Model 2 differ only in Li distribution but share the 

same molecular framework.

In addition to Models 1 and 2, we identified a third model, Model 3, as the lowest-

energy structure, as determined by DFT minimization (and MACE). In Model 3, the 

tetrahedral sites reported for Li2NDC are unoccupied, and all the Li atoms assume 

new crystallographic positions (collectively indicated as Li3 in Figure 3), which are 

localized near the inorganic layer of the organic framework, consisting of oxygen 

atoms in NDC. These newly identified Li-atom positions in Model 3 yield an 

electrostatically favorable arrangement of Li atoms relative to Models 1 and 2 at the 

same composition. Quantitatively, DFT total-energy comparisons indicate that Model 
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3 is energetically favored over Models 1 and 2 by ~100 meV/Li4H6C12O4 and ~440 

meV/Li4H6C12O4, respectively.

Indeed, Model 3 is in excellent agreement with a recent study (appeared while drafting 

this paper) that used single-crystal XRD to refine the structure of Li4NDC.35 Because 

ERIN uses the organic framework of the charged state as input and optimizes all 

atomic positions, the MADE metric—measuring the prediction error in active species 

positions—is not suitable. Instead, a simple qualitative measure of similarity between 

two structures can be obtained by using the StructureMatcher (with the default 

parameters) as implemented in Pymatgen.65 Here, StructureMatcher indicated that 

model 3 qualitatively matches the recently reported experimental structure of 

Li4NDC.35 Alternatively, Table S4 shows a close match between the lattice parameters 

and atomic positions of experimental and predicted structures.

These three case studies, discussed in the previous paragraphs, collectively 

demonstrate the robustness of the ELIISE and ERIN methods when integrated with 
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the SIIE workflow in accurately identifying ion positions across various organic 

electrode materials.

Assessing the accuracy of the ELIISE+SIIE approach

To assess the accuracy of the ELIISE + SIIE approach, we apply it to a diverse set of 

organic materials (16 in total) for which the organic framework and ion positions of the 

crystal structure are known from literature. Using MADE (Eq. 3) as a similarity metric 

we evaluate the performance of the ELIISE method with the SIIE workflow across 16 

organic systems. These structure organic electrode materials, such as Li2NDC and 

Li4NDC (di and tetra lithium 2,6-naphthalene dicarboxylate),64 Li2BDC and Li4BDC (di 

and tetra lithium 1,4-benzene dicarboxylate),66 Li2-BPDC (dilithium biphenyl 

dicarboxylate),67 Li2Mg-p-DHT (magnesium(2,5-dilithium-oxy)-terephthalate),33 

Na2BQ (disodium hydroquinone),38 Na2C6O6 (disodium rhodizonate),68 and Na4C6O6 

(tetra sodium rhodizonate),62 as well as other selected structures (see Table S1) were 

obtained from crystallographic databases, the Cambridge Crystallographic Data 

Centre (CCDC)69 and the Inorganic Crystal Structure Database (ICSD).70
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Figure 4: Accuracy of the predicted active ion positions with the proposed SIIE workflow and ELIISE. 

MADE (Eq. 3) values determined after optimization of ionic positions with (a) first-principles DFT and 

(b) the machine learned potential MACE. Stars indicate the most stable (lowest total energy) ion 

arrangements in each organic structure, and crosses indicate the thermodynamically unfavorable (high 

energy) structures. Details of reference structures reported in the literature are in Table S1.

As shown in Figure 4a, the lowest-energy structure identified by the SIIE workflow 

using ELIISE correctly reproduces the known ion positions in all tested cases, as 

measured by MADE, which is always ≤ 0.4 Å. Furthermore, Figure 4b demonstrates 

that using a pre-trained machine-learning interatomic potential (MLIP), specifically 

MACE (used only to optimize ion positions), yields correct predictions of ion positions, 

with MADE values consistently below 0.4 Å. This suggests that DFT-level structural 

relaxation may not be strictly necessary to determine the general location of inserted 

ions, thereby substantially reducing computational cost. Figure S1 presents a similar 
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assessment, but with predictions generated using ERIN+SIIE instead of ELIISE+SIIE, 

and only MACE was employed for optimizing ion positions. The MADE values in Figure 

S1 show that ERIN+SIIE also accurately predicted the positions of all inserted ion sites 

for all 16 tested organic systems.

Discussion

Predicting ion positions in “soft” crystalline materials, such as organic electrode 

materials, remains a significant challenge due to the combination of large free 

volumes, weak intermolecular forces, and the dynamic nature of ion coordination. In 

this paper, we have developed two new methodologies, ELIISE and ERIN, and an ion 

insertion workflow, SIIE, designed to identify ion-insertion sites in organic structures. 

These include metal atoms, such as Na, Zn, and Mg, as well as light elements, for 

example, Li. Here, we discuss the advantages and disadvantages of implementing the 

ELIISE and ERIN algorithms to resolve unknown ion positions in crystal structures, 

where traditional structural techniques fail.
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ELIISE uses both the electronic charge density (CD) and the local electrostatic 

potential 𝐿𝑃(𝑟) derived from first-principles calculations of the empty organic 

framework. In combination, the CD and the 𝐿𝑃(𝑟) are used to find candidate 

crystallographic sites for light elements in these materials. However, since the CD and 

the 𝐿𝑃(𝑟) are intrinsically linked (as the latter is derived from atomic positions and the 

electronic charge density distribution), the independent use of the CD and the 𝐿𝑃(𝑟) 

often arrives at similar predictions for candidate ion sites. Since ELIISE directly 

identifies coordinating environments—regions surrounded by electronegative atoms 

in the organic frameworks —ELIISE appears most effective for systems in which the 

organic framework structure of the discharged (ion-inserted) phase is known. This 

signifies that prior experiments determining the space group, lattice constants, and 

atom positions of the organic framework (excluding the mobile ions) must be available. 

In some sense, this limits the capabilities of the ELIISE strategy. For example, if only 

the charged-phase structure of an organic system is available and significant structural 

changes and/or phase transitions are expected upon electrochemical reactions, using 

ELIISE may yield unreliable results.
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To address the apparent limitation of ELIISE, we have developed an alternative 

method called ERIN. ERIN generates a sparse set of points that cover all possible 

Wyckoff sites, ranked from the electrostatically lowest-energy sites to the highest-

energy sites. Therefore, ERIN should be applied when the structure of the organic 

framework, whose ion-inserted/discharged phases remain unknown. In such cases, 

the charged (empty) structure of the materials can be used as a starting point, 

assuming the unit cell of the pristine organic crystal shape and most of the symmetry 

remains unchanged or structural modifications occur gradually (for example, a 

displacive phase transition) upon reaction with Li (or sodium), which is typical of 

intercalation materials.

ELIISE identifies stationary sites (i.e., local minima) by populating the energy 

landscape; these sites are expected to be stationary points for ions in the potential 

created by the anion framework. In contrast, in ERIN, the identified sites are not 

necessarily located at energy minima –non-stationary sites, such as saddle points, on 

the potential energy surface, and may be mobile during structural relaxation. These 
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non-stationary sites can perturb the organic framework during relaxation and promote 

structural changes that lead to a more stable discharged structure.

Even if the discharge phase does not involve phase transitions, the specific 

coordination environments and lattice parameters required to host mobile metal atoms 

in the discharged organic framework may not be available in the charged organic 

framework. ERIN systematic electrostatic screening helps identify plausible insertion 

sites that would be hard to locate with ELIISE alone. Note, however, that ERIN predicts 

more candidate sites than ELIISE, resulting in a greater number of possible ion-

vacancy arrangements to evaluate in the SIIE workflow.

Our study has focused on identifying plausible sites for cation insertion; however, with 

suitable modifications, these algorithms can also be used to locate anion positions in 

a crystal structure. For example, in the case of the ELIISE method, local minima in the 

𝐴𝐿𝑃(𝑟) should be used instead of local maxima. The approach remains the same when 

using CD. In ERIN, instead of selecting the maximum in the ALP(r) as a candidate 

site, the minimum in the ALP(r) should be chosen.
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At its core, ERIN uses the Coulomb electrostatic potential to model the energy 

landscape and identify sites generated from electronic charge densities obtained from 

first-principles calculations. Other methods, such as machine learning interatomic 

potentials 61,71,72 or Bond Valence Sums73 appear viable for modeling and developing 

the potential energy landscape for ion insertion.

It is important to comment on some choices made in developing the averaged local 

potential, ALP(r), which uses a spherical averaging radius set in advance. We have 

observed that ion positions predicted from ALP(r) are generally insensitive to the 

precise value of this radius. However, because of the radius ionic size of the predicted 

sites, even a ∼10% change can modify the number of local extrema in ALP(r) and, 

consequently, the set of candidate sites identified by ELLISE. For ERIN, changes in 

the spherical averaging radius directly affect the predicted site positions by altering the 

underlying energy landscape. This sensitivity is not problematic, as ERIN is intended 

to generate a sparse set of representative ion sites rather than an exhaustive list. The 

exclusion radius in ERIN determines the total number of predicted ion sites. Increasing 
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the radius reduces the number of distinct sites by merging nearby candidates. Thus, 

tuning the radius minimizes the number of ion combinations, increasing computational 

efficiency in the search. However, because of the MACE and DFT optimization steps, 

minor deviations from reasonable values are unlikely to affect the accuracy of ion-

position predictions.

In general, when testing the ELIISE and ERIN algorithms on 16 previously known 

structures (Figures 4 and S1), we demonstrated that these algorithms, in combination 

with the SIIE workflow, provide a reliable and systematic approach for accurately 

predicting unknown ion positions in organic frameworks.

Another important aspect is the integration of machine learning interatomic potentials 

(MLIPs), such as MACE, into the SIIE workflow. In principle, ERIN and ELIISE are 

applicable together with any foundational MLIP model, including M3GNET, CHGNET, 

and ORB-3, among others.61,71,72 This hybrid MLIP–DFT approach appears to be 

viable, significantly reducing the computational burden of exploring vast combinatorial 

site occupancies while providing sufficient accuracy in predicting ion positions. 
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Furthermore, the ability of MLIPs to screen thousands of candidate configurations 

before subsequent, more accurate but computationally intensive refinements using 

first-principles calculations highlights a scalable pathway for high-throughput 

exploration of ion-insertion chemistries in soft systems, such as organic crystals, 

porous systems, metal-organic frameworks, and larger molecules with biological 

relevance. 

In this vein, we have tested MACE predictions against DFT predictions for the same 

systems shown in Figure 4. We have observed that, when the organic framework is 

fixed at the known discharged structure, identifying the structure with the lowest 

energy and correct ion arrangements using (MADE) with a prediction error within a 

tolerable range of 0.4 does not require DFT; foundational out-of-the-shelf MLIPs 

appear suited for this task. Here, we have only tested MACE.59,60 However, fine-tuning 

the foundational MLIPs with system-specific DFT data can provide even more 

accurate results.
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The SIIE workflow appears limited when dealing with either amorphous structures or 

extremely large unit cells with low or no symmetry. In these cases, the number of 

possible ion combinations can be in the order of 104 to 106, requiring significant 

computational resources to evaluate total energies across all configurations, even with 

MACE. In this context, we had relied on the fact that candidate sites are ranked in 

decreasing order of electrostatic favorability, as indicated by the averaged local 

potential. Unfavorable sites are systematically excluded during the generation of ion 

combinations; this removal process continues until the number of valid ion 

combinations falls below the preset threshold (~103). Developing more efficient yet 

accurate machine-learning potentials is a promising approach to address this issue in 

amorphous compositions, and considerable effort is currently devoted to this area.74–

77

Aside from ELIISE and ERIN, the simultaneous insertion of ions, implemented in the 

SIIE workflow, is also essential for accurately finding discharged structures, as 

illustrated by the case study of Li4NDC. In Li4NDC, we proposed Model 3, which yields 

the lowest DFT total energy (Figure 3), and is lower than that of the previously 
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proposed Models 1 and 2.63 Before this work,55,63 other strategies, such as sequential 

insertion methods, have been proposed.52,58 In the sequential approach, a new model 

is created by inserting an atom at a new position within the unit cell, and the structure 

is then optimized. This process is repeated until the desired stoichiometry is achieved, 

thereby identifying a representative global minimum. The sequential approach can 

lead to incorrect selection of stable candidates because ions may become trapped in 

local minima of the potential energy surface.

Organic molecular crystals often exhibit polymorphism, resulting from different packing 

arrangements of the same molecule, including metastable ones.78,79 However, once 

the organic framework is established, ions are expected to occupy the most 

energetically favorable positions, as observed in all cases shown in Figure 4, thus 

partially ignoring metastable effects. Therefore, the proposed workflows are effective 

when the discharged organic frameworks are known. When the discharge state is 

unknown, as in Li4NDC (where only the charged phase is known) lattice constants, 

crystal shape, and positions are allowed to vary during ion insertion. This can cause 
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significant structural changes and different packing arrangements, potentially leading 

to the prediction of metastable or energetically favorable phases.

Current methods are limited because they either rely on the organic framework of the 

discharged structure or assume that the symmetry and unit cell of the discharged 

phase match those of the charged phase. In the case of Li4NDC, determining the 

optimal ion positions, starting from Li2NDC, was straightforward because the organic 

framework remained essentially unchanged during lithiation, i.e., the symmetry and 

unit cell of Li4NDC were commensurate with those of Li2NDC. 

However, this is not the case for most systems. For example, when Li2BDC is lithiated 

to form Li4BDC, a symmetry reduction is observed.35 It involves doubling the unit cell 

along the stacking direction of the organic layers, accompanied by changes in the 

organic framework.35 Consequently, attempting to predict ion positions in Li4BDC by 

starting directly from the Li2BDC structure may produce an incorrect structure model. 

Na2-BQ and Na4C6O6 exemplify this type of structural change, undergoing phase 

transformations with altered unit cells (and symmetries) during discharge. Beyond the 
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organic molecular crystals studied here, ion insertion has been shown to induce 

additional distortions, including octahedral tilting, phase separation, cell collapse, loss 

of crystallinity, and even phase changes, as observed in hybrid organic–inorganic 

metal halides and redox-active metal-organic frameworks.80–85 

These cases highlight a broader challenge: it is often unclear whether a significant 

phase transition occurs during lithiation (or sodiation). When this uncertainty arises, a 

practical approach is first to predict ion positions based on the charged structure (i.e., 

the host in its oxidized or delithiated form). The resulting model can then be compared 

with experimental data, such as XRD or ND; if the simulated patterns are similar to the 

experimental patterns, the predicted structure can serve as a solid starting point for 

refinement.

However, if the comparison shows significant differences, it becomes necessary to 

explore alternative structural hypotheses. In such cases, one must generate and 

assess a set of candidate organic framework motifs to serve as initial models in the 

ERIN+SIIE workflow. Developing systematic methods for constructing and testing 
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these organic framework variations appears crucial for reliably understanding the 

structural complexity of ion insertion in molecular crystals. 

The issue of significant structural rearrangement or symmetry breaking is directly 

related to the problem of locating the global minimum on a structure's potential energy 

surface; for this, all possible structures must be examined, which entails solving global 

optimization problems. This goes beyond the simple task of determining ion positions 

discussed in the current work. Several strategies for identifying global minima in 

materials space have been proposed, including genetic algorithms, as implemented in 

USPEX,86–88 and particle swarm optimization, as implemented in CALYPSO.89–91 

Recently, generative models aided by machine learning have emerged as an effective 

avenue for efficiently exploring complex potential energy landscapes and chemical 

spaces, such as those of organic/molecular crystals.92–95 These methods are claimed 

to predict the positions of the organic framework and ions, thereby enabling a complete 

materials structure model.
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For systems that amorphize during discharge, a realistic description of ion positions 

will ultimately require combining our structure-generation strategy with total-scattering 

measurements, melt–quench-type molecular dynamics (with machine learning), and 

possibly reverse Monte Carlo approaches to produce chemically meaningful, though 

not uniquely determined, models of the disordered Li environments.96–103

Besides XRD and ND for determining the structures of organic materials, solid-state 

nuclear magnetic resonance (ss-NMR) crystallography is another valuable tool that 

offers structural insights.104,105 The nascent application of ss-NMR in conjunction with 

first-principles calculations, termed NMR crystallography, has been used to establish 

the structure of functional materials.106

Conclusions

In summary, we have developed a computational framework for accurately predicting 

ion positions in organic materials, utilizing DFT-derived electrostatic and charge 

density fields with the ELIISE and ERIN algorithms and the SIIE workflow. 
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Through case studies of Na4C6O6, Na2BQ, and Li4NDC, we showed that ELIISE and 

ERIN methodologies can reproduce ion positions known from the literature with sub-

angstrom accuracy. Additionally, we demonstrate that these methodologies can 

uncover new, energetically favorable structural models that can improve our 

understanding of experimental observations.

We have demonstrated that computationally intensive DFT predictions are not a strong 

requirement for accurately identifying ion positions, and we have shown that 

foundational machine-learned potentials provide sufficient accuracy for large-scale 

screening tasks. 

Our results demonstrate that ELIISE and ERIN, combined with SIIE, are powerful and 

can significantly improve, if not augment, the limits of traditional structural 

characterization techniques. The framework proposed in this paper offers a pathway 

toward deeper mechanistic insights and the rational design of organic materials for 

next-generation functional materials. Moreover, MLIPs can efficiently screen 

thousands of candidate configurations initially, before performing more precise but 

computationally expensive refinements with first-principles methods. This approach 
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offers a scalable pathway for high-throughput exploration of ion-insertion chemistries 

in soft systems, including organic crystals, porous materials, metal-organic 

frameworks, and larger biologically relevant molecules.

Computational Details

All first-principles calculations presented in this work were performed using the density 

functional theory (DFT) formalism, as implemented in the Vienna Ab initio Simulation 

Package (VASP).107–109 The PAW potentials describe the core electrons. Perdew, 

Burke, and Ernzerhof (PBE)110 was used to approximate the unknown DFT exchange 

and correlation XC functional. To account for Van der Waals interactions, the empirical 

D3 method proposed by Grimme and collaborators, with Becke-Johnson (BJ) 

damping, was used.111,112

VASP inputs prepared for geometry optimization and energy calculations closely 

followed the MITRelaxSet113 as available in pymatgen.65 The kinetic energy cutoff for 

the plane waves was set to 520 eV, and the total energy was converged to 10−5 eV 

per cell. Geometries (coordinates, volumes, and cell shapes) were considered 
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converged when the forces on all atoms are lower than 0.05 eV/Å. A Γ-centered 

Monkhorst−Pack114 grid with a density of 25 k-points per Å―1 for all systems. With 

these DFT settings, local potentials are computed as the sum of Ewald and Hartree 

parts, excluding the Exchange and Correlation (XC) contributions. 

To reduce the number of structures for DFT optimization, MACE-MATPES-PBE-0 a 

machine-learned foundational model, based on MACE,59,60 with PFP-based PyTorch 

implementation of DFT-D3,111,112,115 was used to evaluate static total energy and/or 

optimize ion positions. Structural relaxations are carried out until the forces are 

converged below 0.03 eV/Å.

When MACE is implemented in the SIIE workflow, it is used as follows:

1. Generate all possible ion combinations. If the number of combinations 

exceeds a preset limit (~103), they can be reduced systematically by 

excluding electrostatically unfavorable sites in ELIISE or ERIN before 

generating possible ion combinations.

2. Use MACE to evaluate all the generated combinations.
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3. Select approximately ~102 of the lowest-energy candidate structures for 

optimization of ion positions using MACE.

4. From these structures, we select approximately 10 distinct lowest-energy 

structures for subsequent accurate DFT optimization of the atomic 

positions.

This hybrid approach, which combines the computational speed of MACE-based 

MLIPs with the accuracy of DFT, enables us to successfully identify the correct atomic 

configurations in organic frameworks with substantial structural complexity.

Data Availability

All the computational data associated with this study, including the input and output 

files of the simulations, are available on GitHub at 

https://github.com/caneparesearch/data_site_finder .
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