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Machine learned interatomic potentials, particularly equivariant message-passing (MP) models, have
demonstrated high fidelity in representing first-principles data, revolutionizing computational studies in
materials science, biophysics, and catalysis. However, these equivariant MP models still incur substantial
computational and memory needs due to their expensive tensor product operations over edge space,
significantly limiting their applicability in large-scale or long-time simulations. In this work, we propose
a novel node-equivariant MP (NEMP) framework that performs equivariant operations between the
central node and a virtual summed node encoding structure information of its neighbors. Crucially,
NEMP maintains comparable or even superior accuracy across diverse test systems—including
molecules, extended systems, and universal potential benchmarks—while achieving 1-2 orders of
magnitude reduction in memory and computational costs compared to edge equivariant MP models. In
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Introduction

Molecular dynamics (MD) is an essential tool for investigating
both equilibrium and non-equilibrium properties of systems in
gaseous and condensed phases. The reliability of such simula-
tions depends crucially on the accuracy of the interaction
potential. In the meantime, it is also important to realize that
the system size and timescale that can be practically realized by
such simulations are limited by the computational efficiency of
these potentials. Hence, there is high desire to construct accu-
rate and efficient interaction potentials. Recent advances in
machine learning (ML) have revolutionized this field by repre-
senting first-principles data with efficient and high-fidelity
machine-learned interatomic potentials (MLIPs),"* enabling
applications across various fields of chemistry, physics, and
materials science.'”?*3*

A widely successful class of MLIPs builds upon the atomistic
neural network (NN) framework introduced by Behler and Par-
rinello in 2007, which decomposes the total interaction
potential into atomic contributions dependent on local atomic
environments within a cutoff radius. These environments are
encoded using many-body atomic descriptors that preserve
translational, rotational and permutational symmetries. In
early models, only two and three-body terms are included,“**
based on the “near-sightedness” assumption for the interaction
potential. However, such local descriptors are insufficiently
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enabling previously inaccessible large-scale simulations.

sensitive to configurations with long-range differences. Studies
have shown that increasing the body order of interactions in the
descriptors can enhance model accuracy.'>***” To systemati-
cally incorporate higher-order terms, several approaches have
been proposed, including the Moment Tensor Potential (MTP)
and the Atomic Cluster Expansion (ACE)."* However, numerical
costs increase rapidly with the rising body order, which signif-
icantly limits the practical use of explicit higher-order terms in
large systems.

An alternative and increasingly popular strategy for
enhancing expressiveness is the message-passing NNs
(MPNNs), which describe atomic environments by iteratively
exchanging information between atoms (nodes) through
connections  between them (edges) in  molecular
graphs.”10:2021.23-2729,383% Thig end-to-end learning framework is
capable of implicitly capturing many-body interactions and
some non-local effects beyond the cutoff radius.*®* Conse-
quently, they are generally more efficient than NNs with explicit
high body-order terms in improving the description of local
structures. Early MPNN models”'*** were based on two-body
message functions, but subsequent studies showed that
explicitly incorporating three-body (or higher-order) interac-
tions into the message function allows for a more effective
discrimination of structures, which is crucial to increase the
expressiveness of the MPNN model.*****! These strategies only
pass symmetry-invariant scalar features and can be categorized
as invariant MPNNs. Although invariant MPNNs can signifi-
cantly improve model accuracy,®**** they lack directional
coupling between different atomic environments, which can
lead to failure in certain systems where such interactions are
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critical.*»*”** This drawback can be easily remedied by passing
equivariant features instead.**%*%3%3-1 These equivariant
MPNNs extend the traditional paradigm by learning and
exchanging equivariant features that transform predictably
under symmetry operations. Indeed, models like NequlP,*
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Allegro® and MACE?*® employ equivariant tensor products via
the Clebsch-Gordan coefficients, progressively and explicitly
increasing body-order interactions with each MP layer.

Until now, all equivariant MPNNs perform equivariant
message passing along edge connections, where tensor
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Fig.1 Schematic illustrations of (a) the MP step for the EEMP, (b) the overall NEMP architecture including the initial layer and MP layer, and (c) the
MP step for the NEMP. Panels (d) and (e) respectively present the initial layer and the MP layer, which contains the node MP step whose detailed
structure is shown in panel (b). Here, ® denotes the tensor product; 'i' represents the central node, and j, k, h* denote the neighboring nodes.
“Res-connect” refers to the residual connection applied to the node equivariant features, as defined in egn (13). “Contraction” refers to the
computation of node and edge invariant features via tensor contraction, as described in egn (7) and (8).
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products are computed between edges and their corresponding
nodes. Hence, we refer to such an approach as edge-equivariant
message passing (EEMP). While EEMPs have achieved high
fidelity across diverse benchmarks,**?%*** they require an
enormous computational overhead and memory requirement.
Moreover, MPNNs face inherent limitations in parallelization
efficiency due to massive inter-environment communication.
This constraint limits their scalability to moderate-scale
systems (for example, simulating liquid water comprising
thousands to tens of thousands of atoms on an NVIDIA A100
GPU with 80 GB of memory®*>*®). Although some equivariant
MPNNs reduce costs by replacing tensor products with direct
summations of equivariant features,***** such simplifications
often compromise model accuracy.

In this work, we introduce a novel equivariant MPNN
framework that leverages node-equivariant message passing
(NEMP) to improve computational efficiency without sacrificing
accuracy. Our key innovation lies in the reformulation of
equivariant message passing in the node space, which are
significantly smaller than the edge space. Rather than
computing tensor products between every edge and corre-
sponding neighbor node, we construct an expressive equivar-
iant framework through a tensor product between the central
node and a virtual summed node, where the neighbor features
are summed with edge-dependent, highly expressive coeffi-
cients. These coefficients and features are iteratively refined
during MP, preserving physical symmetries while maintaining
or even increasing the model's expressive power. As a result, the
expensive scaling in the equivariant MP step is reduced from
with the number of neighboring pairs to with the number of
central atoms. Extensive evaluations across molecular systems,
gas-solid interfaces, liquids and solids demonstrate that our
framework achieves high fidelity in representing the first-
principles data while improving computational and memory
efficiency by 1-2 orders of magnitude. This improvement allows
not only reduction of simulation time, but also enable simula-
tions of much larger systems.

Methods

Equivariant MPNNs have gained significant attention in atomic-
scale ML for their remarkable fidelity and data efficiency.** In
these models, molecular structures are considered as graphs,
where atoms are treated as nodes and edges are defined as the
connections between the central atom and its neighbors within
a specified cutoff radius. The MP is realized iteratively in layers,
in which each node gathers information from its surrounding
atoms, typically encoded with symmetric features, and
combines them through a learned aggregation function, which
is termed massage. The aggregated information is then used to
pass the message by updating the node features. Through
repeated layers, the network captures increasingly complex
correlations and interactions across the molecular graph. The
value of equivariant MPNNss lies in their ability to couple these
node states through the tensor product of equivariant features
of the central atom and its neighbors. This mechanism not only

preserves equivariance but also introduces explicit

© 2026 The Author(s). Published by the Royal Society of Chemistry
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incorporation of higher-order interactions, in contrast to
invariant MPNNs, which capture such interactions only
implicitly.

The most critical component of equivariant MPNNs lies in
how they perform equivariant message passing. In EEMP
models, equivariant messages are passed by coupling equivar-
iant features of each edge with those of the corresponding
neighbor node, as illustrated in Fig. 1(a). This strategy results in
two tensors of shape (Natom X Npeigh X Nime X N¢), where Nacom
is the number of atoms in the system, Npcign is the number of
neighbors within the cutoff radius, N,. denotes the number of
angular momentum combinations, and N, is the number of
channels (vide infra). In particular, Ny, increases rapidly with
the maximum angular momentum, exhibiting cubic scaling.
This often results in the construction of extremely large tensors
and, consequently, significant computational cost in both time
and memory. As a result, the tensor product becomes the rate-
determining step in MP, severely limiting the applicability of
such models to large systems or long-time simulations. Below,
we propose the NEMP to avoid some of the shortcomings of
EEMP.

23,54

NEMP architecture

The NEMP architecture is shown in Fig. 1(b). We first need to
generate a representation for each unique pair of atoms to
enable its application in describing multi-element systems,
which is crucial for building a universal potential across various
elements. This can be achieved through an embedding NN,
denoted as Femp, which takes the combination of a pair of
elements {Z;, Z;} as input:*

G = emb({Zi, Zj}) (1)

Here, Z; and Z; represent the element types of the central and
neighbor atoms, respectively. The output of this embedding
depends only on the combination of element types and is used
to generate parameters that similarly depend only on o; in
subsequent processing:

C(Gij) = Fcocft{cij)- (2)

For the NEMP description of the local edge environment
within a cutoff radius of the ith central atom, Bessel functions
with optimizable parameters are used for the radial channels:

Mfcm (rysre)- G)

Rn (Vi/') = CnR (G,J-)r,-j

Here, j denotes the surrounding atoms within the cutoff radius
re, enforced by a polynomial cutoff function® fou(ry; ro). ¢, (6)
is the output of the NN (Fcoer) defined in the eqn (2) for the
radial functions (denoted by superscript R), with n ranging from
1 to N, where N, is the number of channels (radial functions) in
the initial layer.

Before detailing the specific operations in each MP layer, we
first introduce the notational convention used throughout the
manuscript, where bold symbols denote vectors with channel

Chem. Sci.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc07248d

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 12:44:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

dimensions. The notations “I” and “J” refer to the central node (i)
and a neighboring node (j), respectively, while “I/” denotes the
edge connecting them. The first Greek subscript indicates the
specific type of feature, which include edge coefficients (ECs) (x),
equivariant (y), and invariant (p) features. The numerical super-
script denotes the MP layer; when a quantity has no superscript,
it represents an intermediate value within the layer that is not
passed to the next MP layer. The Greek superscript (applicable
only to the edge coefficients) specifies the particular subset used
for a given operation. For example, IJS represents the edge coef-
ficients of the 0™ MP layer. Summation over J (capital / on the left,
index j on the right) produces the node equivariant (y) or
invariant (p) feature I) = leg’(‘”, Here, [J9” denotes the subset of
J

IJ; used to compute the node invariant feature IJ. Other symbols
representing different layers or feature types can be understood
in the same way.

By applying an NN to the combination of radial functions in
eqn (3) and the element-dependent coefficients ¢*(a;) (eqn (2)),
we generate the environment dependent ECs of the initial layer:

2" = Frggel {(eX(0,). R()). @

The corresponding node-equivariant features (L) ;) for the
central atom i can be obtained by directly summing the
contributions of their neighboring atoms denoted by j:

ZIJ Y (17). (5)

\//lm
Here, Y;,(r;) are the spherical harmonics, IJ?("’ are the initial
layer ECs defined in eqn (4) related to the node-equivariant
features. On the other hand, the node-invariant features
(I9) in the initial layer can be generated by summation over the
ECs:

0=>"13 (6)
J

Similarly, edge-invariant features are derived from node-
equivariant features of the initial layer defined in eqn (5):

W, = 2 (10,1007 Vi (1) + 93, 1007 Yin (1) ). (7)
Lm

These newly computed edge-invariant features IJ, are then
combined with the edge-invariant features from the initial layer
{¢’(5), Uy} to produce refined edge-invariant features for the
current layer IJ) = {¢’(oy), IJ?( P ,JJ,}. Using these updated
features, the ECs (IJ, 1) for the first layer are generated using the
same form as that in the initial layer as shown in eqn (4). With
these ECs, we perform a tensor contraction between the
weighted spherical harmonic expansion and the node-
equivariant features from the previous layer to obtain the new

node-invariant features (I,1):

le ,,”ZIJ

I.m

Y/m ij (8)

To overcome the bottleneck associated with EEMP, as previ-
ously discussed, we design our MP scheme such that the tensor
product is performed only over the node space, which is
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significantly smaller than the edge space. For each central node,
we first obtain its equivariant features (I ;,,):

ZIJ

To acquire information outside the cutoff sphere, we intro-
duce a virtual summed node (~), as illustrated in Fig. 1(c). The
corresponding equivariant feature (I, s, ), can be obtained by
aggregating or summing over its neighboring nodes

E : } : 190
L X W jin J\//lmn
n=1

The message passing is then realized by performing a tensor
product between the node-equivariant features of the central
and virtual nodes:

I\l/Jm lem rt/ (9)

i\J/Jm n (1 O)

1 17
Iw,l,m, = E CI].ml‘lz,rng.l/‘m,(1)[,11‘12,// Ly 1 Xy tymy (11)

1y ,my,lh,my
where, Ci m,1,m,1,m, are the corresponding Clebsch-Gordan
coefficients. This strategy produces two tensors of shape
(Natom X Nime X N). For comparison, the message-passing
operation in EEMP model can be written as:

Iw,l/mf = Z Z Cll iyl ly }ij(V[/-) Ylm (rij)Jw,Izmp

Jhmylhmy

(12)

which produces two intermediate tensors of shape (Nacom X
Npeigh X Nime X N¢). As a result, it is significantly more efficient
in terms of both time and memory, removing the bottleneck in
EEMP. Considering the case where the central atom has 10
neighboring atoms within the cutoff radius, a situation not
uncommon in extended systems, NEMP would in principle be
one order of magnitude faster than EEMP.

The final node-equivariant features for the first layer are
obtained through a ResNet-style connection:*>*

~ 140 1yl
= § Wi jin I\// Im,n + § :a)i,nn Iw Im,n*
n=1 n=1

In eqn (10) and (13), ® represents different optimizable
parameters, where the subscripts indicate their dependencies.
For example, w; 7' in eqn (10) denotes that the optimizable

(13)

1
I\v,lm.ﬁ

parameter depends on the element species (i) and the channel
coupling (fin). Importantly, in eqn (10) and (13), we use
element-dependent coefficients for basis contraction before
further product or sum coupling. This approach facilitates
information exchange between different channels, similar to
basis contraction in quantum chemistry, and has been shown to
enhance expressiveness.*’

Subsequently, the node-equivariant features are employed to
generate the edge-invariant features using the same form in first
layer as shown in eqn (7), allowing the message-passing process
to continue as shown in Fig. 1(b) and (c). After T MP iterations,
the refined edge-invariant features converge to a sufficiently
expressive representation of the local edge environment, natu-
rally producing fully resolved coefficients. In this context, the
aggregations in eqn (9) and (10) can be viewed as locally
information-preserving when the number of channels is suffi-
ciently large. For example, the mapping from edge state to the
node state forms a small linear system whose coefficient matrix

© 2026 The Author(s). Published by the Royal Society of Chemistry
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(the ECs) can be inverted in practice, enabling the original edge
information to be recovered. Consequently, through the tensor
product in eqn (11), our model does not sacrifice expressive
power, but with much lower computational cost and memory
consumption than the EEMP. Similarly, the node-invariant
features develop a faithful representation of the entire system
structure. The model aggregates (e.g., concatenates or inte-
grates) node-invariant features of each layer and processes them
through an NN to predict atomic energies. The total energy of
the system is finally obtained by summing these atomic

N
contributions E = 3~ Fread out({I), -+, 1" }).

l
Furthermore, the sum operation can introduce additional
interactions, as shown in Fig. 1(a) and (c). In the EEMP model,
each edge-equivariant feature (spherical harmonics) only interacts
with the corresponding neighbor's node-equivariant features. For
example, using the local environment centered at atom I depicted
in Fig. 1(a), the interaction of an EEMP model is expressed as

IJX(rll)Y(rU) ® J‘/, + IKX("ik)Y(rik) ® Kw

+ IHX(V Y (X;) ® Hw, (14)
Here, J, H, and K denote the neighboring nodes. Similarly, in
Fig. 1(c), the interaction in the NEMP model is defined as
follows:

(IJX‘LY(rg/-) +HIK Y (ry) + IHJY(M))

® <IJ‘£J¢ +IKYK, + IHfHW>,

(15)

There are more direct interactions and many-body based coef-
ficients in our model since coefficients in EEMPs only depend on
distances between the central atom and its neighbors, while our
NEMP model depends on iteratively refined many-body edge
features. The ECs are learned from data to automatically determine
interaction significance. Numerical results presented below show
that our model can achieve state-of-the-art accuracy across diverse
systems, while offering substantially higher efficiency and requiring
fewer parameters (approximately 50k to 500k approximately 50-
500k; see SI for details) compared with EEMP models.>>*>*

Results and discussion
Single-component systems

3BPA. For MLIP models, transferability is a crucial measure-
ment for assessing model performance. To evaluate the trans-
ferability of NEMP, we employ the flexible drug-like molecule 3-
(benzyloxy)pyridin-2-amine (3BPA) dataset, sampled from MD
simulations at 300, 600, and 1200 K.* The reference energies and
forces were computed using density functional theory (DFT) with
the wB97X functional and the 6-31G basis set, as described in ref.
59. Following the same protocol, our model uses the same
training set as all models listed in Table 1 to ensure a fair
comparison. Specifically, 500 structures from the 300 K dataset
were employed and randomly split into training and validation
sets with a 9: 1 ratio. In addition, configurations sampled at 300,

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Prediction errors (RMSEs) for energy (meV) and atomic forces
(meV A~ of the 3BPA molecule across different MLIPs. The boldfaced
number indicates the model with the lowest error. ‘'E" and 'F’ in the first
column denote energy and forces, respectively. The numbers in
parentheses represent the error bars obtained from four independent
training runs with different initial parameters

Dataset ACE sGDML ANI-2x NequlP CACE MACE NEMP
300K,E 7.1 9.1 38.6 33 6.3 3.0 3.4(0.17)
300K, F 27.1 46.2 84.4 11.3 214 88 10.7 (0.18)
600 K, E 24.0 484.8 54.5 112 18.0 9.7  9.7(0.23)
600 K, F 64.3 439.2 102.8 27.3 452 21.8 24.4(0.26)
1200K, E 85.3 774.5  88.8 40.8 58.0 29.8 32.5(0.13)
1200 K, F 187.0 711.1 139.6 86.4 113.8 62.0 69.2 (1.1)
Time — — — 103.5 — 245 2.4

600, and 900 K were used to construct three separate test data-
sets. Given the substantial energy range difference between the
high-temperature test datasets (~4.5 eV) and the training dataset
(1.1 eV), we adopt a linear mapping function (Fegqe in eqn (4)) to
transform the edge-invariant features Ifjinto edge coefficients
1J in each MP layer to enhance transferability.

Comparisons with several existing MLIP models, including
ACE,”® SGDML,* ANI-2x,* CACE,* NequlP,” Allegro,” and
MACE,*® are summarized in Table 1. Notably, NEMP achieves
superior fidelity compared to all models except MACE, for which
the errors are practically comparable. This supports our claim
that NEMP is effectively equivalent to the EEMP framework in
terms of accuracy. We note that MACE incorporates additional
many-body interactions by leveraging node-equivariant features
as a basis after each MP layer, enabling higher-order represen-
tations, so it is not surprising that it achieves better accuracy than
other MLIPs. As demonstrated in examples discussed below,
however, introducing an NN to map the edge-invariant features
to ECs in each layer can mitigate this issue, yielding comparable
or even better performance than MACE.

Liquid water

To validate the performance of the NEMP model on complex
liquids, we benchmark it against ab initio reference data generated
by Cheng et al.** The dataset comprises 1593 structures of 64 water
molecules in a periodic box, computed using DFT with the
revPBEO-D3 functional. This level of theory has been demonstrated
to provide a reliable description of water's structure and dynamics
across a range of pressures and temperatures. In Table 2, we
compare the performance of several models, including (1) local
descriptor-based atomic NNs, (2) invariant MPNNs, and (3)
equivariant MPNNs. Among these, two and three-body descriptor-

Table 2 RMSEs for energy per water molecule (meV per H,O) and
atomic forces (meV A™) across different MLIPs for liquid water. The
boldfaced number indicates the model with the lowest error. The
numbers in parentheses represent the error bars obtained from four
independent training runs with different initial parameters

BPNN EANN REANN NequlP CACE MACE NEMP

Energy 7.0 6.3 2.0 2.8 1.8 1.9  2.4(0.1)
Forces 120.0 129.0 47.0 45.0 47.0 36.2 36.8 (0.5)
Chem. Sci.
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based NNs like the Behler-Parrinello NN (BPNN)* and the
embedded atom neural network (EANN)'* give the largest errors,
as expected. REANN (invariant MPNN)* significantly reduces the
errors of local descriptor-based models, reaching comparable
accuracy with equivariant models NequIP* and CACE.* Once
again, MACE®® demonstrated superior fidelity, achieving a root
mean square error (RMSE) of 1.9 meV per H,O for energy and 36.2
meV A™* for forces, outperforming other EEMP models. Notably,
our NEMP model, which incorporates an NN as the edge-feature
update function Feqge, achieves errors of to 2.4 meV per H,O and
36.8 meV A" while using significantly fewer parameters (see SI for
details). This result supports our claim that introducing NN-
mapped many-body ECs enhances the model's expressive power.

To further evaluate the reliability of the NEMP potential, we
performed Nose-Hoover thermostat-based NVT MD simulations of
the liquid water system consisted of 64 H,O molecules in a periodic
cubic box, equilibrated at 300 K. The simulations were carried out
for 50 ps with a time step of 0.1 fs. Fig. 2 compares the oxygen—
oxygen radial distribution function (RDF) obtained from the NEMP
potentials with that from DFT using the same exchange-correlation
functional and identical simulation conditions.”® The close agree-
ment further demonstrates the accuracy in reproducing the refer-
ence DFT energies and interatomic forces. A substantially longer 1
ns NVT simulation of a 512-molecule H,O system further confirms
the stability and robustness of our potential. Crucially, both simu-
lation results demonstrate a good agreement with experimental
measurements. The consistency across different system sizes
confirms the convergence of our MD simulations and indicates the
long-term stability and scalability of our potential to larger systems.

Universal potential applications

ANI-1x. After demonstrating the high fidelity of the NEMP
model for single-component systems, we further evaluate its
generalization ability for constructing universal potentials. To

Expt
----- AIMD
----- NEMP (64 H,0)
o 21
S —— NEMP (512 H,0)
= - - - - -NEMP-Small
=
0 T T T 1

2 3 4 5 6
r(A)

Fig. 2 Comparison of experimental”® and theoretical O-O radial
distribution functions of liquid water at 300 K. The theoretical results
are obtained from DFT-based ab initio molecular dynamics® (AIMD)
and MD simulations using the NEMP and NEMP-Small potentials for
system sizes of 64 and 512 H,O molecules.
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this end, we benchmark the model using the ANI-1x dataset—
a dataset for training transferable universal potentials for
organic molecules with H, C, N, and O elements.* Following the
protocol adopted in MACE, we trained our model on a subset of
~490k data points (approximately 10% of the full dataset) and
evaluated its performance on the COMP6 benchmark dataset.*
As presented in Table 3, the NEMP model outperforms all
existing approaches (including ANI-1x,%® equivariant trans-
former based model TrIP, EEMP model MACE®*® and Tensor-
Net®”), achieving a total mean absolute error (MAE)
0.39 keal mol ™ for energy and 0.34 kcal mol™* A" for forces. It
should be noted that the comparison with the transformer
model might not be fully conclusive regarding the effect of the
transformer alone, as the transformer and equivariant compo-
nents were not implemented on an identical base architecture.
More rigorous comparisons in prior studies**® have demon-
strated that the equivariant framework contributes more to
performance gains than the transformer architecture alone.
Moreover, integrating both components yielded the superior
overall results. More importantly, comparisons with the EEMP
model are consistent with the findings above, confirming that
NN-mapped many-body ECs can enhance the model's expres-
sive power. Notably, while the training data only included
systems with =50 atoms, the model successfully extrapolates to
larger molecular systems (up to 300 atoms). These results
highlight NEMP as a promising and scalable framework for
developing general-purpose potentials.

HME21. To further test the performance of the NEMP model
for materials science applications, we choose to work with the
HME21 dataset,* which includes regular and disordered crys-
tals spanning 37 elements. This diverse chemical space makes
HME?21 an ideal benchmark for evaluating the generalizability

Table 3 Performance comparison of MAEs for total energies (kcal
mol™) and atomic forces (kcal mol™ A™Y) across different MLIPs for
the COMP6 benchmark dataset. Note that the ANI-1x model utilized
10x more training data than other models. The boldfaced numbers
indicate the model with the lowest error. ‘E" and ‘F’ in the second
column denote energy and forces, respectively. The numbers in
parentheses represent the error bars obtained from four independent
training runs with different initial parameters

Dataset ANI-1x TrIP TensorNet MACE NEMP
ANI-MD E 3.4 - 1.61 3.25 1.42 (0.098)
F 2.68 - 0.82 0.62 0.42 (0.012)
DrugBank E 2.65 - 0.98 0.73 0.57“ (0.051)
F 2.86 - 0.75 0.47 0.30“ (0.011)
GDB 7-9 E 1.04 - 0.32 0.21 0.20 (0.012)
F 2.43 - 0.53 0.34 0.22 (0.010)
GDB10-13 E 2.3 - 0.83 0.53 0.43 (0.016)
F 2.67 - 1.52 0.62 0.41 (0.016)
S66x8 E 2.06 - 0.62 0.39 0.34 (0.028)
F 1.6 - 0.33 0.22 0.16 (0.009)
Tripeptides E 2.92 - 0.92 0.79 0.62 (0.022)
F 2.49 - 0.62 0.44 0.31 (0.011)
COMPS6 total E  1.93 1.04 0.48 0.39 (0.010)
F 2.09 1.41 0.52 0.34 (0.010)

¢ ~150 DrugBank test points with errors >100 kcal mol~" were excluded
from test error calculation.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 4 MAEs for Energy per atom (meV per atom) and force (meV
A7) of several MLIPs on the HME21 dataset. The boldfaced number
indicates the model with the lowest error. The numbers in parentheses
represent the error bars obtained from four independent training runs
with different initial parameters

TeaNet NequlIP MACE NEMP
Energy 19.6 47.8 16.5 16.5 (0.20)
Forces 175 199 140.2 144.3 (0.18)

of MLIPs for predicting structures and energies of materials.
Accurately modeling systems with such a large elemental variety
has long been considered a key challenge in MLIP
construction.*>**’*7% For fair comparison, we use the same data
split as in the original test. As shown in Table 4, NEMP achieves
accuracy comparable to MACE*® while outperforming
NequlP>>*® and TeaNet.*”*® The consistently low errors confirm
NEMP's ability to handle extensive elemental diversity without
sacrificing precision in energy and force predictions.

EMLP dataset. The Element-based Machine Learning
Potential (EMLP)™ is a recent NequlP trained MLIP encom-
passing Ag, Pd, C, H, and O, designed for applications in
heterogeneous catalysis and beyond. Comprising of 116516
DFT-calculated data points generated through random chem-
ical space exploration, the dataset prioritizes diverse local
atomic interactions over extensive collections of structurally
similar configurations to ensure generalizability. EMLP
demonstrates accurate property predictions across solid, liquid,
gas phases and gas-surface systems without requiring system-

View Article Online
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specific sampling. Perhaps most importantly, it demonstrates
a superior ability in predicting chemical transformation
barriers (including transition state geometries and energies),
which is often lacking in other MLIPs. Furthermore, it has also
been demonstrated to correctly describe liquid molecular
systems with only limited data. The inherent complexity and
demonstrated transferability of the EMLP dataset presents it as
an excellent benchmark for evaluating performance of MLIPs.

Following the same training strategy, we developed an NEMP
model using the EMLP dataset and evaluated its performance
by comparing predicted energetic profiles for CO oxidation on
various Pd surfaces against reference DFT calculations. As
shown in Fig. 3, both models show good agreement with DFT
results, with NEMP achieving comparable or even superior
accuracy to EMLP in certain cases, consistent with our obser-
vations in other systems discussed above.

Beyond gas-surface systems, we further validated this
universal potential through MD simulations of liquid meth-
anol. We carried out Nose-Hoover thermostated NVT simula-
tions, with a system comprising 32 CH3;OH molecules in
a periodic cubic cell (side length: 12.93 A) equilibrated at 300 K.
The simulation was run for 50 ps with a time step of 0.1 fs. Fig. 4
compares the C-C, C-0, and O-O RDFs predicted by the NEMP
potential with those from ab initio molecular dynamics (AIMD),
EMLP, and experimental results.” The NEMP predictions are
obviously in closer agreement with AIMD than those of EMLP,
which underscores the accuracy of NEMP in reproducing
reference energies and interatomic forces, further confirming
its robust transferability across different phases and systems.

1.5 0.9 (b)
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_ 0.6
S 0.9 S
2 S
22 0.6 2 0.3
0.3
3] =
0.0-
0.0
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Fig. 3 CO oxidation reaction path on (a) Pd(111), (b) Pd(110), (c) Pdi/Ag(111), and (d) Pd4/Ag(111), comparing DFT calculations with EMLP/NEMP

predictions.
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using DFT, and EMLP, and NEMP potentials.

Computational efficiency and scalability of NEMP

By design, the NEMP represents significant advantages in
computational efficiency over existing equivariant models. As

Time (s/core)

—e— NEMP-Small

10*

102
1

0’ 10°
Number of atoms
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displayed in Table 1 for the 3BPA molecule, NEMP reduces the
computational cost by approximately 1-2 order of magnitude
compared to EEMP baselines (MACE/NequlP/Allegro) while
maintaining comparable accuracy.

To evaluate CPU scalability, we measured the computational
cost per MD step in NVT simulations of liquid water (300 K)
using the JAX_MD package.” Fig. 5(a) demonstrates linear
scaling with system size on a single Intel® Xeon Gold 6438Y
core. The NEMP potential shows marginally higher computa-
tional cost than BPNN"** (an efficient local-descriptor atomistic
model). For a more detailed comparison, we reduced the
number of hyperparameters in our model, creating an NEMP-
small variant with RMSE of 3.1 meV per H,O for energy and
47.9 mev A™* for forces, maintaining accuracy comparable to
EEMP models. This model achieves a speed of 2.5 x 10~ s per
atom per step, representing approximately 2.0x acceleration
over the standard NEMP and 1.5x faster performance than the
efficient local-descriptor-based BPNN model. Notably, while the
REANN (invariant MPNN) design theoretically promises higher
speed than EEMP, both NEMP variants demonstrate similar
performance in our CPU benchmarks.

For GPU benchmarks, memory emerges as a critical
constraint due to hardware limitations. Our solution is a novel
asynchronous architecture (Fig. 6) that decouples neighbor-list
(NL) construction on the CPU from force evaluation on the GPU.
The implementation combines JAX's non-blocking execution
with a skin-algorithm cutoff buffer to create pipelined updates:
the GPU computes forces using historical NLs (time ¢-n) while
the CPU simultaneously generates new NLs based on current
positions (time ¢) through optimized Fortran code, with asyn-
chronous NL transfers to the GPU every n steps. This design
eliminates GPU waiting time by masking NL latency and over-
comes the high memory consumption of NL calculations for
general lattice parameters in JAX_MD required for just-in-time
(JIT) compilation compatibility (limited to ~50k atoms),
enabling nearly 800K atoms simulations. This strategy can be
readily adapted to other ML models for enhanced memory and
computational efficiency for efficient GPU models.
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Fig.5 Computational cost per MD step in liquid water simulations for: (a) NEMP and NEMP-small, evaluated on a single core of Intel® Xeon Gold
6438Y CPUs and, compared with BPNN and REANN, whose results are taken from ref. 57 and 62, were computed on a single core of Intel® Xeon
6132 CPU; and (b) NEMP, NEMP-Small (A100/H100 GPUs) versus REANN, CACE, NequlP, and MACE (A100 GPUs). Note that all calculations of the

NEMP model are conducted using float32 precision.
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Fig. 6 Schematic of the asynchronous computation workflow showing NL generation on CPU concurrent with MD propagation on GPU.

Benchmarks on NVIDIA A100/H100 GPUs (Fig. 5(b))
demonstrate the computational and memory efficiency of our
model. Comparison between Fig. 5(a) and (b) reveals GPU/CPU
acceleration ratios that scale with system size, reaching
a maximum of ~200x for systems exceeding ~10k atoms.
NEMP-small successfully simulates nearly 800k atoms within 80
GB memoty, in contrast to EEMP models (MACE/NequIP/CACE)
which are limited to 10-24k atoms with a speed around 0.9 X
10 *-1.5 x 10~ s per atom per step on A100 GPUs with 80 GB
memory. Notably, NEMP-small achieves 5x faster evaluation
speeds than REANN. Compared to EEMP models, NEMP-small
reduces computational costs by two orders of magnitude
while improving memory efficiency by 30-70x on A100 GPUs,
further achieving 0.8 ps per atom per step on H100 GPUs.
Benchmark results validate our model's high computational
efficiency and low memory consumption.

It is important to note that this asynchronous strategy is most
effective when the evaluation time of the ML model is comparable
to, or shorter than, the overhead associated with CPU-GPU data
transfer, or when using frameworks that require JIT compilation,
such as JAX-MD, where constructing NLs for general lattice
parameters incurs substantial memory overhead. In contrast,
when the cost of force evaluation significantly exceeds these
overheads, a conventional sequential setup, where NL construc-
tion and MD steps are performed entirely on either the CPU or the
GPU, can also achieve near-optimal performance.

Conclusions

We present here a novel node-based equivariant MPNN frame-
work that achieves high efficiency and accuracy in modeling
MLIPs across diverse chemical systems. Central to our approach
is the tensor product operation between node states and virtual
summed node states, weighted by many-body ECs generated
through NNs within each MP layer. This design significantly
reduces computational costs while enhancing expressive power.

© 2026 The Author(s). Published by the Royal Society of Chemistry

Benchmark results demonstrate that our model achieves
accuracy comparable to or exceeding prevailing EEMP models
across datasets designed for gas-phase molecules, extended
systems, and universal potentials. MD simulations confirm 1-2
orders of magnitude acceleration relative to existing EEMP
models while maintaining accuracy, achieving speeds
surpassing even efficient local-descriptor methods like BPNN.

Our asynchronous GPU-CPU algorithm resolves memory
constraints by decoupling NL construction on CPUs from force
evaluation on GPUs. Crucially, standard implementations of
GPU-based NL building in the JAX_MD package must satisfy JIT
compilation constraints, incurring prohibitive memory over-
head for general lattice parameters. By shifting NL operations to
CPUs with optimized Fortran codes, we enable simulations of
nearly 800k atoms compared to the 50k-atom limit imposed by
the JAX_MD implementation without any extra overhead. This
is significant as the NEMP can be used to simulate much larger
systems than permitted by the existing EEMPs.

The current computational bottleneck lies in the EC calcu-
lation, where an NN processes edge-invariant input features.
Although the channel contractions in eqn (10) and (13) exhibit
quadratic scaling, these operations remain subdominant as
they only operate on the node dimensions. The EC evaluation,
which scales linearly with the number of channels, can be
further accelerated using TensorFloat-32 optimization. When
combined with the parallel algorithms for MPNN frameworks,
such as that proposed recently by Xia and Jiang,”” our approach
can be further extended to larger-scale systems. The NEMP
model's unique features make it particularly suited for
advancing MD simulations and for the development of accu-
rate, efficient universal potentials for chemical, biophysical,
and materials studies at ab initio accuracy. Furthermore, the
exceptional performance demonstrates that our strategy
provides a simple and general approach to upgrading other
EEMP models, improving efficiency in both computational time
and memory usage.

Chem. Sci.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc07248d

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 12:44:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

Author contributions

YZ and HG designed the project. YZ wrote the code and per-
formed all calculations. YZ and HG discussed results and wrote
the paper.

Conflicts of interest

There are no conflicts to declare.

Data availability

The NEMP Package is available from https://github.com/
zhangylch/NEMP. All datasets used for model training and
validation in this study are publicly accessible from previously
published sources.

Supplementary information (SI): training details and model
structures. See DOI: https://doi.org/10.1039/d5sc07248d.

Acknowledgements

This work was supported by Department of Energy (Grant No.
DE-SC0015997 to H. G.). The computation was performed at the
Center for Advanced Research Computing (CARC) at UNM. We
gratefully acknowledge Dr Peijun Hu and Dr Wenbo Xie for
providing the EMLP dataset and the corresponding validation
data for the potential.

References

1 J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.

2 A. P. Bartok, M. C. Payne, R. Kondor and G. Csanyi, Phys. Rev.
Lett., 2010, 104, 136403.

3 B. Jiang and H. Guo, J. Chem. Phys., 2013, 139, 054112.

4 K. Shao, ]J. Chen, Z. Zhao and D. H. Zhang, J. Chem. Phys.,
2016, 145, 071101.
5 A. V. Shapeev, Multiscale Model. Sim, 2016, 14, 1153-1173.
6 S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky,
K. T. Schutt and K. R. Muller, Sci. Adv., 2017, 3, e1603015.
7 K. T. Schiitt, H. E. Sauceda, P.-]. Kindermans, A. Tkatchenko
and K.-R. Miiller, J. Chem. Phys., 2018, 148, 241722.

8 L. Zhang, J. Han, H. Wang, R. Car and W. E, Phys. Rev. Lett.,
2018, 120, 143001.

9 K. Yao, J. E. Herr, D. W. Toth, R. McKintyre and J. Parkhill,
Chem. Sci., 2018, 9, 2261-2269.

10 O. T. Unke and M. Meuwly, J. Chem. Theory Comput., 2019,
15, 3678-3693.

11 Y. Zhang, C. Hu and B. Jiang, J. Phys. Chem. Lett., 2019, 10,
4962-4967.

12 R. Drautz, Phys. Rev. B, 2019, 99, 014104.

13 V. Zaverkin and J. Kdstner, J. Chem. Theory Comput., 2020, 16,
5410-5421.

14 O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger,
I. Poltavsky, K. T. Schiitt, A. Tkatchenko and K.-R. Miiller,
Chem. Rev., 2021, 121, 10142-10186.

15 F. Musil, A. Grisafi, A. P. Bartok, C. Ortner, G. Csanyi and
M. Ceriotti, Chem. Rev., 2021, 121, 9759-9815.

Chem. Sci.

View Article Online

Edge Article

16 J. Behler, Chem. Rev., 2021, 121, 10037-10072.

17 M. Meuwly, Chem. Rev., 2021, 121, 10218-10239.

18 B. Huang and O. A. von Lilienfeld, Chem. Rev., 2021, 121,
10001-10036.

19 V. L. Deringer, A. P. Bartok, N. Bernstein, D. M. Wilkins,
M. Ceriotti and G. Csanyi, Chem. Rev., 2021, 121, 10073-
10141.

20 R. Zubatyuk, S. Smith Justin, J. Leszczynski and O. Isayev,
Sci. Adv., 2021, 5, eaav6490.

21 O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schiitt,
H. E. Sauceda and K.-R. Miiller, Nat. Commun., 2021, 12,
7273.

22 P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro, J. Huang
and M. Barbatti, Top. Curr. Chem., 2021, 379, 27.

23 Y. Zhang, J. Xia and B. Jiang, Phys. Rev. Lett., 2021, 127,
156002.

24 K. Schiitt, O. Unke and M. Gastegger, Proceedings of the 38th
International Conference on Machine Learning, 2021, vol. 139,
pp. 9377-9388.

25 S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt and B. Kozinsky,
Nat. Commun., 2022, 13, 2453.

26 1. Batatia, D. P. Kovacs, G. Simm, C. Ortner and G. Csanyi,
Adv. Neural Inf. Process., 2022, 35, 11423-11436.

27 J. Thorben Frank, O. T. Unke and K.-R. Miiller, Adv. Neural
Inf. Process., 2022, 35, 29400-29413.

28 Y. Zhang and B. Jiang, Nat. Commun., 2023, 14, 6424.

29 A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen,
M. Kornbluth and B. Kozinsky, Nat. Commun., 2023, 14, 579.

30 Y. Zhang, Q. Lin and B. Jiang, Wiley Interdiscip. Rev.: Comput.
Mol. Sci., 2023, 13, €1645.

31 1. Batatia, L. L. Schaaf, H. Chen, G. Csanyi, C. Ortner and
F. A. Faber, 2023, arXiv:2310.10434, DOI: 10.48550/
arXiv.2310.10434.

32 X.-T. Xie, Z.-X. Yang, D. Chen, Y.-F. Shi, P.-L. Kang, S. Ma,
Y.-F. Li, C. Shang and Z.-P. Liu, Precis. chem., 2024, 2, 612
627.

33 Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey,
P. L. Houston, D. H. Zhang and J. M. Bowman, Nat.
Comput. Sci., 2025, 5, 418-426.

34 J. Xia, Y. Zhang and B. Jiang, Chem. Soc. Rev., 2025, 54, 4790-
4821.

35 S. D. Huang, C. Shang, P. L. Kang and Z. P. Liu, Chem. Sci.,
2018, 9, 8644-8655.

36 S. N. Pozdnyakov, M. ]J. Willatt, A. P. Bartok, C. Ortner,
G. Csanyi and M. Ceriotti, Phys. Rev. Lett., 2020, 125, 166001.

37 Z. Fan, Z. Zeng, C. Zhang, Y. Wang, K. Song, H. Dong,
Y. Chen and T. Ala-Nissila, Phys. Rev. B, 2021, 104, 104309.

38 O. Unke, M. Bogojeski, M. Gastegger, M. Geiger, T. Smidt
and K.-R. Miller, Adv. Neural Inf. Process., 2021, 34, 14434~
14447.

39 B. Cheng, npj Comput. Mater., 2024, 10, 157.

40 K. T. Schiitt, F. Arbabzadah, S. Chmiela, K. R. Miiller and
A. Tkatchenko, Nat. Commun., 2017, 8, 13890.

41 C. Chen and S. P. Ong, Nat. Comput. Sci., 2022, 2, 718-728.

42 R. Zubatyuk, J. S. Smith, B. T. Nebgen, S. Tretiak and
O. Isayev, Nat. Commun., 2021, 12, 4870.

© 2026 The Author(s). Published by the Royal Society of Chemistry


https://github.com/zhangylch/NEMP
https://github.com/zhangylch/NEMP
https://doi.org/10.1039/d5sc07248d
https://doi.org/10.48550/arXiv.2310.10434
https://doi.org/10.48550/arXiv.2310.10434
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc07248d

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 12:44:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

43 Y. Wu, J. Xia, Y. Zhang and B. Jiang, J. Phys. Chem. A, 2024,
128, 11061-11067.

44 N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff
and P. Riley, arXiv, 2018, arXiv:1802.08219, DOI: 10.48550/
arXiv.1802.08219.

45 B. Anderson, T. S. Hy and R. Kondor, Adv. Neural Inf. Process.,
2019, 32, 14537-14546.

46 J. Brandstetter, R. Hesselink, E. van der Pol, E. J. Bekkers and
M. Welling, arXiv, 2021, arXiv:2110.02905, DOI: 10.48550/
arXiv.2110.02905.

47 S. Takamoto, S. Izumi and J. Li, Comput. Mater. Sci., 2022,
207, 111280.

48 M. Haghighatlari, J. Li, X. Guan, O. Zhang, A. Das, C.]. Stein,
F. Heidar-Zadeh, M. Liu, M. Head-Gordon, L. Bertels,
H. Hao, I. Leven and T. Head-Gordon, Digit. Discov., 2022,
1, 333-343.

49 S. Gong, Y. Zhang, Z. Mu, Z. Pu, H. Wang, X. Han, Z. Yu,
M. Chen, T. Zheng, Z. Wang, L. Chen, Z. Yang, X. Wu,
S. Shi, W. Gao, W. Yan and L. Xiang, Nat. Mach. Intell.,
2025, 7, 543-552.

50 Y.-L. Liao, B. Wood, A. Das and T. Smidt, arXiv, 2023,
arXiv:2306.12059, DOI: 10.48550/arXiv.2306.12059.

51 M. Wen, W.-F. Huang, J. Dai and S. Adhikari, npj Comput.
Mater., 2025, 11, 128.

52 1. Batatia, S. Batzner, D. P. Kovacs, A. Musaelian,
G. N. C. Simm, R. Drautz, C. Ortner, B. Kozinsky and
G. Csanyi, Nat. Mach. Intell., 2025, 7, 56-67.

53 C. W. Tan, M. L. Descoteaux, M. Kotak, G. d. M. Nascimento,
S. R. Kavanagh, L. Zichi, M. Wang, A. Saluja, Y. R. Hu,
T. Smidt, A. Johansson, W. C. Witt, B. Kozinsky and
A. Musaelian, arXiv, 2025, arXiv:2504.16068, DOI:
10.48550/arXiv.2504.16068.

54 J. Han, arXiv, 2024, arXiv:2407.11756, DOI: 10.48550/
arXiv.2407.11756.

55 K. Johannes, G. Janek and G. Stephan, International
Conference on Learning Representations, 2020.

56 K. He, X. Zhang, S. Ren and ]J. Sun, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, vol.
1512, pp. 770-778.

57 Y. Zhang, ]J. Xia and B. Jiang, J. Chem. Phys., 2022, 156,
114801.

58 D. P. Kovacs, I. Batatia, E. S. Arany and G. Csanyi, J. Chem.
Phys., 2023, 159.

59 D.P. Kovacs, C. V. D. Oord, J. Kucera, A. E. A. Allen, D. J. Cole,
C. Ortner and G. Csanyi, J. Chem. Theory Comput., 2021, 17,
7696-7711.

60 S. Chmiela, H. E. Sauceda, K.-R. Miiller and A. Tkatchenko,
Nat. Commun., 2018, 9, 3887.

61 X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith and
A. E. Roitberg, J. Chem. Info. Model., 2020, 60, 3408-3415.

© 2026 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

62 Y. Zhang, C. Hu and B. Jiang, Phys. Chem. Chem. Phys., 2021,
23, 1815-1821.

63 O. Marsalek and T. E. Markland, J. Phys. Chem. Lett., 2017, 8,
1545-1551.

64 J. S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros,
A. E. Roitberg, O. Isayev and S. Tretiak, Sci. Data, 2020, 7,
134.

65]. S. Smith, B. Nebgen, N. Lubbers, O. Isayev and
A. E. Roitberg, J. Chem. Phys., 2018, 148, 241733.

66 V. Zaverkin, D. Holzmiiller, L. Bonfirraro and ]. Késtner,
Phys. Chem. Chem. Phys., 2023, 25, 5383-5396.

67 G. Simeon and G. De Fabritiis, Adv. Neural Inf. Process., 2023,
36, 37334-37353.

68 B. E. Hedelius, D. Tingey and D. Della Corte, J. Chem. Theory
Comput., 2024, 20, 199-211.

69 S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li,
I. Kurata, T. Watanabe, Y. Yayama, H. Iriguchi, Y. Asano,
T. Onodera, T. Ishii, T. Kudo, H. Ono, R. Sawada,
R. Ishitani, M. Ong, T. Yamaguchi, T. Kataoka, A. Hayashi,
N. Charoenphakdee and T. Ibuka, Nat. Commun., 2022, 13,
2991.

70 1. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovacs,
J. Riebesell, X. R. Advincula, M. Asta, M. Avaylon and
W. J. Baldwin, arXiv, 2023, arXiv:2401.00096, DOI:
10.48550/arXiv.2401.00096.

71 D. Zhang, X. Liu, X. Zhang, C. Zhang, C. Cai, H. Bi, Y. Du,
X. Qin, A. Peng, J. Huang, B. Li, Y. Shan, J. Zeng, Y. Zhang,
S. Liu, Y. Li, J. Chang, X. Wang, S. Zhou, ]. Liu, X. Luo,
Z. Wang, W. Jiang, J. Wu, Y. Yang, J. Yang, M. Yang,
F.-Q. Gong, L. Zhang, M. Shi, F.-Z. Dai, D. M. York, S. Liu,
T. Zhu, Z. Zhong, J. Lv, J. Cheng, W. Jia, M. Chen, G. Ke,
W. E, L. Zhang and H. Wang, npj Comput. Mater., 2024, 10,
293.

72 K.-i. Nomura, S. Hattori, S. Ohmura, I. Kanemasu,
K. Shimamura, N. Dasgupta, A. Nakano, R. K. Kalia and
P. Vashishta, J. Phys. Chem. Lett., 2025, 16, 6637-6644.

73 T. Shiota, K. Ishihara, T. M. Do, T. Mori and W. Mizukami,
arXiv, 2024, arXiv:2412.13088, DOI: 10.48550/
arXiv.2412.13088.

74 C.Yang, C. Wu, W. Xie, D. Xie and P. Hu, Nat. Catal., 2025, 8,
891-904.

75 T. Yamaguchi, K. Hidaka and A. K. Soper, Mol. Phys., 1999,
96, 1159-1168.

76 S. Schoenholz and E. D. Cubuk, Adv. Neural Inf. Process.,
2020, 33, 11428-11441.

77 J. Xia and B. Jiang, arXiv, 2025, arXiv:2505.06711, DOI:
10.48550/arXiv.2505.06711.

78 L. B. Skinner, C. J. Benmore, J. C. Neuefeind and J. B. Parise,
J. Chem. Phys., 2014, 141, 214507.

Chem. Sci.


https://doi.org/10.48550/arXiv.1802.08219
https://doi.org/10.48550/arXiv.1802.08219
https://doi.org/10.48550/arXiv.2110.02905
https://doi.org/10.48550/arXiv.2110.02905
https://doi.org/10.48550/arXiv.2306.12059
https://doi.org/10.48550/arXiv.2504.16068
https://doi.org/10.48550/arXiv.2407.11756
https://doi.org/10.48550/arXiv.2407.11756
https://doi.org/10.48550/arXiv.2401.00096
https://doi.org/10.48550/arXiv.2412.13088
https://doi.org/10.48550/arXiv.2412.13088
https://doi.org/10.48550/arXiv.2505.06711
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc07248d

	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials

	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials
	Node-equivariant message passing for efficient and accurate machine learning interatomic potentials


